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C H A P T E R 

Introduction
Two situations are analogous if they share a 

common pattern of relationships among their con-
stituent elements, even though the elements them-
selves diff er across the two situations. Identifying 
such a common pattern requires comparison of the 
situations. Analogy involves some of the same pro-
cesses as do judgments of similarity (see Goldstone 
& Son, Chapter 10). Typically one analog, termed 
the source or base, is more familiar or better under-
stood than the second analog, termed the target. By 
“better understood,” we mean that the reasoner has 
prior knowledge about functional relations within 
the source analog—beliefs that certain aspects of 
the source have causal, explanatory, or logical con-
nections to other aspects (Hesse, 1966). Th is asym-
metry in initial knowledge provides the basis for 
analogical transfer—using the source to generate 

inferences about the target. For example, the earliest 
major scientifi c analogy, dating from the era of 
imperial Rome (see Holyoak & Th agard, 1995), led 
to a deeper understanding of sound (the target) in 
terms of water waves (the source). Sound is analo-
gous to water waves in that sound exhibits a pattern 
of behavior corresponding to that of water waves: 
propagating across space with diminishing inten-
sity, passing around small barriers, rebounding off  
of large barriers, and so on. Th e perceptual features 
are very diff erent (water is wet, air is not), but the 
underlying pattern of relations among the elements 
is similar. In this example, like most analogies involv-
ing empirical phenomena, the key functional rela-
tions involve causes and their eff ects (see Cheng & 
Buehner, Chapter 12). By transferring knowledge 
about causal relations, the analogy provides a new 
explanation of why various phenomena occur (see 
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Lombrozo, Chapter 14). Analogy is an inductive 
process, and hence analogical inferences are inevi-
tably uncertain. Th e wave analogy for sound proved 
successful; an alternative “particle” analogy did not.

In this chapter I will focus on analogy as a key 
example of the broader concept of role-based rela-
tional reasoning. After a brief review of the history 
of research on analogy and related concepts, such 
as metaphor, I will describe current views using the 
framework of Marr’s (1982) levels of analysis. Next, I 
will survey research on major subprocesses (retrieval, 
mapping, inference, and schema induction). Th is 
review includes both intentional and unintentional 
types of relational transfer, and the development of 
analogical abilities over the course of childhood. 
Finally, again applying Marr’s framework, I will con-
sider open issues and directions for future research.

Role-Based Relational Reasoning
Analogy is a prime example of role-based relational 

reasoning (Penn, Holyoak, & Povinelli, 2008), as its 
full power depends on explicit relational representa-
tions (see Doumas & Hummel, Chapter 5). Such 
representations distinguish relational roles from the 
entities that fi ll those roles, while coding the bind-
ings of entities to their specifi c roles. Humans are 
capable of making inferences about entities that 
cannot be reliably assigned to relational roles solely 
on the basis of perceptual properties. In the context 
of the original wave analogy, water is similar to air 
because each serves as a medium for the transmis-
sion of waves. Th e wave analogy was later extended 
from transmission of sound to transmission of light, 
and ultimately it developed into an abstract schema, 
or relational category. As another example of a rela-
tional category, something fi lls the role of “barrier” 
if it blocks the passage of something else, regard-
less of what type of entity the “barrier” is (perhaps a 
landslide, perhaps poverty). If something is known 
to be a barrier, its binding to that relational role 
is enough to infer that its removal would end the 
blockage. Whether any other species is capable of 
role-based relational reasoning is a matter of debate 
(see Penn & Povinelli, Chapter 27).

As the earlier examples illustrate, role-based rela-
tional reasoning is broader than reasoning by analogy 
between specifi c cases (Halford, Wilson, & Phillips, 
2010). More general concepts and categories are 
often defi ned at least in part by relations (e.g., bar-
rier, parent, catalyst; see Markman & Stilwell, 2001; 
also Rips et al., Chapter 11). Reasoning based on 
rules (Smith, Langston, & Nisbett, 1992), including 

deductive inference (see Evans, Chapter 8; Johnson-
Laird, Chapter 9), also depends critically on rela-
tions. Th e core property of role-based relational 
reasoning is that inferences about elements depend 
on commonalities (and sometimes diff erences) in 
the roles they play, rather than solely on perceptual 
features of individual elements. Although various 
types of inferences have this basic character, analogi-
cal inferences are especially fl exible, as I will discuss 
in more detail later.

Functions and Processes of 
Analogical Reasoning

Th e content of analogical reasoning is extremely 
diverse (Holyoak & Th agard, 1995). Analogies have 
fi gured prominently in science (see Dunbar & Klahr, 
Chapter 35) and mathematics (Pask, 2003), and 
they are often used in everyday problem solving (see 
Bassok & Novick, Chapter 21) as well as creative cog-
nition (Smith & Ward, Chapter 23). In legal reason-
ing, the use of legal precedents (relevant past cases) 
to help decide a new case is a special case of analogi-
cal reasoning (see Spellman & Schauer, Chapter 36). 
Analogies can function to sway emotions (Goode, 
Dahl, & Moreau, 2010; Th agard & Shelley, 2001), 
to infl uence political views (Blanchette & Dunbar, 
2001; Khong, 1992), to guide consumer decisions 
(Markman & Loewenstein, 2010; see Lowenstein, 
Chapter 38), and to teach mathematics (Richland, 
Zur, & Holyoak, 2007). Analogy is sometimes used 
as part of a rational argument (Bartha, 2010; see 
Hahn & Oaksford, Chapter 15), using systematic 
connections between the source and target to gen-
erate and support plausible (though fallible) infer-
ences about the latter.

Figure 13.1 sketches the major component pro-
cesses in analogical transfer (see Carbonell, 1983; 
Gentner, 1983; Gick & Holyoak, 1980, 1983; 
Novick & Holyoak, 1991). Typically, a target situ-
ation serves as a retrieval cue for a potentially use-
ful source analog. It is then possible to establish a 
mapping—a set of systematic correspondences that 
serve to align the elements of the source and target. 
Based on the mapping, coupled with the relevance 
relations within the source, it is possible to elabo-
rate the representation of the target and derive new 
inferences. In the aftermath of analogical reasoning 
about a pair of cases, some form of relational gen-
eralization may take place yielding a more abstract 
schema for a category of situations (as in the case of 
the evolving “wave” concept), of which the source 
and target are both instances.
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236 analogy and relational reasoning

A Capsule History
Th e history of the study of analogy includes three 

interwoven streams of research, which respectively 
emphasize analogy in relation to psychometric mea-
surement of intelligence, to metaphor and language, 
and to the representation of knowledge.

Psychometric Tradition
Work in the psychometric tradition focuses on 

four-term or “proportional” analogies, in the form 
A:B::C:D, such as HAND:FINGER::FOOT:?, where 
the problem is to infer the missing D term (TOE) 
that is related to C in the same way B is related to A. 
Th e pair A:B thus plays the role of source analog, and 
C:D that of target. Proportional analogies were dis-
cussed by Aristotle (see Hesse, 1966), and in the early 
decades of modern psychology became a centerpiece 
of eff orts to defi ne and measure intelligence. Charles 
Spearman (1923, 1927) argued that the best account 
of observed individual diff erences in cognitive per-
formance was based on a general or g factor, with the 
remaining variance being unique to the particular 
task. He reviewed several studies that revealed high 
correlations between performance in solving analogy 
problems and the g factor. Spearman’s student John 
C. Raven (1938) developed the Raven’s Progressive 
Matrices Test (RPM), which requires selection of a 
geometric fi gure to fi ll an empty cell in a two-dimen-
sional matrix (typically 3 x 3) of such fi gures. Much 
like a geometric proportional analogy, the RPM 
requires participants to extract and apply information 
based on visuospatial relations. (See Hunt, 1974, and 
Carpenter, Just, & Shell, 1990, for analyses of strate-
gies for solving RPM problems.) Th e RPM proved to 
be an especially pure measure of g.

Raymond Cattell (1971), another student of 
Spearman, elaborated his mentor’s theory by dis-
tinguishing between two components of g: crys-
tallized intelligence, which depends on previously 
learned information or skills, and fl uid intelligence, 
which involves reasoning with novel information. 
As a form of inductive reasoning, analogy would be 
expected to require fl uid intelligence. Cattell con-
fi rmed Spearman’s (1946) observation that analogy 
tests and the RPM provide sensitive measures of g, 
clarifying that they primarily measure fl uid intelli-
gence (although verbal analogies based on diffi  cult 
vocabulary items also depend on crystallized intel-
ligence). Figure 13.2 graphically depicts the cen-
trality of RPM performance in a space defi ned by 
individual diff erences in performance on various 
cognitive tasks. Note that numerical, verbal, and 
geometric analogies cluster around the RPM at the 
center of the fi gure.

Because four-term analogies and the RPM are 
based on small numbers of relatively well-specifi ed 
elements and relations, it is possible to systemati-
cally manipulate the complexity of such problems 
and analyze performance (based on response laten-
cies and error rates) in terms of component pro-
cesses (e.g., Mulholland, Pellegrino, & Glaser, 1980; 
Sternberg, 1977). Th e earliest computational mod-
els of analogy were developed for four-term anal-
ogy problems (Evans, 1968; Reitman, 1965). Th e 
basic components of these models were elaborations 
of those proposed by Spearman (1923), including 
encoding of the terms, accessing a relation between 
the A and B terms, and evoking a comparable rela-
tion between the C and D terms. As we will discuss 
later, four-term analogies and the RPM have proved 
extremely useful in recent work on the cognitive 
neuroscience of analogy.

Metaphor
Analogy is closely related to metaphor and 

related forms of symbolic expression that arise in 
everyday language (e.g., “the evening of life,” “the 
idea blossomed”), in literature (Holyoak, 1982), 
the arts, and cultural practices such as ceremonies 
(see Holyoak & Th agard, 1995, ch. 9). Like anal-
ogy in general, metaphors are characterized by an 
asymmetry between target (conventionally termed 
“tenor”) and source (“vehicle”) domains (e.g., the 
target/tenor in “the evening of life” is life, which is 
understood in terms of the source/vehicle of time 
of day). In addition, a mapping (the “grounds” 
for the metaphor) connects the source and target, 
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Fig. 13.1 Major components of analogical reasoning.
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allowing the domains to interact to generate a new 
conceptualization (Black, 1962). Metaphors are a 
special kind of analogy, in that the source and target 
domains are always semantically distant (Gentner, 
1982; Gentner, Falkenhainer, & Skorstad, 1988), 
and the two domains are often blended rather than 
simply mapped (e.g., in “the idea blossomed,” the 
target is directly described in terms of an action term 
derived from the source). In addition, metaphors 
are often combined with other symbolic “fi gures,” 
especially metonymy (substitution of an associated 
concept). For example, “sword” is a metonymic 
expression for weaponry, derived from its ancient 
association as the prototypical weapon; “Raising 
interest rates is the Federal Reserve Board’s sword in 
the battle against infl ation” extends the metonymy 
into metaphor.

