

Chapter 13

Gases

Section 13.1

Pressure

Why study gases?

- An understanding of real world phenomena.
- An understanding of how science "works."

Section 13.1

Pressure

A Gas

- Uniformly fills any container.
- Mixes completely with any other gas.
- Exerts pressure on its surroundings.

Section 13.1

Pressure

Pressure

$$
\text { Pressure }=\frac{\text { force }}{\text { area }}
$$

- Sl units $=$ Newton $/$ meter $^{2}=1$ Pascal (Pa)
- 1 standard atmosphere $=101,325 \mathrm{~Pa}$
- 1 standard atmosphere $=1$ atm = $760 \mathrm{~mm} \mathrm{Hg}=760$ torr

Section 13.1

Pressure

Barometer

- Device used to measure atmospheric pressure.
- Mercury flows out of the tube until the pressure of the column of mercury standing on the surface of the mercury in the dish is equal to the pressure of the air on the rest of the surface of the mercury in the dish.

Pressure

Manometer

- Device used for measuring the pressure of a gas in a container.

Gas pressure $=$ atmospheric pressure $-h$.

Section 13.1

Pressure

Collapsing Can

-a

The pressure exerted by the gases in the atmosphere can be demonstrated by boiling water in a can and then turning off the heat and sealing the can.

b
As the can cools, the water vapor condenses, lowering the gas pressure inside the can. This causes the can to crumple.

Section 13.1

Pressure

Pressure Conversions: An Example

The pressure of a gas is measured as 2.5 atm. Represent this pressure in both torr and pascals.

Where are we going?

- We want to convert from units of atm to units of torr and units of pascals.
What do we know?
- 2.5 atm

What information do we need?

- Equivalence statements for the units.

Section 13.1

Pressure

Pressure Conversions: An Example
The pressure of a gas is measured as 2.5 atm. Represent this pressure in both torr and pascals.

How do we get there?

$$
\begin{aligned}
& (2.5 \text { atm }) \times\left(\frac{760 \text { torr }}{1 \text { atm }}\right)=1.9 \times 10^{3} \text { torr } \\
& (2.5 \text { atm }) \times\left(\frac{101,325 \mathrm{~Pa}}{1 \text { atm }}\right)=2.5 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Section 13.1

Pressure

Exercise

The vapor pressure over a beaker of hot water is measured as 656 torr. What is this pressure in atmospheres?
a) 1.16 atm
b) 0.863 atm
c) 0.756 atm
d) 0.500 atm

$$
656 \text { torr } \times \frac{1 \mathrm{~atm}}{760 \mathrm{~atm}}=0.863 \mathrm{~atm}
$$

Section 13.2
Pressure and Volume: Boyle's Law
Robert Boyle's Experiment

Mercury added

Section 13.2

Pressure and Volume: Boyle's Law

A Sample of Boyle' s Observations

Table $13.1 \&$ A Sample of Boyle's Observations (moles of gas and temperature both constant)

		Pressure \times Volume $($ in. Hg$) \times\left(\mathrm{in}.{ }^{3}\right)$		
Experiment	Pressure (in. Hg)	Volume (in. ${ }^{3}$)	Actual	Rounded *

[^0]Section 13.2

Pressure and Volume: Boyle's Law

Graphing Boyle’s Results

Section 13.2

Pressure and Volume: Boyle's Law

Boyle' s Law

- Pressure and volume are inversely related (constant T, temperature, and n, \# of moles of gas).
- $\quad P V=k$ (k is a constant for a given sample of air at a specific temperature)

Pressure and Volume: Boyle's Law

Exercise

A sample of helium gas occupies 12.4 L at $23^{\circ} \mathrm{C}$ and 0.956 atm . What volume will it occupy at 1.20 atm assuming that the temperature stays constant?

$$
\begin{aligned}
& 9.88 \mathrm{~L} \\
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
&(0.956 \mathrm{~atm})(12.4 \mathrm{~L})=(1.20 \mathrm{~atm})\left(\mathrm{V}_{2}\right) \\
& \mathrm{V}_{2}=9.88 \mathrm{~L}
\end{aligned}
$$

Section 13.3
Volume and Temperature: Charles's Law

Graphing Data for Several Gases

Volume and Temperature: Charles's Law

Graphing Data for Several Gases

- It is easier to write an equation for the relationship if the lines intersect the origin of the graph.
- Use absolute zero for the temperature.

