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CHAPTER 13 

NAVIGATIONAL ASTRONOMY

PRELIMINARY CONSIDERATIONS

1300. Definitions

The science of Astronomy studies the positions and 
motions of celestial bodies and seeks to understand and ex-

plain their physical properties. Navigational astronomy 
deals with their coordinates, time, and motions. The sym-
bols commonly recognized in navigational astronomy are 
given in Table 1300.

1301. The Celestial Sphere

Looking at the sky on a dark night, imagine that ce-
lestial bodies are located on the inner surface of a vast, 
Earth-centered sphere (see Figure 1301). This model is 

useful since we are only interested in the relative posi-
tions and motions of celestial bodies on this imaginary 
surface. Understanding the concept of the celestial 
sphere is most important when discussing sight reduc-
tion in Chapter 19.

Table 1300. Astronomical symbols.
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1302. Relative and Apparent Motion

Celestial bodies are in constant motion. There is no 
fixed position in space from which one can observe 
absolute motion. Since all motion is relative, the position of 
the observer must be noted when discussing planetary 
motion. From the Earth we see apparent motions of celestial 
bodies on the celestial sphere. In considering how planets 
follow their orbits around the Sun, we assume a 
hypothetical observer at some distant point in space. When 
discussing the rising or setting of a body on a local horizon, 
we must locate the observer at a particular point on the 
Earth because the setting Sun for one observer may be the 
rising Sun for another.

Apparent motion on the celestial sphere results 
from the motions in space of both the celestial body and 
the Earth. Without special instruments, motions toward 
and away from the Earth cannot be discerned.

1303. Astronomical Distances

We can consider the celestial sphere as having an in-
finite radius because distances between celestial bodies are 
so vast. For an example in scale, if the Earth were represent-
ed by a ball one inch in diameter, the Moon would be a ball 
one-fourth inch in diameter at a distance of 30 inches,  the 
Sun  would  be a ball nine feet in diameter  at a distance of 
nearly a fifth of a mile, and Pluto would be a ball half 
an inch in diameter at a distance of about seven miles. 
The nearest star would be one-fifth of the actual dis-
tance to the Moon.

Because of the size of celestial distances, it is in-
convenient to measure them in common units such as 
the mile or kilometer. The mean distance to our nearest 
neighbor, the Moon, is 238,855 miles. For convenience 
this distance is sometimes expressed in units of the 
equatorial radius of the Earth: 60.27 Earth radii.

Distances between the planets are usually expressed in 
terms of the astronomical unit (au), which closely corre-
sponds to the average distance between the Earth and the 

Figure 1301. The celestial sphere.
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Sun. This is approximately 92,960,000 miles. Thus the 
mean distance of the Earth from the Sun is 1 au. The mean 
distance of the dwarf planet Pluto is about 39.5 au. Ex-
pressed in astronomical units, the mean distance from the 
Earth to the Moon is 0.00257 au.

Distances to the stars require another leap in units. A 
commonly-used unit is the light-year, the distance light 
travels in one year. Since the speed of light is about 1.86 ´
105 miles per second and there are about 3.16 ´ 107 seconds 
per year, the length of one light-year is about 5.88 ´ 1012

miles. The nearest stars, Alpha Centauri and its neighbor 
Proxima, are 4.3 light-years away. Relatively few stars are 
less than 100 light-years away. The nearest galaxy of 
comparable size to our own Milky Way is the Andromeda 
Galaxy, at a distance of about 2.5 million light years. The 
most distant galaxies observed by astronomers are 13 
billion light years away, just at the edge of the visible 
universe.

1304. Magnitude

The relative brightness of celestial bodies is indicated 
by a scale of stellar magnitudes. Initially, astronomers 
divided the stars into 6 groups according to brightness. The 
20 brightest were classified as of the first magnitude, and 
the dimmest were of the sixth magnitude. In modern times, 
when it became desirable to define more precisely the limits 
of magnitude, a first magnitude star was considered 100 
times brighter than one of the sixth magnitude. Since the 
fifth root of 100 is 2.512, this number is considered the 
magnitude ratio. A first magnitude star is 2.512 times as 

bright as a second magnitude star, which is 2.512 times as 
bright as a third magnitude star,. A second magnitude is 
2.512 ´ 2.512 = 6.310 times as bright as a fourth magnitude 
star. A first magnitude star is 2.51220 times as bright as a 
star of the 21st magnitude, the dimmest that can be seen 
through a 200-inch telescope. It is important to note the 
higher the magnitude, the dimmer the object.