Fauconnier and Turner (1998; Fauconnier, 2001) 
have analyzed complex conceptual blends that are 
akin to metaphor. A typical example is a description 
of the voyage of a modern catamaran sailing from 
San Francisco to Boston, which was attempting to 
beat the speed record set by a clipper ship that had 
sailed the same route over a century earlier. A maga-
zine account written during the catamaran’s voyage 

said the modern boat was “barely maintaining a 
4.5-day lead over the ghost of the clipper Northern 
Light.” Fauconnier and Turner observed that the 
magazine writer was describing a “boat race” that 
never took place in any direct sense; rather, the 
writer was blending the separate voyages of the two 
ships into an imaginary race. Th e fact that such con-
ceptual blends are so natural and easy to understand 
attests to the fact that people can readily compre-
hend novel metaphors.

Lakoff  and Johnson (1980; also Lakoff  & Turner, 
1989) have argued that much of human experience, 
especially its abstract aspects, is grasped in terms of 
broad conceptual metaphors (e.g., events occurring 
in time are understood by analogy to objects moving 
in space). Time, for example, is understood in terms 
of objects in motion through space, as in expressions 
such as “My birthday is fast approaching” and “Th e 
time for action has arrived.” (See Boroditsky, 2000, 
for evidence of how temporal metaphors infl uence 
cognitive judgments.) As Lakoff  and Turner (1989) 
pointed out, the course of a life is understood in terms 
of time in the solar year (youth is springtime, old age 
is winter). Life is also conventionally conceptualized 
as a journey. Such conventional metaphors can still 
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238 analogy and relational reasoning

be used in creative ways, as illustrated by Robert 
Frost’s famous poem, “Th e Road Not Taken”:

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the diff erence.

According to Lakoff  and Turner, comprehension 
of this passage depends on our implicit knowledge 
of the metaphor that life is a journey. Th is knowl-
edge includes understanding several interrelated 
correspondences (e.g., a person is a traveler, pur-
poses are destinations, actions are routes, diffi  cul-
ties in life are impediments to travel, counselors are 
guides, and progress is the distance traveled).

Psychological research has focused on demon-
strations that metaphors are integral to everyday 
language understanding (Glucksberg, Gildea, & 
Bookin, 1982; Keysar, 1989). Th ere has been a 
debate about whether metaphor is better concep-
tualized as a kind of analogy (Wolff  & Gentner, 
2000) or a kind of categorization (Glucksberg & 
Keysar, 1990; Glucksberg, McClone, & Manfredi, 
1997). A likely resolution is that novel metaphors 
are interpreted by much the same processes as are 
analogies, whereas more conventional metaphors 
are interpreted as more general schemas (Gentner & 
Bowdle, 2008; see discussion of schemas later in 
this chapter).

Knowledge Representation
Th e most important infl uence on analogy research 

in the cognitive-science tradition has been con-
cerned with the representation of knowledge within 
computational systems (see Markman, Chapter 4). 
Many seminal ideas were developed by the philoso-
pher Mary Hesse (1966), who was in turn infl uenced 
by Aristotle’s discussions of analogy in scientifi c 
classifi cation and Black’s (1962) interactionist view 
of metaphor. Hesse placed great stress on the pur-
pose of analogy as a tool for scientifi c discovery and 
conceptual change, and on the close connections 
between causal relations and analogical mapping. In 
the 1970s, work in artifi cial intelligence and psy-
chology focused on the representation of complex 
knowledge of the sort used in scientifi c reasoning, 
problem solving, story comprehension, and other 
tasks that require structured knowledge. A key aspect 
of structured knowledge is that elements can be fl ex-
ibly bound into the roles of relations. For example, 
“dog bit man” and “man bit dog” have the same 
elements and the same relation, but the role bind-
ings have been reversed, radically altering the overall 

meaning. How the mind and brain accomplish role 
binding is thus a central problem to be solved by 
any psychological theory that involves structured 
knowledge, including any theory of analogy (see 
Doumas & Hummel, Chapter 5).

In the 1980s, a number of cognitive scientists 
recognized the centrality of analogy as a tool for 
discovery, as well as its close connection with theo-
ries of knowledge representation. Winston (1980), 
guided by Minsky’s (1975) treatment of knowledge 
representation, built a computer model of analogy 
that highlighted the importance of causal relations 
in guiding analogical inference. Other researchers 
in artifi cial intelligence also began to consider the 
use of complex analogies in reasoning and learn-
ing (Kolodner, 1983; Schank, 1982), leading to an 
approach to artifi cial intelligence termed case-based 
reasoning (Kolodner, 1993).

Meanwhile, cognitive psychologists began to con-
sider analogy in relation to knowledge representation 
and eventually to integrate computational modeling 
with detailed experimental studies of human ana-
logical reasoning. Gentner (1982, 1983; Gentner & 
Gentner, 1983) investigated the role of analogy in 
understanding scientifi c topics. She emphasized that 
in analogy, the key similarities involve relations that 
hold within the domains (e.g., the fl ow of electrons 
in an electrical circuit is analogically similar to the 
fl ow of people in a crowded subway tunnel), rather 
than in features of individual objects (e.g., elec-
trons do not resemble people). Moreover, analogical 
similarities often depend on higher order relations—
relations between relations. For example, adding a 
resistor to a circuit causes a decrease in fl ow of elec-
tricity, just as adding a narrow gate in the subway 
tunnel would decrease the rate at which people pass 
through (where causes is a higher order relation). In 
her structure-mapping theory, Gentner proposed 
that analogy entails fi nding a structural alignment, 
or mapping, between elements of the two domains. 
In this theory, a “good” alignment between two rep-
resentational structures is characterized by a high 
degree of structural parallelism (consistent, one-to-
one correspondences between mapped elements) 
and of systematicity—an implicit preference for 
deep, interconnected systems of relations governed 
by higher order relations, such as causal, mathemat-
ical, or other functional relations.

Holyoak and his colleagues (1985; Gick & 
Holyoak, 1980, 1983; Holyoak & Koh, 1987) 
focused on the role of analogy in problem solving, 
with a strong concern for the role of pragmatics in 
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analogy—how causal relations that impact current 
goals and context guide the interpretation of an anal-
ogy. Holyoak and Th agard (1989, 1995) developed 
an approach to analogy in which several factors were 
viewed as jointly constraining analogical reasoning. 
According to their multiconstraint theory, people 
implicitly favor mappings that maximize structural 
parallelism (in agreement with Gentner’s, 1983, 
structure-mapping theory), but that also maximize 
direct similarity of corresponding elements and rela-
tions, and that give priority to pragmatically impor-
tant elements (i.e., those functionally related to 
achieving a goal). Th e theory further specifi ed how 
the joint infl uence of these constraints, which often 
converge but sometimes confl ict, might be adjudi-
cated by a process of constraint satisfaction.

Other early work dealt with role-based relational 
reasoning more broadly. Gick and Holyoak (1983) 
provided evidence that analogical comparisons can 
provide the seed for forming new relational catego-
ries, by abstracting the relational correspondences 
between examples to form a schema for a class of 
problems. Halford (1993; Halford & Wilson, 1980) 
argued that the development of the ability to map 
relational structures is central to cognitive develop-
ment. More generally, role-based relational reasoning 
came to be viewed as a central part of human induc-
tion (Holland, Holyoak, Nisbett, & Th agard, 1986; 
see Markman, Chapter 4; Doumas & Hummel, 
Chapter 5), with close ties to other basic thinking 
processes, including causal inference (Cheng & 
Buehner, Chapter 12), categorization (Rips et al., 
Chapter 11), and problem solving (Bassok & 
Novick, Chapter 21).

Relational Reasoning: Levels of Analysis
To provide an overview of current conceptions 

of analogy, I will focus on three questions: What 
are the functions of human relational reasoning, by 
what algorithms is it achieved, and how is it imple-
mented in the brain? Th ese questions instantiate 
Marr’s (1982) three levels of analysis: computation, 
representation and algorithm, and implementation. 
Cognitive scientists and cognitive neuroscientists 
have addressed all three levels, focusing on analogi-
cal reasoning as a central example.

Computational Goal
At the computational level, analogies are used to 

achieve the goals of the reasoner (Holyoak, 1985). 
Th ese goals are diverse—forming and evaluating 
hypotheses, solving problems, understanding new 

concepts, winning arguments, and so on. Th e focus 
here will be on the role of analogies and relational 
reasoning in pursuing what Molden and Higgins 
(Chapter 20) term a basic “nondirectional outcome 
goal”: truth, coupled with relevance to current 
goals. Th e scientist seeking a good theory, the archi-
tect creating a building design that meets the cli-
ent’s needs, the child trying to understand how the 
world works, are all basically motivated to use their 
prior knowledge—including specifi c analogs—to 
make true and useful inferences. Of course, induc-
tive uncertainty is inevitable, and analogies can 
potentially mislead. Nonetheless, the rational rea-
soner (see Stanovich, Chapter 22) will use analogies 
to reach rationally justifi ed inferences relevant to 
achieving current goals—inferences that though fal-
lible are at least plausible, and are accompanied by 
an appropriate sense of their degree of uncertainty 
(Bartha, 2010; Lee & Holyoak, 2008).

Th e overarching goal of making true and use-
ful inferences underlies the major constraints on 
analogical inference that have been discussed in 
the literature. For an analogy to be successful, the 
structure and content of the source must provide 
a good model to use in elaborating the representa-
tion of the target. To the extent that the reasoner 
understands the functional structure of the source 
(i.e., what aspects depend on which other aspects), 
it will be possible to focus on goal-relevant informa-
tion in it while “backgrounding” other details. Th e 
functional structure may take diff erent forms. For 
example, in a mathematical analogy, the functional 
structure will involve the mathematical or logi-
cal properties that justify a conclusion (see Bartha, 
2010). For empirical knowledge (i.e., knowledge 
about how things happen in the real world), the aim 
is to transfer a causal model (see Cheng & Buehner, 
Chapter 12) from source to target. In such cases the 
backbone of the functional structure will be cause-
eff ect relations—“what makes what happen” in the 
source domain drives potential inferences about 
“what makes what happen” in the target.

