Chapter 12 "Stoichiometry"

Mr. Mole

Let's make some Cookies!

\checkmark When baking cookies, a recipe is usually used, telling the exact amount of each ingredient.

- If you need more, you can double or triple the amount
Thus, a recipe is much like a balanced equation.

Stoichiometry is...

-Greek for "measuring elements" Pronounced "stoy kee ahm uh tree" Defined as: calculations of the quantities in chemical reactions, based on a balanced equation. There are 4 ways to interpret a balanced chemical equation

\#1. In terms of Particles

An Element is made of atoms
A Molecular compound (made of only nonmetals) is made up of molecules Dont torget the dialomic elemens)
$>$ lonic Compounds (made of a metal and nonmetal parts) are made of formula units

Example: $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Two molecules of hydrogen and one molecule of oxygen form two molecules of water.
\checkmark Another example: $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$
2 formula units $\mathrm{Al}_{2} \mathrm{O}_{3}$ form 4 atoms Al and 3 molecules O_{2}
Now read this: $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$

\#2. In terms of Moles

The coefficients tell us how many moles of each substance

$$
2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}
$$

$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$ Remember: A balanced equation is a Molar Ratio

\#3. In terms of Mass

The Law of Conservation of Mass applies
\diamond We can check mass by using moles.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

2 moles $\mathrm{H}_{2}\left(\frac{2.02 \mathrm{~g} \mathrm{H}_{2}}{1 \text { mole H2}}\right)=4.04 \mathrm{~g} \mathrm{H}_{2}$
$-\left(32.00 \mathrm{gO}_{2}\right)+$
1 mole $\mathrm{O}_{2}\left(\frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mole} \mathrm{O}_{2}}\right)=\frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{36.04 \mathrm{~g} \mathrm{H}_{2}+\mathbf{O}_{2}}$

In terms of Mass (for products)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

2 moles $\mathrm{H}_{2} \mathrm{O}\left(\frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}}\right)=36.04 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$36.04 \mathrm{~g} \mathrm{H}_{2}+\mathrm{O}_{2}=36.04 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ 36.04 grams reactant $=36.04$ grams product

The mass of the reactants must equal the mass of the products.

\#4. In terms of Volume

\triangleleft At STP, 1 mol of any gas = 22.4 L $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$\left(2 \times 22.4 \mathrm{~L} \mathrm{H}_{2}\right)+\left(1 \times 22.4 \mathrm{~L} \mathrm{O}_{2}\right) \rightarrow\left(2 \times 22.4 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}\right)$
67.2 Liters of reactant $\neq 44.8$ Liters of product!

NOTE: mass and atoms are ALWAYS conserved - however, molecules, formula units, moles, and volumes will not necessarily be conserved!

Practice:

Show that the following equation follows the Law of Conservation of Mass (show the atoms balance, and the mass on both sides is equal)

$$
2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}
$$

Section 12.2

Chemical Calculations

OBJECTIVES:

- Construct "mole ratios" from balanced chemical equations, and apply these ratios in mole-mole stoichiometric calculations.

Chemical Calculations

OBJECTIVES:

- Calculate stoichiometric quantities from balanced chemical equations using units of moles, mass, representative particles, and volumes of gases at STP.

Mole to Mole conversions

$$
2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}
$$

- each time we use 2 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ we will also make 3 moles of O_{2}

$$
\left(\frac{2 \text { moles } \mathrm{Al}_{2} \mathrm{O}_{3}}{3 \text { mole } \mathrm{O}_{2}}\right) \text { or }\left(\frac{3 \text { mole } \mathrm{O}_{2}}{2 \text { moles } \mathrm{Al}_{2} \mathrm{O}_{3}}\right)
$$

These are the two possible conversion factors to use in the solution of the problem.

Mole to Mole conversions How many moles Of Q_{2} are produced when 3.34 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ decompose?
 $2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}+3 \mathrm{O}_{2}$
 $3.34 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}\right)=5.01 \mathrm{~mol} \mathrm{O}_{2}$
 Conversion factor from balanced equation

If you know the amount of ANY chemical in the reaction, you can find the amount of $A L L$ the other chemicals!

Practice:

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

- If 3.84 moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are burned, how many moles of O_{2} are needed? $(9.6 \mathrm{~mol})$
-How many moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are needed to produce 8.95 mole of $\mathrm{H}_{2} \mathrm{O}$? (8.95 mol)
- If 2.47 moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ are burned, how many moles of CO_{2} are formed? (4.94 mol)

How do you get good at this?

Steps to Calculate Stoichiometric Problems

1. Correctly balance the equation.
2. Convert the given amount into moles.
3. Set up mole ratios.
4. Use mole ratios to calculate moles of desired chemical.
5. Convert moles back into final unit.