Stars vary in color; i.e., some are more red than others. 
Therefore, the brightness of a star is a function of what “de-
tector” is being used. For example, stars that are more red 
than others appear brighter using a detector that is most sen-
sitive in red wavelengths. Thus, it is common when 
defining magnitudes to include an idea of the detector. For 
navigation, most magnitudes are described as "visual", or 
how the object would look to the unaided eye, but some-
times you will see other magnitude bands. If no band is 
given assume that the magnitude is visual.

Brightness is normally tabulated to the nearest 0.1 
magnitude, about the smallest change that can be detected 
by the unaided eye of a trained observer. All stars of 
magnitude 1.50 or brighter are popularly called “first 
magnitude” stars. Those between 1.51 and 2.50 are called 
“second magnitude” stars, those between 2.51 and 3.50 are 
called “third magnitude” stars, etc. Sirius, the brightest star, 
has a magnitude of –1.6. The only other star with a negative 
magnitude is Canopus, –0.9. At greatest brilliance Venus 
has a magnitude of about –4.4. Mars, Jupiter, and Saturn are 
sometimes of negative magnitude. The full Moon has a 
magnitude of about –12.7, but varies somewhat. The 
magnitude of the Sun is about –26.7.

THE UNIVERSE

1305. The Solar System

The Sun, the most conspicuous celestial object in the 
sky, is the central body of the solar system. Associated with 
it are eight planets, five dwarf planets like Pluto, and thou-
sands of asteroids, comets, and meteors. All planets other 
than Mercury and Venus have moons. 

1306. Motions of Bodies of the Solar System

Astronomers distinguish between two principal mo-
tions of celestial bodies. Rotation is a spinning motion 
about an axis within the body, whereas revolution is the 
motion of a body in its orbit around another body. The body 
around which a celestial object revolves is known as that 
body’s primary. For the moons (satellites), the primary is 
a planet. For the planets, the primary is the Sun. The entire 
solar system is held together by the gravitational force of 
the Sun. The whole system revolves around the center of 
the Milky Way galaxy and the Milky Way is in motion rel-
ative to its neighboring galaxies.

The hierarchies of motions in the universe are caused 

by the force of gravity. As a result of gravity, bodies attract 
each other in proportion to their masses and to the inverse 
square of the distances between them. This force causes the 
planets to go around the sun in nearly circular, elliptical 
orbits.

The laws governing the motions of planets in their or-
bits were discovered by Johannes Kepler, and are now 
known as Kepler’s laws:

1. The orbits of the planets are ellipses, with the sun 
at the common focus.

2. The straight line joining the sun and a planet (the 
radius vector) sweeps over equal areas in equal 
intervals of time.

3. The squares of the sidereal periods of any two 
planets are proportional to the cubes of their mean 
distances from the sun.

In 1687 Isaac Newton stated three “laws of motion,” 
which he believed were applicable to the planets. Newton’s 
laws of motion are:
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1. Every body continues in a state of rest or of uni-
form motion in a straight line unless acted upon by 
an external force.

2. When a body is acted upon by an external force, its 
acceleration is directly proportional to that force, 
and inversely proportional to the mass of the body, 
and acceleration take place in the direction in 
which the force acts.

3. To every action there is an equal and opposite 
reaction.

Newton also stated a single universal law of gravita-
tion, which he believed applied to all bodies, although it 
was based upon observations with the solar system only:

Every particle of matter attracts every other particle 
with a force that varies directly as the product of their mass-
es and inversely as the square of the distance between them.

From these fundamental laws of motion and gravita-
tion, Newton derived Kepler’s empirical laws. He proved 
rigorously that the gravitational interaction between any 
two bodies results in an orbital motion of each body about 
the barycenter of the two masses that form a conic section, 
that is a circle, ellipse, parabola, or hyperbola.

Circular and parabolic orbits are unlikely to occur in 
nature because of the precise speeds required. Hyperbolic 
orbits are open, that is one body, due to is speed, recedes 
into space. Therefore, a planet’s orbit must be elliptical as 
found by Kepler.

Both the sun and each body revolve about their com-
mon center of mass. Because of the preponderance of the 
mass of the sun over that of the individual planets, the com-
mon center of the sun and each planet except Jupiter lies 
with the sun. The common center of the combined mass of 
the solar system moves in and out of the sun. 

The various laws governing the orbits of planets apply 
equally well to the orbit of any body with respect to its 
primary.