From the perspective of Holyoak and Th agard’s 
(1989) multiconstraint theory, the centrality of 
functional structure is a basic pragmatic constraint. 
Causal relations constitute the prime example of 
“higher order” relations involved in Gentner’s sys-
tematicity constraint, which has been supported 
by experimental evidence that analogical transfer is 
more robust when the source includes causal struc-
ture than when it does not (Gentner & Toupin, 
1986). In general, a highly systematic source will 
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240 analogy and relational reasoning

be rich in functional structure. A high degree of 
structural parallelism (that is, a consistent mapping 
between relevant elements of the source and target) 
is a logical requirement if the structure of the source 
is to provide an appropriate model for the structure 
of the target. Ambiguity will be minimized if the 
mapping is both consistent and one to one.

Holyoak and Th agard’s (1989) constraint of 
semantic similarity—a preference for mappings 
in which similar objects are placed into corre-
spondence—also follows from the overarching 
goal of seeking true and goal-relevant inferences. 
Direct semantic similarity of elements has often 
been termed “surface” similarity, in contrast to the 
“structural” variety. In fact, this contrast has been 
defi ned in (at least) two distinct ways in the anal-
ogy literature, indicating resemblances based either 
(1) on features versus relations (Gentner, 1983) or 
(2) on functionally irrelevant versus relevant ele-
ments of the analogs (Holyoak, 1985). In general, 
functional structure (the latter sense) will involve 
not only relations (i.e., predicates that take at least 
two arguments; see Doumas & Hummel, Chapter 
5) but also those additional elements that partici-
pate in functional relations. For example, because 
an orange is round, fairly small, and fi rm (proper-
ties usually considered to be perceptual features, not 
relations), it could be considered analogous to a ball 
for purposes of playing catch. In this example, as in 
most simple empirical analogies, various perceptual 
properties participate in relevant causal relations and 
hence count as “structural” by the functional defi ni-
tion. In general, objects that share direct similarities 
are likely to have similar causal properties (see Rips 
et al., Chapter 11). Th us, while “distant” analogies 
between remote domains of knowledge may be 
especially creative (see Smith & Ward, Chapter 23), 
“close” analogies in which similar entities fi ll cor-
responding roles typically provide stronger support 
for plausible inferences (Medin & Ross, 1989; see 
also Koedinger & Roll, Chapter 40).

Representation and Algorithm
Role-based relational reasoning depends on the 

capacity to represent structured relations in terms 
of their roles, to represent the bindings of entities to 
roles, to fi nd systematic correspondences between 
a source and target based on relational structure, 
and to use this structure to create new proposi-
tions about the target. Because of its dependence on 
explicit relations, all major computational models of 
analogical reasoning (e.g., Falkenhainer, Forbus, & 

Gentner, 1989; Halford, Wilson, & Phillips, 1998; 
Hofstadter & Mitchell, 1994; Holyoak & Th agard, 
1989; Hummel & Holyoak, 1997, 2003; Keane & 
Brayshaw, 1988; Kokinov & Petrov, 2001) are based 
on some form of propositional representation capa-
ble of expressing role-fi ller bindings (see Markman, 
Chapter 4; Doumas & Hummel, Chapter 5).

Most algorithmic models of analogy, formalized 
as computer simulations, are based on traditional 
symbolic representations. Traditional connection-
ist systems, which lack the capacity to code vari-
able bindings, have not been successful in modeling 
human-like relational reasoning (see Doumas & 
Hummel, Chapter 5), although they may well be 
applicable to simpler types of relational processing 
(see later discussion of relational priming), some of 
which appear to be within the capabilities of non-
human animals (see Penn & Povinelli, Chapter 27). 
Th e most promising algorithmic approach to model-
ing human analogical reasoning in a way that makes 
contact with data on its neural basis is symbolic con-
nectionism (Halford et al., 1998, 2010; Hummel & 
Holyoak, 1997, 2003; see Doumas & Hummel, 
Chapter 5). Models of this type aim to represent 
structured relations (hence “symbolic”) within rela-
tively complex neural networks (hence “connec-
tionist”), and furthermore aim to operate within a 
human-like limited-capacity working memory.

Th e central role of working memory and related 
executive processes in analogical reasoning has long 
been supported by research in the psychometric 
tradition, as described earlier (see Fig. 13.2). More 
recent experimental work, both with normal and 
brain-damaged populations, has provided further 
evidence. For example, Waltz, Lau, Grewal, and 
Holyoak (2000) asked college students to map 
objects in a pair of pictorial scenes while simul-
taneously performing a secondary task designed 
to tax working memory (e.g., generating random 
digits). Adding a dual task diminished relational 
responses and increased similarity-based responses. 
A manipulation that increases people’s anxiety 
level (performing mathematical calculations under 
speed pressure prior to the mapping task) yielded 
a similar shift in mapping responses (Tohill & 
Holyoak, 2000; also Feldman & Kokinov, 2009). 
Most dramatically, degeneration of the frontal lobes 
radically impairs relation-based mapping (Morrison 
et al., 2004; Waltz et al., 1999). Th ese and many 
other fi ndings (e.g., Cho, Holyoak, & Cannon, 
2007) demonstrate that mapping on the basis of 
relations requires adequate working memory and 
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attentional resources to represent and manipulate 
role bindings. Th e neural substrate of working mem-
ory is relatively well understood (see Morrison & 
Knowlton, Chapter 6), and its genetic mechanisms 
are being actively investigated (see Green & Dunbar, 
Chapter 7). By connecting to working memory, 
symbolic-connectionist models provide a potential 
algorithmic “bridge” between the computational 
and implementational levels of analysis for role-
based relational reasoning.

One example of a symbolic-connectionist model 
of analogy is LISA (Learning and Inference with 
Schemas and Analogies; Hummel & Holyoak, 
1997, 2003; Doumas, Hummel, & Sandhofer, 
2008). LISA (described more fully by Doumas & 
Hummel, Chapter 5) is based on the principles 
of Holyoak and Th agard’s (1989) multiconstraint 
theory of analogy. Th e model aims to provide a 
unifi ed account of all the major components of 
analogical reasoning. LISA represents proposi-
tions using a hierarchy of distributed and localist 
units (see Fig. 13.5b; also Fig. 5.5 in Doumas & 
Hummel, Chapter 5). LISA includes both a long-
term memory for propositions and concept mean-
ings and a limited-capacity working memory. LISA’s 
working memory representation, which uses neural 
synchrony to encode role-fi ller bindings, provides 
a natural account of the capacity limits of work-
ing memory because it is only possible to have a 
fi nite number of bindings simultaneously active and 
mutually out of synchrony.

Analog retrieval is accomplished as a form of 
guided pattern matching. Propositions in a driver 
analog (typically the target) generate synchronized 
patterns of activation on the semantic units, which 
in turn activate propositions in recipients—potential 
source analogs residing in long-term memory. Th e 
resulting coactivity of elements of the target and a 
selected source, augmented with a capacity to learn 
which structures in the target were coactive with 
which in the source, serves as the basis for analogical 
mapping. LISA includes a set of mapping connections 
between units of the same type (e.g., object, predi-
cate) in separate analogs. Th ese connections grow 
whenever the corresponding units are active simul-
taneously, and thereby permit LISA to learn corre-
spondences between structures in separate analogs. 
Augmented with an algorithm for self-supervised 
learning, the model can generate analogical infer-
ences based on the mapping (by using the source as 
the driver to generate new relational structure in the 
target); and further augmented with an algorithm 

for intersection discovery, the model provides a basis 
for schema induction.

LISA has been used to simulate a wide range of 
behavioral data on analogical reasoning in normal 
adults (Hummel & Holyoak, 1997, 2003). To take 
just one example, LISA predicts that mapping com-
plex situations must be performed sequentially, 
because only a small number of propositions (two 
to three) can be active together in the driver ana-
log. Mappings will be established incrementally, 
with early mappings constraining later ones (cf. 
Keane, 1997). Moreover, the success of the map-
ping process will depend on which propositions are 
activated together in the driver. In general, coher-
ent, interconnected propositions (e.g., facts that 
are causally related) will provide more information 
that can be used to disambiguate a complex map-
ping. LISA therefore predicts that mapping will be 
more successful when the better-understood source 
acts as the driver while the less-understood target 
serves as recipient. Kubose, Holyoak, and Hummel 
(2002) showed that coherence of the driver impacts 
mapping, as LISA predicts. For example, people are 
more accurate in mapping the solved “general” story 
to the unsolved “tumor” problem than the reverse 
(see later discussion of “convergence” problems; 
Gick & Holyoak, 1980).

In addition to explaining phenomena concern-
ing analogical reasoning by normal adults, LISA can 
account for numerous fi ndings involving similarity 
judgments (Taylor & Hummel, 2009), develop-
mental patterns (Doumas et al., 2008; Morrison, 
Doumas, & Richland, 2011), evidence of defi -
cits in relational reasoning in older normal adults 
(Viskontas et al., 2004), and evidence of much more 
pronounced defi cits in patients with lesions to their 
frontal or temporal cortex (Morrison et al., 2004).

Neural Substrate of Relational Reasoning
Th e implementation of role-based relational rea-

soning in the human brain involves a broad inter-
connected network of brain regions (see Morrison 
& Knowlton, Chapter 6). Although it is generally 
simplistic to identify cognitive functions with spe-
cifi c brain regions, several regions play major roles. 
Th e prefrontal cortex (PFC) is of central impor-
tance. Th e basic processes of the LISA model are 
closely related to known functions of PFC, in 
particular rapid learning (e.g., Asaad et al., 1998; 
Cromer, Machon, & Miller, 2011) and inhibitory 
control (e.g., Miller & Cohen, 2001). Other impor-
tant brain regions include the hippocampus (critical 
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242 analogy and relational reasoning

for storage and retrieval of episodic knowledge), the 
anterior temporal cortex (storage of semantic infor-
mation, including semantic relations), and the pari-
etal cortex (representation of spatial relations).