Section 13.3

Volume and Temperature: Charles's Law

Charles' s Law

- Volume and Temperature (in Kelvin) are directly related (constant P and n).
- $V=b T$ (b is a proportionality constant)
- $K={ }^{\circ} \mathrm{C}+273$
- 0 K is called absolute zero.

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

Volume and Temperature: Charles's Law

Exercise

Suppose a balloon containing 1.30 L of air at $24.7^{\circ} \mathrm{C}$ is placed into a beaker containing liquid nitrogen at $-78.5^{\circ} \mathrm{C}$. What will the volume of the sample of air become (at constant pressure)?

$$
\begin{aligned}
& 0.849 \mathrm{~L} \\
& \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
& \frac{(1.30 \mathrm{~L})}{(24.7+273 \mathrm{~K})}=\frac{\left(\mathrm{V}_{2}\right)}{(-78.5+273 \mathrm{~K})} \\
& \mathrm{V}_{2}=0.849 \mathrm{~L}
\end{aligned}
$$

Section 13.4
Volume and Moles: Avogadro's Law
The Relationship Between Volume and Moles

Section 13.4
Volume and Moles: Avogadro's Law
Avogadro's Law

- Volume and number of moles are directly related (constant T and P).
- $\quad V=a n$ (a is a proportionality constant)

$$
\frac{\mathrm{n}_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{n}_{2}}{\mathrm{~V}_{2}}
$$

Volume and Moles: Avogadro's Law

Exercise

If 2.45 mol of argon gas occupies a volume of 89.0 L , what volume will 2.10 mol of argon occupy under the same conditions of temperature and pressure?

$$
\begin{aligned}
& 76.3 \mathrm{~L} \\
& \frac{\mathrm{~V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}} \\
& \frac{89.0 \mathrm{~L}}{2.45 \mathrm{~mol}}=\frac{\mathrm{V}_{2}}{2.10 \mathrm{~mol}} \\
& \mathrm{~V}_{2}=76.3 \mathrm{~L}
\end{aligned}
$$

Section 13.5

The Ideal Gas Law

- We can bring all of these laws together into one comprehensive law:
- $V=b T$ (constant P and n)
- $V=$ an (constant T and P)
$-V=\frac{k}{P}$ (constant T and $\left.n\right)$
$P V=n R T$
(where $\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$, the universal gas constant)

Section 13.5

The Ideal Gas Law

Exercise

An automobile tire at $23^{\circ} \mathrm{C}$ with an internal volume of 25.0 L is filled with air to a total pressure of 3.18 atm. Determine the number of moles of air in the tire.

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{3.27 \mathrm{~mol}}{(3.18 \mathrm{~atm})(25.0 \mathrm{~L})}=3.27 \mathrm{~mol}
$$

Section 13.5

The Ideal Gas Law

Exercise

What is the pressure in a 304.0 L tank that contains 5.670 kg of helium at $25^{\circ} \mathrm{C}$?

$$
P=\frac{114 \mathrm{~atm}}{\mathrm{nRT}}=\frac{\left(5.670 \mathrm{~kg} \mathrm{He} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{He}}{4.003 \mathrm{~g} \mathrm{He}}\right)\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}\right)(25+273 \mathrm{~K})}{(304.0 \mathrm{~L})}=114 \mathrm{~atm}
$$

Section 13.5

The Ideal Gas Law

Exercise

At what temperature (in ${ }^{\circ} \mathrm{C}$) does 121 mL of CO_{2} at $27^{\circ} \mathrm{C}$ and 1.05 atm occupy a volume of 293 mL at a pressure of 1.40 atm ?

$$
\begin{gathered}
696^{\circ} \mathrm{C} \\
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}=\frac{(1.05 \mathrm{~atm})(121 \mathrm{~mL})}{(27+273 \mathrm{~K})}=\frac{(1.40 \mathrm{~atm})(293 \mathrm{~mL})}{\mathrm{T}_{2}} \\
\mathrm{~T}_{2}=969 \mathrm{~K}-273=696^{\circ} \mathrm{C}
\end{gathered}
$$

Section 13.6

Dalton's Law of Partial Pressures

- For a mixture of gases in a container,

$$
P_{\text {Total }}=P_{1}+P_{2}+P_{3}+\ldots
$$

- The total pressure exerted is the sum of the pressures that each gas would exert if it were alone.

