Chapter 12: Transmission Lines

EET-223: RF Communication Circuits Walter Lara

Introduction

- A transmission line can be defined as the conductive connections between system elements that carry signal power.
- At low frequencies transmission is very straightforward (short-circuit), but at higher frequencies the make-up of the connection starts having appreciable effect on circuit action that results on strange behaviour (losses, radiation, reflection, etc.)

Two Wire Open Transmission Line

- Can be used as transmission line between antenna & transmitter or antenna & receiver
- Parallel two-wire line (Fig 12-1)

- Spaced from 0.25 - 6 inches apart

- Twin Lead or two-wire ribbon-type line (Fig 12-2)
 - Low loss dielectric (e.g. polyethylene)

Figure 12-2 Two-wire ribbon-type lines.

Twisted Pair Transmission Lines

- Refer to Fig 12-3
- Consists of two insulated wires twisted to form a flexible line without the use of spacer
- Not used at high frequencies because of high losses occur in rubber isolation
- Losses increase when line is wet

Unshielded Twisted Pair (UTP) Transmission Lines

- Widely used for computer networking
- Most commonly used standard is UTP category 6 (CAT6) and 5e (CAT5e):
 - Frequencies up to 100 MHz
 - Maximum length of 100 meters
 - Four color coded pairs of 22/24 gauge wires
 - Terminated with RJ45 connector
- Provide differential signal noise rejection:
 - $V_{+} \& V_{-}$ wires make differential signal of (V₊ V₋)
 - Interference impose upon one wire most likely affect both wires becoming a common mode signal

UTP Cable Parameters

- Attenuation: amount of loss in the signal strength as it propagates down a wire (negative dB gain)
- Crosstalk: unwanted coupling caused by overlapping electric and magnetic fields
- Near-End Crosstalk (NEXT): measure of level of crosstalk or signal coupling within an cable
 - Graphical illustration at Fig 12-4
 - Measured in dB; the larger (closer to negative infinite), the better
 - Crosstalk more likely at wire ends because transmit signals are stronger while receive signals are weaker

UTP Cable Parameters – Cont'd

- Attenuation-to-Crosstalk Ratio (ARC): combined measurement of attenuation and crosstalk
 - Large value indicates greater bandwidth
 - Measurement of the quality of the cable
- Delay Skew: measure of difference in time between the fastest and slowest wire pair in a UTP cable
 - Critical on high-speed data transmission where data on a wire pair must arrive at the same time
- Return Loss: measure of ratio of transmitted power into a cable to amount of power returned/reflected

Figure 12-4 A graphical illustration of near-end crosstalk.

Shielded Pair Transmission Lines

- See construction at Fig 12-5
- Consists of parallel conductors separated from each other and surrounded by solid dielectric
- Conductors are contained within copper braid shield that isolates from external noise pickup and prevents radiating to and interfering with other systems
- Principal advantage is that the conductors are balanced to ground, so capacitance between the cables is uniform throughout the length of the cable

Coaxial Transmission Lines

- Consists of single transmission line surrounded by conductive, ground shield (concentric conductors)
- Two types of lines:
 - Rigid or Air Coaxial (see Fig 12-6)
 - Flexible or Solid Coaxial (see Fig 12-7)
- Advantages:
 - Minimizes radiation losses
 - Minimizes external noise pickup
- Disadvantages:
 - Expensive
 - Prone to moisture problems

Figure 12-6 Air coaxial: cable with washer insulator.

Balance vs Unbalance Transmission Lines

• Balance Lines:

- Used on two-wire open, twisted pair and shielded pair lines
- Same current flows in each wire but 180° out of phase
- Noise or unwanted signals are pickup by both wires, but because 180° out of phase, they cancel each other (called Common Mode Rejection or CMR)
- Unbalance Lines:
 - Used on coaxial lines
 - Signal carried by center conductor with respect to grounded outer conductor
- Balance/Unbalance conversion can be done with baluns circuit (see Fig 12-8)

Figure 12-8 Balanced/unbalanced conversion.

Electrical Characteristics of Two-Wire Transmission Lines

- Capacitance arise between two lines since they are conductors with electric fields (long capacitor)
- Inductance occurs in each line due to magnetic field from moving charge
- Some conductance exists between lines since insulator resistance is not really infinite
- Equivalent circuit of a small line section is shown in Fig 12-9
- Typically, the values of conductance and resistance can be neglected resulting in circuit at Fig 12-10

Figure 12-9 Equivalent circuit for a two-wire transmission line.

- L_1 = inductance of top wire
- L_2 = inductance of bottom wire
- R_1 = resistance of top wire
- R_2 = resistance of bottom wire
- G = conductance between wires
- C = capacitance between wires

Figure 12-10 Simplified circuit terminated with its characteristic impedance.