Role of Prefrontal Cortex in Relational 
Integration and Interference Control

Th e prefrontal cortex plays a central role in rela-
tional reasoning. It has been argued that this area 
underlies the fl uid component of Spearman’s g fac-
tor in intelligence (Duncan et al., 2000), and it sup-
ports the executive functions of working memory 
and cognitive control. With respect to relational rea-
soning, the PFC is critical in the maintenance and 
active manipulation of relations and role bindings 
(Knowlton & Holyoak, 2009; Robin & Holyoak, 
1995). Waltz et al. (1999) found that patients with 
frontal-lobe damage showed a marked defi cit in solv-
ing problems of the Raven’s-matrix type problems 
that required integration of two relations compared 
to normal controls and patients with anterior tempo-
ral lobe damage. Th e frontal-lobe patients performed 
comparably to the other groups on less complex 
problems that could be solved using zero or one rela-
tion. Th ese fi ndings imply that prefrontal cortex is 
critical for the integration of multiple relations.

Other neuropsychological studies have examined 
the role of the PFC in controlling interference from 
distracting information during analogical reasoning. 
Morrison et al. (2004) tested patients with either 
frontal or temporal damage, as well as age-matched 
controls, on a verbal analogy task. Four-term anal-
ogy problems of the form A:B::C:D or D’ were 
employed, where D is the analogical answer and D’ 
is a nonanalogical foil. A semantic facilitation index 
(SFI) was calculated for each problem to characterize 
the association of the correct relational pair (C:D) 
relative to the distractor pair (C:D’). For example, 
for the problem play:game::give: (party or take), the 
C:D pair (give:party, the correct analogical answer) 
is less associated than is the C:D’ pair (give:take, the 
nonanalogical foil), yielding a negative SFI for the 
problem. Th e problems were divided into those with 
negative SFI, neutral SFI, and positive SFI in order 
to examine the eff ect of semantic interference on 
the ability to identify the analogical answer. Frontal 
patients were selectively impaired in the negative 
SFI condition relative to the positive and neutral 
SFI conditions, consistent with the hypothesis that 
the frontal cortex is necessary for control of interfer-
ence. In contrast, temporal patients showed a more 
uniform decline in verbal analogy performance 

across all three conditions, due to their loss of the 
conceptual information necessary to encode the 
relations in the analogy problem. Using four-term 
picture analogies, Krawczyk et al. (2008) also found 
that frontal patients are especially impaired on prob-
lems that include semantically related distractors.

Functional Decomposition of Prefrontal 
Cortex in Reasoning Tasks

Several neuroimaging studies using functional 
magnetic resonance imaging (fMRI) have manipu-
lated relational complexity using variants of Raven’s 
Progressive Matrices (RPM) problems, similar to 
those used by Waltz et al. (1999) in their neurop-
sychological studies. For matrix problems, rela-
tional integration has been shown to consistently 
activate prefrontal regions. In particular, bilateral 
middle and inferior frontal gyri, as well as parietal 
and occipital regions, have been found to increase 
activity when multiple relations must be integrated 
in order to arrive at a solution, compared to prob-
lems that require processing of only a single relation 
(Christoff  et al., 2001; Kroger et al., 2002).

Among these regions, which constitute a net-
work commonly activated in visuospatial working 
memory tasks, the activation pattern of the most 
anterior part of the PFC (termed frontopolar, or rost-
rolateral) has been particularly noteworthy. Christoff  
et al. (2001) found that the left frontopolar region 
remained preferentially activated even after control-
ling for the infl uence of increased problem-solving 
time (also Kroger et al., 2002). Similarly, studies of 
verbal analogical reasoning have distinguished neu-
ral substrates of reasoning from semantic process-
ing demands within working memory. Activation 
in the left frontopolar region increases selectively 
when making judgments of analogical similarity 
compared to processing of semantic associations or 
categories (Bunge et al., 2005; Green et al., 2006; 
Wendelken et al., 2008). Moreover, frontopolar 
activation selectively increases when the semantic 
distance between the A:B and C:D pairs in a “true/
false” verbal analogy problem is increased (Green 
et al., 2010), a manipulation that may increase the 
demands on relational processing.

Th us, based on a substantial body of fi ndings 
involving solution of diff erent types of relational rea-
soning problems, the frontopolar region appears to 
play a special role in the process of integrating mul-
tiple relational representations to arrive at a solution. 
Other subregions of PFC subserve additional processes 
involved in relational reasoning. Cho et al. (2010) 
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performed an fMRI study using four-term analogy 
problems based on cartoon fi gures and observed a 
partial dissociation between cortical regions sensitive 
to increase in demands on integration of multiple 
goal-relevant relations versus control of interference 
from goal-irrelevant relations (see Fig. 13.3). Problems 
requiring greater interference control selectively acti-
vated portions of the inferior frontal gyrus.

Component Processes of Analogical 
Reasoning

Let us now consider the subprocesses of relational 
reasoning in greater detail. A canonical instance of 
analogical reasoning involves (1) using retrieval 
cues provided by the target situation to access one 
or more source analogs in memory, (2) fi nding a 
mapping between a source and target, (3) using the 
mapping together with the functional structure of 
the source to make inferences about the target, and 
(4) generalizing the functional structure of the ana-
logs (see Fig. 13.1).

A Paradigm for Studying Analogical 
Transfer

To study the entire process of analogical reason-
ing, including the retrieval of a source analog from 

long-term memory, a key requirement is to ensure 
that one or more source analogs are in fact poten-
tially available to the reasoner. Gick and Holyoak 
(1980, 1983) introduced a general laboratory para-
digm for investigating analogical transfer in the con-
text of problem solving. Th e basic procedure was 
to fi rst provide people with a source analog in the 
guise of some incidental context, such as an experi-
ment on “story memory.” Later, participants were 
asked to solve a problem that was in fact analogous 
to the story they had studied earlier. Th e questions 
of central interest were (1) whether people would 
spontaneously notice the relevance of the source 
analog and use it to solve the target problem, and 
(2) whether they could solve the analogy once they 
were cued to consider the source. Spontaneous 
transfer of the analogous solution implies successful 
retrieval and mapping; cued transfer implies suc-
cessful mapping once the need to retrieve the source 
has been removed.

Th e source analog used by Gick and Holyoak 
(1980) was a story about a general who is trying 
to capture a fortress controlled by a dictator and 
needs to get his army to the fortress at full strength. 
Since the entire army could not pass safely along 
any single road, the general sends his men in small 

Fig. 13.3 Neuroimaging results from 
Cho et al. (2010). Regions showing 
the main eff ects of relational complex-
ity (shown in red), interference (shown 
in yellow; small volume corrected, un-
corrected cluster-forming threshold T 
> 2.3, corrected cluster extent signifi -
cance threshold, p < .05), and regions 
where main eff ects overlapped (blue) 
within an a priori defi ned anatomical 
ROI mask of the bilateral MFG and 
IFG pars opercularis and pars triangu-
laris. R, right; L, left. Coordinates are 
in MNI space (mm). (Reprinted by 
permission.) See color fi gure.
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244 analogy and relational reasoning

groups down several roads simultaneously. Arriving 
at the same time, the groups join up and capture 
the fortress.

A few minutes after reading this story under 
instructions to read and remember it (along with 
two other irrelevant stories), participants were asked 
to solve a tumor problem (Duncker, 1945), in which 
a doctor has to fi gure out how to use rays to destroy 
a stomach tumor without injuring the patient in the 
process. Th e crux of the problem is that it seems 
that the rays will have the same eff ect on the healthy 
tissue as on the tumor—high intensity will destroy 
both, low intensity neither. Th e key issue is to fi gure 
out how the rays can be made to selectively impact 
the tumor while sparing the surrounding tissue. Th e 
source analog, if it can be retrieved and mapped, 
can be used to generate a “convergence” solution to 
the tumor problem, one that parallels the general’s 
military strategy: Instead of using a single high-in-
tensity ray, the doctor could administer several low-
intensity rays at once from diff erent directions. In 
that way each ray would be at low intensity along 
its path, and hence harmless to the healthy tissue, 
but the eff ects of the rays would sum to achieve the 
eff ect of a high-intensity ray at their focal point, the 
site of the tumor.

When Gick and Holyoak (1980) asked college 
students to solve the tumor problem, without a 
source analog, only about 10% of them produced 
the convergence solution. When the general story 
had been studied, but no hint to use it was given, 
only about 20% of participants produced the con-
vergence solution. In contrast, when the same par-
ticipants were then given a simple hint that “you 
may fi nd one of the stories you read earlier to be 
helpful in solving the problem,” about 75% suc-
ceeded in generating the analogous convergence 
solution. In other words, people often fail to notice 
superfi cially dissimilar source analogs that they 
could readily use. On occasions when a person did 
not notice the relevance of the remote source ana-
log, he or she sometimes reported a feeling of insight 
(see van Steenburgh et al., Chapter 24).

Accessing Analogs in Long-Term Memory
Th is gap between the diffi  culty of retrieving 

remote analogs and the relative ease of mapping 
them has been replicated many times, both with 
adults (Gentner, Rattermann, & Forbus, 1993; 
Holyoak & Koh, 1987; Ross, 1987, 1989; Spencer & 
Weisberg, 1986) and with young children (Chen, 
1996; Holyoak, Junn, & Billman, 1984; Tunteler & 

Resing, 2002). When analogs must be cued from 
long-term memory, cases from a domain similar to 
that of the cue are retrieved much more readily than 
cases from remote domains (Keane, 1987; Seifert, 
McKoon, Abelson, & Ratcliff , 1986). For example, 
Keane (1987) measured retrieval of a convergence 
analog to the tumor problem when the source ana-
log was studied 1–3 days prior to presentation of the 
target radiation problem. Keane found that 88% of 
participants retrieved a source analog from the same 
domain (a story about a surgeon treating a brain 
tumor), whereas only 12% retrieved a source from 
a remote domain (the general story). Th is diff erence 
in ease of access was dissociable from the ease of 
postaccess mapping and transfer, as the frequency 
of generating the convergence solution to the radia-
tion problem once the source analog was cued was 
high and equal (about 86%) regardless of whether 
the source analog was from the same or a diff erent 
domain.

Th e “retrieval gap” found in experimental stud-
ies of analogy is consistent with the obvious diff er-
ences in the computational requirements of retrieval 
versus mapping. When attention is focused on two 
analogs, their representations will be held in work-
ing memory and explicit comparison processes can 
operate on relations. By defi nition, the question of 
which situations ought to be compared has already 
been answered. In contrast, retrieval is wide open—
anything in long-term memory might potentially be 
relevant. As noted earlier, direct similarity of objects 
in the source and target is often a valid predictor of 
the inferential usefulness of the source. Additionally, 
focusing on relations in the target as retrieval cues 
places greater demands on working memory (see 
Morrison & Knowlton, Chapter 6).