Section 13.6

Dalton's Law of Partial Pressures

- The pressure of the gas is affected by the number of moles of particles present.
- The pressure is independent of the nature of the particles.

© Cengage Learning. All Rights Reserved.

Section 13.6

Dalton's Law of Partial Pressures

Two Crucial Things We Learn From This Are:

- The volume of the individual particles is not very important.
- The forces among the particles must not be very important.

Section 13.6

Dalton's Law of Partial Pressures

Collecting a Gas Over Water

- Total pressure is the pressure of the gas + the vapor pressure of the water.

Section 13.6

Dalton's Law of Partial Pressures

Collecting a Gas Over Water

- How can we find the pressure of the gas collected alone?

Table 13.2 $\&$ The Vapor Pressure of Water as a Function of Temperature

$\boldsymbol{T}\left({ }^{\circ} \mathrm{C}\right)$	$P($ torr $)$
0.0	4.579
10.0	9.209
20.0	17.535
25.0	23.756
30.0	31.824
40.0	55.324
60.0	149.4
70.0	233.7
90.0	525.8

Section 13.6

Dalton's Law of Partial Pressures

Exercise

Consider the following apparatus containing helium in both sides at 45° C. Initially the valve is closed.

- After the valve is opened, what is the pressure of the helium gas?
$P=2.25 \mathrm{~atm}$

Dalton's Law of Partial Pressures

Exercise

27.4 L of oxygen gas at $25.0^{\circ} \mathrm{C}$ and 1.30 atm, and 8.50 L of helium gas at $25.0^{\circ} \mathrm{C}$ and 2.00 atm were pumped into a tank with a volume of 5.81 L at $25^{\circ} \mathrm{C}$.

- Calculate the new partial pressure of oxygen.
6.13 atm
- Calculate the new partial pressure of helium.
2.93 atm
- Calculate the new total pressure of both gases.
9.06 atm

Section 13.7

Laws and Models: A Review

Scientific Method

- A law is a generalization of observed behavior.
- Laws are useful - We can predict behavior of similar systems.

Section 13.7

Laws and Models: A Review

- A model can never be proved absolutely true.
- A model is an approximation and is destined to be modified.

Section 13.8

The Kinetic Molecular Theory of Gases

- So far we have considered "what happens," but not "why."
- In science, "what" always comes before "why."

Section 13.8

The Kinetic Molecular Theory of Gases

Postulates of the Kinetic Molecular Theory

1. Gases consist of tiny particles (atoms or molecules).

Section 13.8
The Kinetic Molecular Theory of Gases
Postulates of the Kinetic Molecular Theory
2. The particles are so small, compared with the distances between them that the volume (size) of the individual particles can be assumed to be negligible (zero).

Section 13.8
The Kinetic Molecular Theory of Gases
Postulates of the Kinetic Molecular Theory
3. The particles are in constant random motion, colliding with the walls of the container. These collisions with the walls cause the pressure exerted by the gas.

Section 13.8

The Kinetic Molecular Theory of Gases

Postulates of the Kinetic Molecular Theory
4. The particles are assumed not to attract or to repel each other.

Section 13.8

The Kinetic Molecular Theory of Gases

Postulates of the Kinetic Molecular Theory
5. The average kinetic energy of the gas particles is directly proportional to the Kelvin temperature of the gas.

The Implications of the Kinetic Molecular Theory

- Meaning of temperature
- Kelvin temperature is directly proportional to the average kinetic energy of the gas particles.
- Relationship between Pressure and Temperature
- Gas pressure increases as the temperature increases because the particles speed up.
- Relationship between Volume and Temperature
- Volume of a gas increases with temperature because the particles speed up.

The Implications of the Kinetic Molecular Theory

Concept Check

You are holding two balloons of the same volume. One contains helium, and one contains hydrogen. Complete each of the following statements with "different" or "the same" and be prepared to justify your answer.

