Chapter 12
 Simple Linear Regression

- q Simple Linear Regression Model
\q Least Squares Method
- q Coefficient of Determination
- q Model Assumptions
- ${ }_{\text {q }}$ Testing for Significance

Simple Linear Regression Model

- The equation that describes how y is related to x and an error term is called the regression model.
- \quad The simple linear regression model is:

$$
y=\beta_{0}+\beta_{1} x+\varepsilon
$$

where:
β_{0} and β_{1} are called parameters of the model, ε is a random variable called the error term.

Simple Linear Regression Equation

q The simple linear regression equation is:

$$
E(y)=\beta_{0}+\beta_{1} x
$$

- Graph of the regression equation is a straight line.
- β_{0} is the y intercept of the regression line.
- β_{1} is the slope of the regression line.
- $E(y)$ is the expected value of y for a given x value.

Simple Linear Regression Equation

q Positive Linear Relationship

$E(y)$		
Intercept		
β_{0}	Regression line	
	Slope β_{1} is positive	

Simple Linear Regression Equation

q Negative Linear Relationship

Intercept β_{0}	
	Regression line
Slope β_{1}	
is negative	

Simple Linear Regression Equation

q No Relationship

Estimated Simple Linear Regression Equation

q The estimated simple linear regression equation

$$
\hat{y}=b_{0}+b_{1} x
$$

- The graph is called the estimated regression line.
- b_{0} is the y intercept of the line.
- b_{1} is the slope of the line.
- \hat{y} is the estimated value of y for a given x value.

Estimation Process

Least Squares Method

q Least Squares Criterion

$$
\min \sum\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

where:
$y_{i}=$ observed value of the dependent variable for the i th observation
$\hat{y}_{i}=$ estimated value of the dependent variable for the i th observation

Least Squares Method

q Slope for the Estimated Regression Equation

$$
b_{1}=\frac{\sum x_{i} y_{i}-\frac{\left(\sum x_{i} \sum y_{i}\right)}{n}}{\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}}
$$

Least Squares Method

q y-Intercept for the Estimated Regression Equation

$$
>b_{0}=\bar{y}-b_{1} \bar{x}
$$

where:

$$
\begin{aligned}
x_{i}= & \text { value of independent variable for } i \text { th } \\
& \text { observation } \\
y_{i}= & \text { value of dependent variable for } i \text { th } \\
& \text { observation } \\
\bar{x}= & \text { mean value for independent variable } \\
\bar{y}= & \text { mean value for dependent variable } \\
n= & \text { total number of observations }
\end{aligned}
$$

Simple Linear Regression

q Example: Reed Auto Sales

- Reed Auto periodically has a special week-long sale. As part of the advertising campaign Reed runs one or more television commercials during the weekend preceding the sale. Data from a sample of 5 previous sales are shown on the next slide.

Simple Linear Regression

q Example: Reed Auto Sales

Estimated Regression Equation

- q Slope for the Estimated Regression Equation

$$
b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{20}{4}=5
$$

> y-Intercept for the Estimated Regression Equation

$$
b_{0}=\bar{y}-b_{1} \bar{x}=20-5(2)=10
$$

- q Estimated Regression Equation

$$
\hat{y}=10+5 x
$$

Scatter Diagram and Trend Line

Coefficient of Determination

q Relationship Among SST, SSR, SSE

where:

$$
\begin{aligned}
& \mathrm{SST}=\text { total sum of squares } \\
& \mathrm{SSR}=\text { sum of squares due to regression } \\
& \mathrm{SSE}=\text { sum of squares due to error }
\end{aligned}
$$

Coefficient of Determination

q The coefficient of determination is:

$$
r^{2}=\text { SSR } / \text { SST }
$$

where:
$\mathrm{SSR}=$ sum of squares due to regression
$\mathrm{SST}=$ total sum of squares

Coefficient of Determination

$$
r^{2}=\text { SSR } / \text { SST }=100 / 114=8772
$$

The regression relationship is very strong; 88\% of the variability in the number of cars sold can be explained by the linear relationship between the number of TV ads and the number of cars sold.

Sample Correlation Coefficient

$$
\begin{aligned}
& r_{x y}=\left(\text { sign of } b_{1}\right) \sqrt{\text { Coefficien } t \text { of Determinat ion }} \\
& r_{x y}=\left(\text { sign of } b_{1}\right) \sqrt{r^{2}}
\end{aligned}
$$

where:

$$
\begin{aligned}
& b_{1}=\text { the slope of the estimated regression } \\
& \\
& \text { equation } \hat{y}=b_{0}+b_{1} x
\end{aligned}
$$

Sample Correlation Coefficient

$$
r_{x y}=\left(\operatorname{sign} \text { of } b_{1}\right) \sqrt{r^{2}}
$$

$>$ The sign of b_{1} in the equation $\hat{y}=10+5 x$ is " + ".

$$
\begin{aligned}
& >r_{x y}=+\sqrt{.8772} \\
& >r_{x y}=+.9366
\end{aligned}
$$

Assumptions About the Error Term ε

1. The error ε is a random variable with mean of zero.2. The variance of ε, denoted by σ^{2}, is the same for all values of the independent variable.
3. The values of ε are independent.
4. The error ε is a normally distributed random variable.

Testing for Significance

To test for a significant regression relationship, we must conduct a hypothesis test to determine whether the value of β_{1} is zero.

Two tests are commonly used:
t Test and F Test

Both the t test and F test require an estimate of σ^{2}, the variance of ε in the regression model.

Testing for Significance

q An Estimate of σ
The mean square error (MSE) provides the estimate of σ^{2}, and the notation s^{2} is also used.

$$
s^{2}=\mathrm{MSE}=\mathrm{SSE} /(n-2)
$$

where:

$$
\mathrm{SSE}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
$$

Testing for Significance

q An Estimate of σ
$>$ - To estimate σ we take the square root of σ^{2}.
$>$ - The resulting s is called the standard error of the estimate.

$$
s=\sqrt{\mathrm{MSE}}=\sqrt{\frac{\mathrm{SSE}}{n-2}}
$$