Nonetheless, there is strong evidence that rela-
tional structure does play an important role in 
guiding analogical retrieval, both in the con-
text of problem solving (Holyoak & Koh, 1987; 
Ross, 1987, 1989) and story reminding (Wharton 
et al., 1994; Wharton, Holyoak, & Lange, 1996). 
Th e infl uence of relational correspondences is 
greater when some degree of direct similarity of 
objects is also present, and when the relational 
correspondences favor one potential source over 
a nonrelational candidate competing for retrieval 
from long-term memory (Wharton et al., 1994). 
Interestingly, retrieval of verbal analogs (in the form 
of proverbs) is more successful when the analogs 
are presented in spoken rather than written form 
(Markman, Taylor, & Gentner, 2007), perhaps 
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because listening imposes a reduced processing load 
relative to reading. In addition, domain experts 
(who are more likely to focus on relevant relations as 
retrieval cues) are more likely than novices to access 
remote source analogs based on relational corre-
spondences (Novick, 1988; Novick & Holyoak, 
1991). Other evidence indicates that having people 
generate example cases, as opposed to simply asking 
them to remember cases presented earlier, can 
enhance structure-based access to source analogs 
(Blanchette & Dunbar, 2000).

Unintended Memory Activation and 
Relational Priming

In most of the experiments discussed so far, par-
ticipants were explicitly asked to remember analo-
gous situations stored in memory when cued with an 
analog, and hence were clearly aware when retrieval 
took place. In others (e.g., Gick & Holyoak, 1980) 
retrieval was not explicitly requested, but participants 
generally seemed to be aware of using a source ana-
log to solve the target problem (when they in fact 
did so). Under some circumstances, however, people 
may use relations as cues to access information in 
long-term memory even when they have not been 
asked to do so. Moreover, in some cases they may 
not be aware that a previously encountered analog is 
guiding their current processing of a new example. 
Schunn and Dunbar (1996) performed a study in 
which during an initial session involving a problem 
in biochemistry, some subjects learned that addition 
of an inhibitory enzyme decreased virus reproduc-
tion. In a subsequent session the following day these 
same subjects were asked to solve a molecular-genet-
ics problem, which involved an analogous inhibi-
tory gene. Schunn and Dunbar found that subjects 
who had been exposed to the concept of inhibition 
in the initial session were more likely than control 
subjects to develop a solution based on inhibition 
for the transfer problem, even though experimental 
subjects evinced no signs of awareness that the earlier 
virus problem had infl uenced their solution to the 
gene problem. Similarly, Day and Goldstone (2011) 
found that participants were able to transfer strate-
gies learned from a perceptually concrete simulation 
of a physical system to a task with very dissimilar 
content and appearance. Although recognition of the 
analogy between the tasks was associated with bet-
ter overall performance, transfer (i.e., application of 
an analogous strategy) was not related to such recog-
nition (see also Day & Gentner, 2007; Wharton & 
Lange, 1994).

Such apparently unintended transfer likely 
involves a diff erent mechanism than does deliber-
ate analogical mapping and inference. As we will 
see later, intentional relational transfer makes heavy 
demands on working memory and appears to be a 
paradigmatic example of what is sometimes termed 
explicit or System 2 processing (see Evans, Chapter 
8). But as Schunn and Dunbar (1996) argued, some 
forms of relational transfer may be more akin to 
priming, typically considered an example of implicit 
or System 1 processing. Spellman, Holyoak, and 
Morrison (2001) demonstrated rapid priming based 
on semantic relations, using both naming and lexical 
decision paradigms. For example, participants were 
able to identify a related pair such as BEAR–CAVE 
as words more quickly when preceded (400 msec 
earlier) by BIRD–NEST (same relation) as opposed 
to BIRD–DESERT (unrelated). Note that although 
the pairs BIRD–NEST and BEAR–CAVE share the 
same relation (“lives in”), the objects themselves are 
not especially similar. Spellman et al. found that it 
was necessary to explicitly tell participants to pay 
attention to relations in order to obtain relation-
based priming. However, such instructions were 
not essential in similar paradigms when the prime 
was presented for a longer duration and a relational 
judgment about the prime was required (Estes, 
2003; Estes & Jones, 2006; see also Allen, Ibara, 
Seymour, Cordova, & Botvinick, 2010).

Relational priming may be especially potent when 
its application to objects of a certain type is over-
learned. For example, Bassok, Chase, and Martin 
(1998) demonstrated that people are sensitive to 
what they termed semantic alignment of objects 
with the mathematical operation of addition. Th ese 
investigators found that two sets of objects that 
each belong to the same general category (e.g., cats 
and dogs, both of which are animals) could readily 
be aligned with the addends of addition, whereas 
sets of objects that are functionally related (e.g., 
birds and cages) proved to be far less natural as 
addends. Extending this fi nding, Bassok, Pedigo, 
and Oskarsson (2008) showed that automatic acti-
vation of basic arithmetic facts (e.g., 3 + 4 = 7) is 
modulated by prior presentation of aligned versus 
nonaligned word pairs (see also Fisher, Bassok, & 
Osterhout, 2010). Th e apparent automaticity of 
this phenomenon is consistent with people’s exten-
sive experience in using the addition operation to 
solve problems involving a variety of semantically 
aligned object sets (e.g., blue and red marbles, cars 
and trucks, cupcakes and brownies). Importantly, 
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the priming eff ects observed in these studies did not 
in general aid in task performance, suggesting that 
priming was automatic.

Longer term priming may have contributed to 
the apparent unintended transfer eff ects observed in 
studies such as those of Schunn and Dunbar (1996) 
and Day and Goldstone (2011), as the source analog 
was itself processed deeply to solve a problem. 
Unintended transfer may not require developing 
a systematic mapping of the source to the target. 
Rather, more piecemeal transfer may occur based on 
activation of one or more key relational concepts 
(e.g., the concept of “inhibition” in the Schunn and 
Dunbar study).

Mapping
Mapping—the process of identifying correspond-

ing elements of the source and target analogs—plays 
a central role in analogical inference. For meaning-
ful situations such as problems or stories, adults 
with intact executive functions typically are able to 
establish correspondences based primarily on rela-
tional roles, even when direct similarity of mapped 
elements is low or uninformative (Gentner & 
Gentner, 1983; Gick & Holyoak, 1980, 1983).

Alignability and Attentional Focus
Markman and Gentner (1993; for a review see 

Gentner & Markman, 1997) drew an important 
distinction between commonalities (the shared 
properties of mapped elements), alignable diff er-
ences (diff erences between mapped elements), and 
nonalignable diff erences (diff erences between ana-
logs involving unmapped elements). In Figure 13.4, 
for example, the car in the top picture can be 
mapped to the boat in the bottom picture based 
on their common roles (vehicles being towed). 
Th e car and boat also exhibit alignable diff erences. 
In contrast, the parking meter in the top picture 
has no clear corresponding element in the bottom 
picture, and hence it constitutes a nonalignable 
diff erence.

Th e basic impact of analogical mapping is to 
focus attention on the commonalities and (usu-
ally to a lesser extent) the alignable diff erences, 
while backgrounding the nonalignable diff erences. 
Gentner and Markman (1994) gave college stu-
dents word pairs and asked them to list one diff er-
ence each for as many pairs as possible under time 
pressure. Th e participants produced many more 
alignable than nonalignable diff erences. Contrary to 

ACE

My Boat

Fig. 13.4 Pictures illustrating types 
of analogy-based similarities and 
diff erences (Markman & Gentner, 
1996). (Pictures courtesy of Art 
Markman.)
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the commonsense idea that diff erences will be easier 
to fi nd for dissimilar concepts, participants were 
actually more fl uent in stating a diff erence for pairs 
of similar, alignable concepts (e.g., hotel – motel) 
than for dissimilar, nonalignable concepts (e.g., 
kitten – magazine), suggesting that the comparison 
process made the alignable diff erences especially 
salient. Relative to nonalignable diff erences, align-
able diff erences have stronger eff ects on the percep-
tion of overall similarity (Markman & Gentner, 
1996; see Goldstone & Son, Chapter 10), are more 
memorable (Markman & Gentner, 1997), and have 
a greater impact on choices made in a decision task 
(Markman & Medin, 1995).

Coherence in Analogical Mapping
Th e key idea of Holyoak and Th agard’s (1989) 

multiconstraint theory of analogy is that several dif-
ferent kinds of constraints—similarity, structure, 
and purpose—all interact to determine the optimal 
set of correspondences between source and target. 
A good analogy is one that appears coherent, in the 
sense that multiple constraints converge on a solu-
tion that largely satisfi es all constraints (Th agard, 
2000). When constraints confl ict, mappings may 
be ambiguous. For example, the two pictures 
shown in Figure 13.4 include a cross-mapping—the 
car in the top picture maps to the boat in the bot-
tom picture on the basis of relational roles (both are 
vehicles being towed), but to the car in the bottom 
picture on the basis of direct similarity. Situations 
involving cross mappings are especially diffi  cult, 
more so than analogies with less semantic overlap 
(Gentner & Toupin, 1986; Ross, 1989). Implicit 
cross mappings can also interfere with students’ 
understanding of the intended interpretation of 
graphs and similar visuospatial representations 
(Gattis & Holyoak, 1996).

Comparisons based on perceptually rich stimuli, 
which aff ord an abundance of direct similarities 
between objects, typically lead to a lower frequency 
of relational responses relative to comparisons 
based on perceptually sparse stimuli (Markman & 
Gentner, 1993). In general, manipulations that 
increase attention to relations tend to encourage 
a relation-based response. For example, Markman 
and Gentner found that people who mapped three 
objects at once were more likely to map on the basis 
of similar relational roles than were people who 
mapped just one cross-mapped object, presumably 
because mapping multiple objects focuses greater 
attention on relations among them. Relational 

language is an especially important infl uence on 
mapping. For preschool children, Loewenstein and 
Gentner (2005) found that explicitly describing a 
scene in terms of spatial relations increased the fre-
quency of relation-based mappings (for a general 
discussion of language and thought, see Gleitman & 
Papafragou, Chapter 28).

