Chapter 12 Simple Linear Regression

- q Simple Linear Regression Model
- ▶ q Least Squares Method
- ▶ q Coefficient of Determination
- ▶ q Model Assumptions
- ▶ q Testing for Significance

Simple Linear Regression Model

- The equation that describes how y is related to x and an error term is called the <u>regression model</u>.
- The <u>simple linear regression model</u> is:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where:

 β_0 and β_1 are called <u>parameters of the model</u>, ε is a random variable called the <u>error term</u>.

q The <u>simple linear regression equation</u> is:

 $\blacktriangleright \quad E(y) = \beta_0 + \beta_1 x$

- Graph of the regression equation is a straight line.
- β_0 is the *y* intercept of the regression line.
- β_1 is the slope of the regression line.
- E(y) is the expected value of y for a given x value.

q Positive Linear Relationship

q Negative Linear Relationship

q No Relationship

Estimated Simple Linear Regression Equation

q The estimated simple linear regression equation

$$\hat{y} = b_0 + b_1 x$$

- The graph is called the estimated regression line.
- b_0 is the *y* intercept of the line.
- b_1 is the slope of the line.
- \hat{y} is the estimated value of *y* for a given *x* value.

Estimation Process

Regression Model $y = \beta_0 + \beta_1 x + \varepsilon$ Regression Equation $E(y) = \beta_0 + \beta_1 x$ Unknown Parameters β_0, β_1

 b_0 and b_1 provide estimates of β_0 and β_1 Estimated Regression Equation $\hat{y} = b_0 + b_1 x$ Sample Statistics b_0, b_1

Sample Data:

 y_1

 y_n

 \mathcal{X}

 X_1

 X_n

Least Squares Method

q Least Squares Criterion

$$\min \sum (y_i - \hat{y}_i)^2$$

where:

 $y_i = \underline{observed}$ value of the dependent variable for the *i*th observation $\hat{y}_i = \underline{estimated}$ value of the dependent variable for the *i*th observation

Least Squares Method

q Slope for the Estimated Regression Equation

$$b_1 = \frac{\sum x_i y_i - \frac{\left(\sum x_i \sum y_i\right)}{n}}{\sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n}}$$

Least Squares Method

q *y*-Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x}$$

where:

- x_i = value of independent variable for *i*th observation
- *y_i* = value of dependent variable for *i*th observation
- \overline{x} = mean value for independent variable
- \overline{y} = mean value for dependent variable
- n =total number of observations

Simple Linear Regression

 Example: Reed Auto Sales
 Reed Auto periodically has a special week-long sale.
 As part of the advertising campaign Reed runs one or more television commercials
 during the weekend preceding the sale. Data from a sample of 5 previous sales are shown on the next slide.

Simple Linear Regression

Estimated Regression Equation

▶ q Slope for the Estimated Regression Equation

$$b_{1} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}} = \frac{20}{4} = 5$$

▶ q *y*-Intercept for the Estimated Regression Equation

$$b_0 = \overline{y} - b_1 \overline{x} = 20 - 5(2) = 10$$

▶ q Estimated Regression Equation

 $\hat{y} = 10 + 5x$

NEWCA Scatter Diagram and Trend Line **Cars Sold** y = 5x + 10TV Ads

Coefficient of Determination

q Relationship Among SST, SSR, SSE

$$SST = SSR + SSE$$

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum (y_i - \hat{y}_i)^2$$

where:

SST = total sum of squares SSR = sum of squares due to regression SSE = sum of squares due to error

Coefficient of Determination

q The <u>coefficient of determination</u> is:

 $r^2 = SSR/SST$

where:

SSR = sum of squares due to regression SST = total sum of squares

Coefficient of Determination

 $r^2 = SSR/SST = 100/114 = (.8772)$

• The regression relationship is very strong; 88% of the variability in the number of cars sold can be explained by the linear relationship between the number of TV ads and the number of cars sold.

Sample Correlation Coefficient

$$r_{xy} = (\text{sign of } b_1) \sqrt{\text{Coefficien t of Determinat ion}}$$

 $r_{xy} = (\text{sign of } b_1) \sqrt{r^2}$

where:

 b_1 = the slope of the estimated regression equation $\hat{y} = b_0 + b_1 x$

Sample Correlation Coefficient

$$r_{xy} = (\text{sign of } b_1) \sqrt{r^2}$$

The sign of b_1 in the equation $\hat{y} = 10 + 5x$ is "+".

 $r_{xy} = \pm \sqrt{.8772}$ $r_{xy} = \pm .9366$

Assumptions About the Error Term ε

- 1. The error ε is a random variable with mean of zero.
- 2. The variance of ε , denoted by σ^2 , is the same for all values of the independent variable.

3. The values of ε are independent.

4. The error ε is a normally distributed random variable.

Testing for Significance

To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of β_1 is zero.

and

Two tests are commonly used:

t Test

F Test

Both the *t* test and *F* test require an estimate of σ^2 , the variance of ε in the regression model.

Testing for Significance

 $_{
m q}$ An Estimate of σ

The mean square error (MSE) provides the estimate of σ^2 , and the notation s^2 is also used.

 $s^2 = MSE = SSE/(n-2)$

where:

SSE =
$$\sum (y_i - \hat{y}_i)^2 = \sum (y_i - b_0 - b_1 x_i)^2$$

Testing for Significance

$_{ m q}$ An Estimate of σ

- To estimate σ we take the square root of σ^2 .
- The resulting s is called the <u>standard error of</u> <u>the estimate</u>.

$$s = \sqrt{\text{MSE}} = \sqrt{\frac{\text{SSE}}{n-2}}$$