Mass-Mass Problem:

6.50 grams of aluminum reacts with an excess of oxygen. How many grams of aluminum oxide are formed?
$4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

$6.50 \mathrm{~g}-\mathrm{AT}$	1 mol A	$2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$	$101.96 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
	$26.98 \mathrm{~g}-\mathrm{T}$	4 mol Al	$1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$

$(6.50 \times 1 \times 2 \times 101.96) \div(26.98 \times 4 \times 1)=\left(\begin{array}{c}12.3 \mathrm{~g} \mathrm{~A} \mathrm{\mathbf{A}}_{2} \mathbf{O}_{3} \\ \text { are formed }\end{array}\right.$

Another example:

If 10.1 g of Fe are added to a solution of Copper (II) Sulfate, how many grams of solid copper would form?
$2 \mathrm{Fe}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}$ Answer $=17.2 \mathrm{~g} \mathrm{Cu}$

Volume-Volume Calculations:

\diamond How many liters of CH_{4} at STP are required to completely react with 17.5 L of O_{2} ?
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$17.5 \mathrm{~L} \mathrm{O}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{22.4 \mathrm{LO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{2 \mathrm{~mol} \mathrm{O}_{2}}\right)\left(\frac{22.4 \mathrm{~L} \mathrm{CH}_{4}}{1 \mathrm{~mol} \mathrm{CH}_{4}}\right)$

$$
\uparrow \quad=8.75 \mathrm{LCH}_{4}
$$

Notice anything relating these two steps?

Avogadro told us:

-Equal volumes of gas, at the same temperature and pressure contain the same number of particles. Moles are numbers of particles

- You can treat reactions as if they happen liters at a time, as long as you keep the temperature and pressure the same. 1 mole $=22.4 \mathrm{~L} @$ STP

Shortcut for Volume-Volume?

- How many liters of CH_{4} at STP are required to completely react with 17.5 L of O_{2} ?

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
17.5 \mathrm{~L} \mathrm{O}_{2}\left(\frac{1 \mathrm{LCH}_{4}}{2 \mathrm{~L} \mathrm{O}_{2}}\right)=8.75 \mathrm{LCH}_{4}
$$

Note: This only works for Volume-Volume problems.

Section 12.3

Limiting Reagent \& Percent Yield

OBJECTIVES:

- Identify the limiting reagent in a reaction.

Section 12.3

Limiting Reagent \& Percent Yield

OBJECTIVES:

- Calculate theoretical yield, percent yield, and the amount of excess reagent that remains unreacted given appropriate information.

"Limiting" Reagent

- If you are given one dozen loaves of bread, a gallon of mustard, and three pieces of salami, how many salami sandwiches can you make?
The limiting reagent is the reactant you run out of first.
The excess reagent is the one you have left over.
- The limiting reagent determines how much product you can make

Limiting Reagents

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(1)+25 \mathrm{O}_{2}(\mathrm{~g})=16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(1)
$$

How do you find out which is limited?

-The chemical that makes the least amount of product is the "limiting reagent".

- You can recognize limiting reagent problems because they will give you 2 amounts of chemical
-Do two stoichiometry problems, one for each reagent you are given.

If 10.6 g of copt
3.83 g sulfur hat product (copp

Cu is the Limiting Reagent, since it produced less 63.55 g C product. ol $\mathrm{Cu}_{2} \mathrm{~S}$ $\left.\begin{array}{rl}3.83 \mathrm{~g} \mathrm{~S}\left(\frac{1 \mathrm{~mol} \mathrm{~S}}{32.06 \mathrm{~g} \mathrm{~S}}\right)\end{array}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}^{2}}\right) \underbrace{\frac{159.16 \mathrm{~g} \mathrm{Cu}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{~S}}}$

Another example:

- If 10.3 g of aluminum are reacted with 51.7 g of CuSO_{4} how much copper (grams) will be produced?
$2 \mathrm{Al}+3 \mathrm{CuSO}_{4} \rightarrow 3 \mathrm{Cu}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ the CuSO_{4} is limited, so $\mathrm{Cu}=20.6 \mathrm{~g}$
-How much excess reagent will remain? Excess = 4.47 grams

The Concept of:

A little different type of yield than you had in Driver's Education class.

What is Yield?

- Yield is the amount of product made in a chemical reaction.

There are three types:

1. Actual yield- what you actually get in the lab when the chemicals are mixed
2. Theoretical yield- what the balanced equation tells should be made
3. Percent yield $=\frac{\text { Actual }}{\text { Theoretical }} \times 100$

Example:

$\checkmark 6.78 \mathrm{~g}$ of copper is produced when 3.92 g of Al are reacted with excess copper (II) sulfate.
$2 \mathrm{Al}+3 \mathrm{CuSO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Cu}$
\triangleleft What is the actual yield? $=6.78 \mathrm{~g} \mathrm{Cu}$

- What is the theoretical yield? $=13.8 \mathrm{~g} \mathrm{Cu}$
- What is the percent yield? $=49.1 \%$

Details on Yield

-Percent yield tells us how "efficient" a reaction is.

Percent yield can not be bigger than 100 \%.
-Theoretical yield will always be larger than actual yield!

- Why? Due to impure reactants; competing side reactions; loss of product in filtering or transferring between containers; measuring

End of Chapter 12