In the absence of cross mappings, adults are 
generally able to integrate multiple constraints to 
establish coherent mappings, even for situations 
that are complex and somewhat ambiguous. For 
example, at the beginning of the fi rst Gulf War in 
1991, Spellman and Holyoak (1992) asked a group 
of American undergraduates a few questions to 
fi nd out how they interpreted the analogy between 
the then-current situation in the Persian Gulf and 
World War II. Th e undergraduates were asked to 
suppose that Saddam Hussein, the President of 
Iraq, was analogous to Hitler (a popular analogy at 
the time). Regardless of whether they thought the 
analogy was appropriate, they were then asked to 
write down the most natural match in the World 
War II situation for various people and nations 
involved in the Gulf War, including the United 
States and its current President, George H. W. 
Bush. For those students who gave evidence that 
they knew the basic facts about World War II, the 
majority produced mappings that fell into one of 
two patterns, each coherent on relational grounds. 
Th ose students who mapped the United States to 
itself also mapped Bush to Franklin D. Roosevelt. 
Other students, in contrast, mapped the United 
States to Great Britain and Bush to Winston 
Churchill, the British Prime Minister (perhaps 
because Bush, like Churchill, led his nation and 
Western allies in early opposition to aggression). 
Th e analogy between the Persian Gulf situation 
and World War II thus generated a “bistable” map-
ping: People tended to provide mappings based on 
either of two coherent but mutually incompatible 
sets of correspondences.

Mapping is guided not only by relational struc-
ture and element similarity but also by the goals of 
the analogist (Holyoak, 1985). Particularly when the 
mapping is inherently ambiguous, the constraint of 
pragmatic centrality—relevance to goals—is critical 
(Holyoak, 1985). Spellman and Holyoak (1996) 
investigated the impact of processing goals on the 
mappings generated for inherently ambiguous anal-
ogies and found that mappings were predominately 
determined by those relations most relevant to the 
reasoner’s goal.

OUP UNCORRECTED PROOF – REVISES, 01/09/12, NEWGEN

13_Holyoak_Ch13.indd   24713_Holyoak_Ch13.indd   247 1/9/2012   2:43:07 PM1/9/2012   2:43:07 PM



248 analogy and relational reasoning

Developmental Changes in 
Analogical Mapping

Young children are particularly sensitive to direct 
similarity of objects. When asked to identify corre-
sponding elements in two analogs when semantic 
and structural constraints confl ict, their mappings 
are dominated by object similarity (Gentner & 
Toupin, 1986). Th e developmental transition toward 
greater reliance on relational structure in mapping 
has been termed the relational shift (Gentner & 
Rattermann, 1991). Th e empirical phenomenon of a 
relational shift is well established, but there has been 
some debate regarding the developmental mecha-
nisms that may underlie it. Goswami and colleagues 
have argued that analogical reasoning is fundamen-
tally available as a capacity from early infancy (and 
indeed, some analogical ability is apparent in 1-year-
old children; Chen, Sanchez, & Campbell, 1997), 
but that children’s analogical performance increases 
with age due to the accretion of knowledge about rel-
evant relations (Goswami, 1992, 2001; Goswami & 
Brown, 1989). Knowledge of relations is without 
doubt essential for analogical reasoning. Even for 
adults, expertise in a domain is a predictor of superior 
ability to process analogies in that domain (Novick & 
Holyoak, 1991).

However, although accretion of knowledge is 
certainly an important factor, there is now evidence 

that maturational changes in cognitive functioning 
also drive developmental diff erences in analogical 
reasoning. Th ese changes are associated with the 
maturation of the prefrontal cortex (see Diamond, 
2002), which is not complete until adolescence. 
Th e prefrontal cortex underlies executive con-
trol (Diamond, 2006; see Morrison & Knowlton, 
Chapter 6), and in particular the capacity to manip-
ulate complex information in working memory and 
to inhibit salient but task-inappropriate informa-
tion and responses. A study by Richland, Morrison, 
and Holyoak (2006) illustrates how the need for 
working memory and inhibitory control infl uence 
the diffi  culty of analogical mapping at diff erent 
ages. Figure 13.5a depicts an example of “scene-
analogy” problems developed for use with children 
as young as 3–4 years old; Figure 13.5b illustrates 
how the LISA model (Hummel & Holyoak, 1997) 
would represent the mapping problem. For each 
pair of pictures, children were asked to identify the 
object in the bottom picture that “goes with” the 
object indicated by an arrow in the top picture. In 
some problems, such as that shown in Figure 13.5a, 
the child is confronted with a confl ict between two 
possible answers, one relational and one based on 
perceptual and/or semantic similarity. Th e cat in 
the top picture perceptually resembles the cat in 
the bottom picture, but it plays a role (chasing a 

Source

Target

Recipient

s1 s2 gc c1 c2 gb

c1 c2mc

Proposition

SP

Relation/
Object

Semantic

Relation/
Object

SP
Proposition

(a) (b) Driver

Unit Types

chases (boy, girl)

chases (cat, mouse)

sits-on (cat, ground)

Fig. 13.5 (A) Example of one-relation/distractor scene-analogy problem (Richland et al., 2006); (B) LISA architecture as applied to 
this problem. In order for a reasoner to select the boy in the target as the correct analogical mapping to the cat in the source, units in the 
recipient representing the proposition chases (boy, girl) must inhibit corresponding units in the propositional structure containing the 
featurally similar “sitting cat” distractor. (Reprinted with permission from Morrison, Doumas, & Richland, 2011.)
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mouse) that parallels the role played by the boy in 
the bottom picture (chasing a girl). Richand et al. 
found that young children were less likely to give 
the relational response when an alternative based 
on direct similarity was available. Inhibitory control 
is presumably required to avoid responding on the 
basis of direct similarity.

In addition, relational reasoning varies in its com-
plexity, which has been linked to the number of rela-
tional roles relevant to an inference (Halford, 1993; 
Halford et al., 1998). Th e load on working memory 
will be less if a single relation is suffi  cient to deter-
mine the role-based inference (as in the example 
shown in Fig. 13.5a), compared to when multiple 
relations must be integrated to derive the inference. 
Richland et al. (2006) found that preschool chil-
dren gave fewer relational responses when either a 
similar distractor was present in the bottom picture 
or when two relations had to be integrated. By age 
13–14 years—roughly the age at which the prefron-
tal cortex has undergone substantial further matura-
tion—children reliably gave the relational response 
even when multiple relations had to be integrated 
and a similar distractor was present. Children with 
autism, when matched to controls on measures of 
executive function, show comparable trends in ana-
logical reasoning (Dawson et al., 2007; Morsanyi & 
Holyoak, 2010). Th is pattern of analogical develop-
ment is consistent with what is known about the 
neural basis for analogical reasoning in adults, as 
discussed earlier.

Analogical Inference
Analogical inference—using a source analog to 

form a new conjecture, whether it be a step toward 
solving a math problem (see Bassok & Novick, 
Chapter 21), a scientifi c hypothesis (Dunbar & 
Klahr, Chapter 35), a basis for deciding a legal 
case (Spellman & Schauer, Chapter 36), or fi nding 
a diagnosis for puzzling medical symptoms (Patel 
et al., Chapter 37)—is the fundamental purpose 
of analogical reasoning (Bartha, 2010). Mapping 
serves to highlight correspondences between the 
source and target. Th ese correspondences provide 
the input to an inference engine that generates new 
target propositions.

Th e basic algorithm for analogical inference used 
by all major computational models has been termed 
“copy with substitution and generation,” or CWSG 
(Holyoak, Novick, & Melz, 1994), and involves con-
structing target analogs based on unmapped source 
propositions by substituting the corresponding 

target element (if known) for each source element, 
and if no corresponding target element is known, 
postulating one as needed. CWSG allows the gen-
eration of structured propositions about the target 
(as opposed to simple associations) because of its 
reliance on variable binding and mapping. In this 
key respect, inference by CWSG is similar to rule-
based inferences of the sort modeled by produc-
tion systems (e.g., Anderson & Lebiere, 1998; see 
Doumas & Hummel, Chapter 5; Koedinger & Roll, 
Chapter 40). However, the constraints on analogi-
cal mapping are more fl uid than are the typical con-
straints on matching in a production system. CWSG 
is more fl exible in that unlike production rules, 
there is no strict division between a “left-hand side” 
to be matched and a “right-hand side” that creates 
an inference. Rather, any subset of the two analogs 
may provide an initial mapping, and the unmapped 
remainder of the source may be used to create tar-
get inferences (giving rise to the property of omni-
directional access in analogical inference; Halford 
et al., 1998). Analogical inference might be described 
as a “strong weak method”—a domain-general 
method (see Bassok & Novick, Chapter 21) that 
can be extremely powerful if the requisite knowledge 
about a source analog is available (though useless if 
an appropriate source is lacking).

Integrating Analogical Inference With 
Causal Models

Th e CWSG algorithm, and analogical infer-
ence in general, can fail in a variety of ways. If criti-
cal elements are diffi  cult to map (e.g., because of 
strong representational asymmetries, such as those 
that hinder mapping a discrete set of elements to 
a continuous variable; Bassok & Olseth, 1995; 
Bassok & Holyoak, 1989), then no inferences can 
be constructed. If elements are mismapped, corre-
sponding inference errors will result (Holyoak et al., 
1994; Reed, 1987). Most important, the great fl uidity 
of CWSG has its downside. Without additional con-
straints on when CWSG is invoked, any unmapped 
source proposition would generate an inference about 
the target. Such a loose criterion for inference gen-
eration would lead to rampant errors whenever the 
source was not isomorphic to a subset of the target; 
and such isomorphism will virtually never hold for 
problems of realistic complexity. Accordingly, addi-
tional constraints are required (Clement & Gentner, 
1991; Holyoak et al., 1994; Markman, 1997).

Lassaline (1996) provided evidence of factors that 
appear to constrain analogical inferences. She had 
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250 analogy and relational reasoning

college students read descriptions of the properties 
of hypothetical animals, and then rate various pos-
sible target inferences for the probability that the 
conclusion would be true, given the information in 
the premise. Participants rated potential inferences 
as more probable when the source and target ana-
logs shared more attributes, and hence were more 
similar. In addition, the presence of a causal relation 
in the source made an inference more credible. For 
example, if the source and target animals were both 
described as having a weak immune system, and for 
the source the weak immune system was stated to 
“cause” an acute sense of smell, then the inference 
that the target animal also has an acute sense of smell 
would be bolstered relative to stating only that the 
source animal had a weak immune system “and” an 
acute sense of smell. Th e benefi t conveyed by the link-
ing relation was reduced if it was less clearly causal 
(“develops before”). Lassaline’s fi ndings thus imply 
that although analogical inferences are infl uenced by 
the overall similarity of the analogs, causal relations 
in the source play an especially important role.