The Implications of the Kinetic Molecular Theory

Concept Check

- Complete the following statement with "different" or "the same" and be prepared to justify your answer.
- The pressures of the gas in the two balloons are the same

The Implications of the Kinetic Molecular Theory

Concept Check

- Complete the following statement with "different" or "the same" and be prepared to justify your answer.
- The temperatures of the gas in the two balloons are the same .

The Implications of the Kinetic Molecular Theory

Concept Check

- Complete the following statement with "different" or "the same" and be prepared to justify your answer.
- The numbers of moles of the gas in the two balloons are the same.

The Implications of the Kinetic Molecular Theory

Concept Check

- Complete the following statement with "different" or "the same" and be prepared to justify your answer.
- The densities of the gas in the two balloons are different .

The Implications of the Kinetic Molecular Theory

Concept Check

Sketch a graph of:
I. Pressure versus volume at constant temperature and moles.

The Implications of the Kinetic Molecular Theory

Concept Check

Sketch a graph of:
II. Volume vs. temperature (K) at constant pressure and moles.

The Implications of the Kinetic Molecular Theory

Concept Check

Sketch a graph of:
III. Volume vs. moles at constant temperature and pressure.

The Implications of the Kinetic Molecular Theory
Concept Check

$$
V_{\mathrm{Ne}}=2 \mathrm{~V}_{\mathrm{Ar}}
$$

Which of the following best represents the mass ratio of $\mathrm{Ne}: \mathrm{Ar}$ in the balloons?
a) $1: 1$
b) $1: 2$
c) $2: 1$
d) $1: 3$
e) $3: 1$

The Implications of the Kinetic Molecular Theory

Concept Check

- You have a sample of nitrogen gas $\left(\mathrm{N}_{2}\right)$ in a container fitted with a piston that maintains a pressure of 6.00 atm . Initially, the gas is at $45^{\circ} \mathrm{C}$ in a volume of 6.00 L .
- You then cool the gas sample.

The Implications of the Kinetic Molecular Theory

Concept Check

Which best explains the final result that occurs once the gas sample has cooled?
a) The pressure of the gas increases.
b) The volume of the gas increases.
c) The pressure of the gas decreases.
d) The volume of the gas decreases.
e) Both volume and pressure change.

The Implications of the Kinetic Molecular Theory

Concept Check

The gas sample is then cooled to a temperature of $15^{\circ} \mathrm{C}$. Solve for the new condition. (Hint: A moveable piston keeps the pressure constant overall, so what condition will change?)

$$
\begin{aligned}
& 5.43 \mathrm{~L} \\
& \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
& \frac{6.00 \mathrm{~L}}{(45+273)}=\frac{\mathrm{V}_{2}}{(15+273)} \\
& \mathrm{V}_{2}=5.43 \mathrm{~L}
\end{aligned}
$$

Gas Stoichiometry

Molar Volume of an Ideal Gas

- For 1 mole of an ideal gas at $0^{\circ} \mathrm{C}$ and 1 atm, the volume of the gas is 22.42 L .
$V=\frac{n R T}{P}=\frac{(1.000 \mathrm{mot})(0.08206 \mathrm{~L} \cdot \text { 2tmK} \cdot \operatorname{mot})(273.2 \mathrm{~K})}{1.000 \mathrm{ath}}=22.42 \mathrm{~L}$
- STP = standard temperature and pressure
- $0^{\circ} \mathrm{C}$ and 1 atm
- Therefore, the molar volume is 22.42 L at STP.

Section 13.10

Gas Stoichiometry

Exercise

A sample of oxygen gas has a volume of 2.50 L at STP. How many grams of O_{2} are present?

$$
\begin{gathered}
3.57 \mathrm{~g} \\
2.50 \mathrm{~L} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{22.4 \mathrm{LO}_{2}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}_{2}}=3.57 \mathrm{~g} \mathrm{O}_{2}
\end{gathered}
$$

Gas Stoichiometry

Exercise

Consider the following reaction:

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

If 15.00 g of solid zinc reacts with 100.0 mL of 4.00 M hydrochloric acid, what volume of hydrogen gas is produced at $25^{\circ} \mathrm{C}$ and 1.00 atm ?
a) 0.200 L
b) 4.89 L
c) 5.61 L
d) 9.78 L

[^0]: *Three significant figures are allowed in the product because both of the numbers that are multiplied together have three significant figures.