Characteristic Impedance (Z₀)

- Aka Surge Impedance
- It is the input impedance of an infinitely long transmission line
- It can shown that it is equal to:

$$Z_0 = \sqrt{\frac{L}{C}}$$

Where:

- L: inductance reactance of the line
- **C: capacitive reactance of line**

Characteristic Impedance (Z₀) – Cont'd

• For a two-wire line it can be computed as:

$$Z_0 \cong \frac{276}{\sqrt{\epsilon}} \log \frac{2D}{d}$$

Where:

D: spacing between wires (center-to-center)

d: diameter of one of the conductors

 $\in:$ dielectric constant of insulating material relative to air

• And for a coaxial line:

$$Z_0 \cong \frac{138}{\sqrt{\epsilon}} \log \frac{D}{d}$$

Where:

D: inner diameter of outer conductor

d: outer diameter of inner conductor

Transmission Line Losses

- Losses in <u>practical</u> lines cannot be neglected
- The resistance of the line causes losses:
 - The larger the length, the larger the resistance
 - The smaller the diameter, the larger the resistance
- At high frequencies, current tends to flow mostly near surface of conductor, effectively reducing the cross-sectional area of the conductor. This is know as the *Skin Effect* (see Fig. 12-11)
- Dielectric losses are proportional to voltage across dielectric and frequency. Limit maximum operation to ~18 GHz

Propagation of DC Voltage Down a Line

- Propagation of a DC Voltage down a line takes time because of the capacitive & inducive effect on the wires (see model circuit on Fig 12-12)
- The time of propagation can be computed as:

 $t = \sqrt{LC}$

• The velocity of propagation is given by: $V_p = d/\sqrt{LC}$

Where:

d: distance to travel

Propagation of DC Voltage Down a Line – Cont'd

- A wave travels through a medium at a constant speed, regardless of frequency
- The distance traveled by a wave during a period of one cycle (called *wavelength*) can be found as:

$$\lambda = V_p / f$$

Where:

- V_p : velocity of propagation
- f: frequency
- In space, the velocity of propagation becomes the speed of light (V_p = c = 3 x 10⁸ m/s)

Non-Resonant Transmission Line

- Defined as a line of infinite length that is terminated with a resistive load equal to its characteristic impedance
- The voltage (DC or AC) takes time to travel down the line
- All energy is absorbed by the matched load (nothing reflected back)

Resonant Transmission Line

- Defined as a line that is terminated with an impedance that is NOT equal to its characteristic impedance
- When DC voltage is applied to a resonant line terminated on an <u>open-circuit</u> load (see Fig 12-16):
 - Open circuit load behaves like a capacitor
 - Each capacitor charges from current through previous inductor
 - Current keeps flowing into load capacitor making voltage across larger than voltage across previous one
 - Current flows in opposite direction causing <u>reflection</u>

Resonant Transmission Line – Cont'd

- When DC voltage is applied to a resonant line terminated on a <u>short-circuit</u> load:
 - Same sequence as open-circuit case until current reaches short-circuit load
 - Incident voltage is reflected back out of phase (180°) so that resulting voltage at load is zero
- Differences between open and short circuit load cases are:
 - Voltage reflection from open circuit is in phase, while from short circuit is out of phase
 - Current reflection from open circuit is out of phase, while from short circuit is in phase

Resonant Transmission Line – Cont'd

- When the applied signal is AC, the interaction between incident and reflected wave results in the creation of a new wave called *standing wave*
 - Name is given because they apparently remain in one position, varying only in amplitude
 - Standing wave is simply the superposition (sum) of the incident and reflected waves
 - See illustration Fig 12-19
 - Notice that Standing Waves maximums occur at $\lambda/2$ intervals

Figure 12-16 Open-ended transmission line.

Reflection Coefficient (Γ)

 The ratio of reflected voltage to incident voltage is called the *reflection coefficient* and can be computed as:

$$\Gamma = \frac{E_r}{E_i} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Where,

- **E**_r: magnitude of reflected wave
- **E**_i: magnitude of incident wave
- Z_L: load impedance
- Z₀: characteristic impedance

Voltage Standing Wave Ratio

- As seen before, standing wave is the result of an incident and reflected wave
- The ratio of maximum to minimum voltage on a line is called the voltage standing wave ratio (VSWR) or simply standing wave ratio (SWR)
- In general, it can be computed as:

VSWR = SWR =
$$\frac{E_{max}}{E_{min}} = \frac{I_{max}}{I_{min}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

And for the case of a purely resistive load (R_L):
VSWR = R_L / Z₀ (if R_L ≥ Z₀)
VSWR = Z₀ / R_L (if R_L < Z₀)

Electrical Length

- Defined as the length of a line in wavelengths (not physical length)
- It is important because when reflections occurs, the voltage maximums occur at $\lambda/2$ intervals
- If line is too short, reflection still occurs but no significant voltage variation along the line exists (see example of this situation in Fig 12-24)

Effect of Mismatch $(Z_{L} \neq Z_{0})$

- Full generator power doesn't reach load
- Cable dielectric may break down because of high voltage from standing waves
- Increased I²R power losses resulting because of increased current from standing waves
- Noise problems increased by mismatches
- "Ghost" signals can be created