Work by Lee and Holyoak (2008) demonstrated 
the close connection between analogical inference 
and the operation of representations that have been 
termed causal models (Waldmann & Holyoak, 1992; 
see Cheng & Buehner, Chapter 12)—a network of 
cause-eff ect relations characterizing each analog. 
Holyoak, Lee, and Lu (2010) formalized this inte-
gration by extending a Bayesian model of causal 
learning (Lu et al., 2008) to deal with analogical 
inference. Th e basic idea is that for empirical analo-
gies, the causal model of the source analog (includ-
ing information about the strength distributions 
associated with individual causal links), coupled 
with the mapping of source to target, provide the 
input to CWSG. Th is procedure constrains CWSG 
is a way that favors accurate and useful inferences, 
generating as its output an elaborated causal model 
of the target. Th is causal model is then used to eval-
uate the probability of specifi c inferences about the 
target. By treating analogical and causal inference 
within a unifying theoretical framework, it proved 
possible to explain situations in which the strengths 
of inferences about the target are dissociable from 
the overall similarity of the source and target. Most 
dramatically, Lee and Holyoak showed that if the 
source exhibits an eff ect despite the presence of a 
preventive cause, then people judge the eff ect to 
be more likely in the target if it lacks the preventer 
(even though absence of the preventer reduces over-
all similarity of the source and target).

Rather than considering analogical inference 
in isolation, it is useful to view the entire transfer 
process as the joint product of causal learning and 
relational mapping: Th e reasoner learns the causal 
structure of the source, maps the source to target, 
applies CWSG to augment the causal model of the 
target, and then uses the resulting model to evaluate 
an open-ended range of potential inferences about 
the target. Th e model of the target generated on 
the basis of the source will often be imperfect, so 
that additional postanalogical processes of adapta-
tion will be required to accommodate goal-relevant 
aspects of the target that are not predictable from 
the source (Carbonell, 1983; Holyoak et al., 1994).

Analogical Inferences as 
“False Memories”

An important question concerns when analogical 
inferences are made, and how inferences relate to 
facts about the target analog that are stated directly. 
One extreme possibility is that people only make 
analogical inferences when instructed to do so, and 
that inferences are carefully “marked” as such, so 
that they will never be confused with known facts 
about the target. At the other extreme, it is possible 
that some analogical inferences are triggered when 
the target is fi rst processed (given that the source has 
been activated), and that such inferences are then 
integrated with prior knowledge of the target. One 
paradigm for addressing this issue is based on test-
ing for false “recognition” of potential inferences in 
a subsequent memory test. Th e logic of the recogni-
tion paradigm is that if an inference has been made 
and integrated with the rest of the target analog, 
then later the reasoner will believe that the inference 
had been directly presented, in eff ect having created 
a “false memory” (see Brainerd & Reyna, 2005).

Early work by Schustack and Anderson (1979) 
provided evidence that people sometimes falsely 
report that analogical inferences were actually pre-
sented as facts. Blanchette and Dunbar (2002) per-
formed a series of experiments designed to assess 
when analogical inferences are made. Th ey had col-
lege students (in Canada) read a text describing a cur-
rent political issue, possible legalization of marijuana 
use, which served as the target analog. Immediately 
afterward, half the students read, “Th e situation 
with marijuana can be compared to . . . ” followed 
by an additional text describing the period early in 
the 20th century when alcohol use was prohibited. 
Importantly, the students in the analogy condition 
were not told how prohibition mapped onto the 
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marijuana debate, nor were they asked to draw any 
inferences. After a delay (1 week in one experiment, 
15 minutes in another), the students were given a 
list of sentences and were asked to decide whether 
each sentence had actually been presented in the 
text about marijuana use. Th e critical items were 
sentences such as “Th e government could set up 
agencies to control the quality and take over the dis-
tribution of marijuana.” Th ese sentences had never 
been presented; however, they could be generated as 
analogical inferences by CWSG, based on a parallel 
statement contained in the source analog (“Th e gov-
ernment set up agencies to control the quality and 
take over the distribution of alcohol”). Blanchette 
and Dunbar found that students in the analogy 
condition said “yes” to analogical inferences about 
50% of the time, whereas control subjects who had 
not read the source analog about prohibition said 
“yes” only about 25% of the time. Th is tendency 
to falsely “recognize” analogical inferences that had 
never been read was obtained both after long and 
short delays, and with both familiar and less famil-
iar materials. Similar fi ndings have been obtained by 
Perrott, Gentner, and Bodenhausen (2005).

It thus appears that when people notice the con-
nection between a source and target, and they are 
suffi  ciently engaged in an eff ort to understand the 
target situation, analogical inferences will often be 
generated and then integrated with prior knowl-
edge of the target. In some cases such transfer may 
be unintended and involve relational priming, as 
discussed earlier. At least sometimes, an analogical 
inference becomes accepted as a stated fact. Like 
relational priming, this is a case in which relational 
transfer does not necessarily improve performance 
of the target task (recognition memory). Such fi nd-
ings have important implications for understanding 
how analogical reasoning can operate as a tool for 
persuasion.

Relational Generalization 
and Schema Induction

In addition to generating local inferences about 
the target, analogical reasoning can give rise to rela-
tional generalizations—abstract schemas that estab-
lish an explicit representation of the commonalities 
between the source and target. Comparison—not 
simply passive accumulation of information about 
distributions of features across examples, but active 
generation of structural correspondences—lies at the 
heart of analogical reasoning. Comparison of multi-
ple analogs can result not only in a specifi c mapping 

but also in the induction of a schema, which in turn 
will facilitate subsequent transfer to additional ana-
logs. Th e induction of such schemas has been dem-
onstrated in both adults (Catrambone & Holyoak, 
1989; Gick & Holyoak, 1983) and young children 
(Brown, Kane, & Echols, 1986; Chen & Daehler, 
1989; Holyoak et al., 1984; Kotovsky & Gentner, 
1996; Loewenstein & Gentner, 2001; Namy & 
Gentner, 2002).

Comparison has been shown to guide schema 
formation in teaching such complex topics as 
negotiation strategies (Loewenstein, Th ompson, 
& Gentner, 1999, 2003; see Loewenstein, Chapter 
38). Th ere is also evidence that comparison may 
play a key role in learning role-based relations (e.g., 
comparative adjectives such as “bigger than”) from 
nonrelational inputs (Doumas et al., 2008), and in 
language learning more generally (Gentner, 2010; 
Gentner & Namy, 2006). An important refi nement 
of the use of comparison as a training technique is 
to provide a series of comparisons ordered “easy to 
hard,” where the early pairs share salient surface sim-
ilarities as well as less salient relational matches, and 
the later pairs share only relational matches. Th is 
“progressive alignment” strategy serves to promote a 
kind of analogical bootstrapping, using salient simi-
larities to aid the learner in identifying appropri-
ate mappings between objects that also correspond 
with respect to their relational roles (Kotovsky & 
Gentner, 1996).

Factors That Influence 
Schema Induction

People are able to induce schemas by comparing 
just two analogs to one another (Gick & Holyoak, 
1983). Indeed, people will form schemas simply as 
a side eff ect of applying one solved source problem 
to an unsolved target problem (Novick & Holyoak, 
1991; Ross & Kennedy, 1990). In the case of prob-
lem schemas, more eff ective schemas are formed 
when the goal-relevant relations are the focus rather 
than incidental details (Brown et al., 1986; Brown, 
Kane, & Long, 1989; Gick & Holyoak, 1983). In 
general, any kind of processing that helps people 
focus on the underlying functional structure of 
the analogs, thereby encouraging learning of more 
eff ective problem schemas, will improve subsequent 
transfer to new problems. For example, Gick and 
Holyoak (1983) found that induction of a “con-
vergence” schema from two disparate analogs was 
facilitated when each story stated the underlying 
solution principle abstractly: “If you need a large 

OUP UNCORRECTED PROOF – REVISES, 01/09/12, NEWGEN

13_Holyoak_Ch13.indd   25113_Holyoak_Ch13.indd   251 1/9/2012   2:43:08 PM1/9/2012   2:43:08 PM



252 analogy and relational reasoning

force to accomplish some purpose, but are pre-
vented from applying such a force directly, many 
smaller forces applied simultaneously from diff erent 
directions may work just as well.” In some circum-
stances transfer can also be improved by having the 
reasoner generate a problem analogous to an initial 
example (Bernardo, 2001). Other work has shown 
that abstract diagrams that highlight the basic idea of 
using multiple converging forces can aid in schema 
induction and subsequent transfer (Beveridge & 
Parkins, 1987; Gick & Holyoak, 1983).

Although two examples can suffi  ce to establish 
a useful schema, people are able to incrementally 
develop increasingly abstract schemas as additional 
examples are provided (Brown et al., 1986; Brown 
et al., 1989; Catrambone & Holyoak, 1989). Even 
with multiple examples that allow novices to start 
forming schemas, people may still fail to transfer the 
analogous solution to a problem drawn from a dif-
ferent domain if a substantial delay intervenes or if 
the context is changed (Spencer & Weisberg, 1986). 
Nonetheless, as novices continue to develop more 
powerful schemas, long-term transfer in an altered 
context can be dramatically improved (Barnett 
& Koslowski, 2002). For example, Catrambone 
and Holyoak (1989) gave college students a total 
of three convergence analogs to study, compare, 
and solve. Th e students were fi rst asked a series of 
detailed questions designed to encourage them to 
focus on the abstract structure common to two 
of the analogs. After this abstraction training, the 
students were asked to solve another analog from 
a third domain (not the tumor problem), after 
which they were told the convergence solution to 
it (which most students were able to generate them-
selves). Finally, a week later, the students returned 
to participate in a diff erent experiment. After the 
other experiment was completed, they were given 
the tumor problem to solve. Over 80% of partici-
pants came up with the converging-rays solution 
without any hint. As the novice becomes an expert, 
the emerging schema becomes increasingly acces-
sible and is triggered by novel problems that share 
its structure (see Koedinger & Roll, Chapter 40). 
Deeper similarities have been constructed between 
analogous situations that fi t the schema.

Impact of Schemas on Relational 
Processing

As schemas are acquired from examples, they 
in turn guide future analog retrieval, mapping, 
and inference. We have already seen how schema 

induction can increase subsequent transfer to novel 
problems (e.g., Bassok & Holyoak, 1989; Gick & 
Holyoak, 1983; Loewenstein et al., 2003), as well 
as facilitate processing of metaphors (Gentner & 
Bowdle, 2008). In addition, a schema induced by 
comparing examples can work “backward” in mem-
ory, making it easier to retrieve analogous episodes 
(including autobiographical memories) that had 
been stored before the schema was acquired (Gentner, 
Loewenstein, Th ompson, & Forbus, 2009).

Of course, schemas are often acquired through 
experience outside the laboratory. Such preexist-
ing schemas can guide the interpretation of specifi c 
examples, thereby changing analogical mapping and 
inference. For example, Bassok, Wu, and Olseth 
(1995) examined analogical reasoning with algebra 
word problems similar to ones studied previously 
by Ross (1987, 1989). Participants were shown 
how to compute permutations using an example 
(the source problem) in which some items from a 
set of n members were randomly assigned to items 
from a set of m members (e.g., how many diff er-
ent ways can you assign three computers to three 
secretaries if there are n computers and m secretar-
ies?). Participants were then tested for their ability 
to transfer this solution to new target problems. 
Th e critical basis for transfer hinged on the assign-
ment relation in each analog—that is, what kinds 
of items (people or inanimate objects) served in 
the roles of n and m. In some problems (type OP) 
objects (n) were assigned to people (m; e.g., “com-
puters were assigned to secretaries”); in others (PO) 
people (n) were assigned to objects (m; “secretaries 
were assigned to computers”). Solving a target prob-
lem required the participant to map the elements 
of the problem appropriately to the variables n and 
m in the equation for calculating the number of 
permutations.

Although all the problems were formally isomor-
phic, Bassok et al. (1995) demonstrated that people 
will typically interpret an “assign” relation between 
an object and a person as one in which the per-
son gets the object. Importantly, the “get” schema 
favors interpreting the person as the recipient of the 
object no matter which entity occupies which role 
in the stated “assign” relation. Th ese distinct inter-
pretations of the stated “assign” statement yielded 
systematic consequences for analogical mapping. 
Given an OP source analog, Bassok et al. found that 
people tended to link the “assigned” object to the 
“received” role (rather than the “recipient” role) of 
the “get” schema, which in turn was then mapped 
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to the mathematical variable n, the number of 
“assigned” objects. As a result, when the target ana-
log also had an OP structure, transfer was accurate 
(89%); but when the target was in the reversed PO 
structure, the object set continued to be linked to 
the “received” role of “get,” and hence erroneously 
mapped to n (0% correct!). Bassok et al.’s fi ndings 
highlight the constructive and interactive nature 
of relational processing (see also Hofstadter & 
Mitchell, 1994).

Conclusions
Analogy is an important special case of role-based 

relational reasoning, a psychological process that 
generates inferences based on patterns of relational 
roles. At its core, analogy depends on comparison 
of situations. But humans do much more than just 
compare two analogs based on obvious similarities 
between their elements. Rather, analogical reason-
ing is a complex process of retrieving structured 
knowledge from long-term memory, representing 
and manipulating role-fi ller bindings in working 
memory, generating new inferences, and fi nding 
structured intersections between analogs to form 
new abstract schemas. For empirical analogies, 
analogical inference is guided by causal knowledge 
about how the source analog operates. Simpler 
types of relation-based transfer can be produced by 
relational priming.

Symbolic-connectionist models have the greatest 
promise in relating relational reasoning to its neu-
ral substrate. Human analogical reasoning is heavily 
dependent on working memory and other executive 
functions supported by the prefrontal cortex, with 
the frontopolar subregion being selectively activated 
when multiple relations must be integrated to solve 
a problem.

Future Directions
Computational Level

Th eoretical work to date has specifi ed qualitative 
constraints on analogical mapping and inference, 
often implemented in computer simulations. Recent 
eff orts to integrate analogical inference with Bayesian 
causal models (Holyoak et al., 2010) suggest that 
human analogical inference may be approximately 
normative when the analogs can be represented as 
simple causal networks based on binary variables. 
However, a full computational-level analysis of rela-
tional reasoning using the modern Bayesian frame-
work for induction (see Griffi  ths et al., Chapter 3) 
has not yet been off ered. Given representations of 

source and target analogs (including relevant prior 
knowledge), normative probability distributions for 
possible analogical mappings and inferences might 
in principle be derived. However, in practice this 
remains a challenging (perhaps even intractable) 
project, given that the types of relations involved 
in analogies are indefi nitely diverse and include 
many diff erent types of causal functions. One key 
requirement for applying the Bayesian framework 
to analogy will be greater theoretical integration of 
role-based relational representations with probabi-
listic inference.

Level of Representation and Algorithm
For over 30 years, a great deal of eff ort has been 

directed at the development of algorithmic mod-
els of analogical reasoning, formalized as computer 
simulations. In recent years, some of these models 
(based on the symbolic-connectionist framework) 
have begun to make contact with work on the 
neural substrate of relational reasoning. However, 
no model as yet comes close to providing a com-
prehensive account of how humans reason with 
relations.

One basic limitation is that human relational rea-
soning is far more fl exible than any current simu-
lation model (Bartha, 2010; Bassok et al., 1995; 
Hofstadter & Mitchell, 1994). Th e stage analy-
sis typically used (for example, in this chapter) to 
organize analogical processing—retrieval, map-
ping, inference, schema induction (see Fig. 13.1)—
is oversimplifi ed. In everyday use of analogies, the 
entire process may be cyclic, interactive, and open 
ended. Th e eff ective representation of the source 
analog may be developed in the very process of rea-
soning with it. Multiple source analogs and schemas 
may be involved, some of them imagined rather than 
actual (as in the case of analogical “thought experi-
ments;” see Bartha, 2010; Holyoak & Th agard, 
1995). Typically there is no fi rm boundary around 
the information that counts as an individual analog. 
Causal knowledge, which is deeply embedded in the 
representation of individual cases, is almost inevi-
tably linked to more general categories. Analogs, 
schemas, categories, and rules all interact with 
one another in the course of inductive inference 
(Holland et al., 1986). In addition, much more 
needs to be learned about how “full-blown” System 
2 relational processing relates to simpler System 1 
processing (e.g., relational priming).

A related limitation of current computa-
tional models of analogy is that their knowledge 
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representations typically must be hand-coded by 
the modeler, whereas human knowledge representa-
tions are formed autonomously. In eff ect, model-
ers have allowed themselves an indefi nite number 
of free parameters to facilitate data-fi tting. Th ere 
have been recent eff orts to extend analogy models 
to account for how humans learn basic perceptual 
relations from nonrelational inputs (Doumas et al., 
2008). Th is is a welcome development, but even 
here, the nonrelational inputs have themselves been 
hand-coded by the modelers.

Closely related to the challenge of avoiding 
hand-coding of representations is the need to fl ex-
ibly re-represent knowledge so as to render poten-
tial analogies perspicuous. Concepts often have a 
close conceptual relationship with more complex 
relational forms (Jackendoff , 1983). For example, 
causative verbs such as lift (e.g., “John lifted the 
hammer”) have very similar meanings to structures 
based on an explicit higher order relation, cause (e.g., 
“John caused the hammer to rise”). In such cases the 
causative verb serves as a “chunked” representation 
of a more elaborate predicate-argument structure. 
People are able to “see” analogies even when the 
analogs have very diff erent linguistic forms (e.g., 
“John lifted the hammer in order to strike the nail” 
might be mapped onto “Th e Federal Reserve used 
an increase in interest rates as a tool in its eff orts to 
drive down infl ation”). A deeper understanding of 
human knowledge representation is a prerequisite 
for a complete theory of analogical reasoning.

Yet another limitation is that most research 
and modeling in the fi eld of analogy has empha-
sized quasi-linguistic knowledge representations, 
but there is good reason to believe that reasoning 
in general has close connections to perception and 
action (see Hegarty & Stull, Chapter 31; Goldin-
Meadow & Cook, Chapter 32). Th e ease of solving 
apparently isomorphic problems (e.g., isomorphs 
of the well-known Tower of Hanoi) can vary enor-
mously depending on perceptual cues (Kotovsky & 
Simon, 1990). Models of analogy have not off ered 
an adequate account of why the diffi  culty of solv-
ing problems and transferring solution methods to 
isomorphic problems is dependent on the diffi  culty 
of perceptually encoding key relations.

In addition, models of analogy have not been 
well integrated with models of problem solving (see 
Bassok & Novick, Chapter 21), despite the fact that 
analogy clearly aff ords an important mechanism for 
solving problems. In its general form, problem solving 
requires sequencing multiple operators, establishing 

subgoals, and using combinations of rules to solve 
related but nonisomorphic problems. Th ese basic 
requirements are beyond the capabilities of current 
computational models of analogy. Th e integration 
of analogy models with models of general problem 
solving remains an important research goal.

Neural Implementation
Th e recent advances in understanding the neu-

ral substrate of relational reasoning (in particular, 
the roles played by specifi c areas of prefrontal cor-
tex operating within broader neural circuits) have 
set the stage for further work on how analogies are 
computed by the brain (see Morrison & Knowlton, 
Chapter 6). For example, tasks involving analogical 
processing, like those designed to elicit insight (see 
van Steenburgh et al., Chapter 24), should prove 
useful in investigating connections between the neu-
ral bases of cognition and emotion. Careful studies 
will be required to determine how the neural sys-
tems involved in analogical reasoning relate to those 
involved in other forms of role-based relational rea-
soning, such as deductive and linguistic inferences 
(e.g., Monti, Parsons, & Osherson, 2009).

Given that a signifi cant evolutionary gap may 
separate human role-based relational reasoning 
from the capabilities of other extant primate species 
(Penn et al., 2008), animal models may not provide 
fully adequate models of human reasoning. Testing 
the mechanisms postulated by symbolic-connec-
tionist models (Hummel & Holyoak, 1997), such as 
dynamic binding controlled by synchronous neural 
activity in the gamma band, and rapid cortical learn-
ing of mapping connections, will require noninva-
sive neuroimaging techniques that provide extremely 
fi ne temporal resolution coupled with good spatial 
resolution (but see Lu et al., 2006, for an example of 
how a behavioral priming technique may be useful 
for assessing the role of synchrony in perceptual rep-
resentation). Th e emerging fi eld of cognitive neu-
rogenetics (see Green & Dunbar, Chapter 7) will 
doubtless provide deeper insights into the neural 
basis of human analogical reasoning.

Translational Research
In parallel with continued basic research on 

role-based relational reasoning, we can antici-
pate advances in many application areas, such as 
the use of analogies in teaching and learning (e.g., 
Richland, Stigler, & Holyoak, 2012), as aids to 
creative design, and in applications to computer-
based search algorithms. Th e limits of analogical 
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applications are roughly coextensive with those of 
human imagination.
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