In each planet’s orbit, the point nearest the Sun is 
called the perihelion. The point farthest from the Sun is 
called the aphelion. The line joining perihelion and aph-
elion is called the line of apsides. In the orbit of the Moon, 
the point nearest the Earth is called the perigee, and that 
point farthest from the Earth is called the apogee. Figure 
1306 shows the orbit of the Earth (with exaggerated eccen-
tricity), and the orbit of the Moon around the Earth.

1307. The Sun

The Sun dominates our solar system. Its mass is nearly a 
thousand times that of all other bodies of the solar system com-
bined. Its diameter is about 865,000 miles. Since it is a star, it 
generates its own energy through a thermonuclear reaction, 
thereby providing heat and light for the entire solar system. 

The distance from the Earth to the Sun varies from 
91,300,000 at perihelion to 94,500,000 miles at aphelion. 
When the Earth is at perihelion, which always occurs early 
in January, the Sun appears largest, 32.6' of arc in diameter. 
Six months later at aphelion, the Sun’s apparent diameter is 
a minimum of 31.5'. Reductions of celestial navigation 

sights taken of the Sun's limb take this change of apparent 
size into account.

Observations of the Sun’s surface (called the photo-
sphere) reveal small dark areas called sunspots. These are 
areas of intense magnetic fields in which relatively cool gas 
(at 7000°F.) appears dark in contrast to the surrounding hot-
ter gas (10,000°F.). Sunspots vary in size from perhaps 
50,000 miles in diameter to the smallest spots that can be 
detected (a few hundred miles in diameter). They generally 
appear in groups. See Figure 1307. 

Surrounding the photosphere is an outer corona of very 
hot but tenuous gas. This can only be seen during an eclipse of 
the Sun, when the Moon blocks the light of the photosphere.

Figure 1306. Orbits of the Earth and Moon.
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The Sun is continuously emitting charged particles, 
which form the solar wind. As the solar wind sweeps past 
the Earth, these particles interact with the Earth’s magnetic 
field. If the solar wind is particularly strong, the interaction 
can produce magnetic storms which adversely affect radio 
signals on the Earth and can interfere with satellite commu-
nications. At such times the auroras are particularly 
brilliant and widespread.

The Sun is moving approximately in the direction of 
Vega at about 12 miles per second, or about two- thirds as 
fast as the Earth moves in its orbit around the Sun.

1308. The Planets

The principal bodies orbiting the Sun are called plan-
ets. Eight planets are known; in order of their distance from 
the Sun, they are: Mercury, Venus, Earth, Mars, Jupiter, 
Saturn, Uranus, and Neptune. Pluto, formerly considered a 
planet, is now classified as a dwarf planet. All of the planets 
revolve around the Sun in the same direction in nearly cir-
cular orbits. All of the planets are spherical or nearly so, all 
have regular rotation rates, and all shine by reflected sun-
light. All except Mercury have substantial atmospheres. 
Only four of the planets are commonly used for celestial 
navigation: Venus, Mars, Jupiter, and Saturn.

The orbits of the planets lie in nearly the same plane as 
the Earth’s orbit. Therefore, as seen from the Earth, the 
planets are confined to a strip of the celestial sphere near the
ecliptic, which is the intersection of the mean plane of the 
Earth’s orbit around the Sun with the celestial sphere. Ex-

cept for Uranus and Neptune, the planets are bright enough 
to be easily seen by the unaided eye, although the bright-
ness of each at any given time depends on its distance from 
the Earth and the fraction of the sunlit part observed.

Mercury and Venus, the two planets with orbits closer to 
the Sun than that of the Earth, are called inferior planets, and 
the others, with orbits farther from the Sun are called superior 
planets. The four planets nearest the Sun (Mercury through 
Mars) are called the inner planets, and the others (Jupiter 
through Neptune) are referred to as the outer planets. The outer 
planets are sometimes also called gas giants because they are 
so much larger than the others and have deep, dense 
atmospheres. 

Planets can sometimes be identified in the sky by their 
appearance, because-unlike the stars-they do not twinkle. 
The stars are so distant that they are point sources of light. 
Therefore the stream of light from a star is easily disrupted 
by turbulence in the Earth's atmosphere, causing scintilla-
tion (the twinkling effect). The naked-eye planets, 
however, are close enough to present perceptible disks. The 
broader stream of light from a planet is not so easily 
disrupted. 

The orbits of many thousands of minor planets, also 
called asteroids, lie chiefly between the orbits of Mars and 
Jupiter. These are all too faint to be seen without a 
telescope.

1309. The Earth

In common with other planets, the Earth rotates on its 
axis and revolves in its orbit around the Sun. These motions 
are the principal source of the daily apparent motions of 
other celestial bodies. The Earth’s rotation also causes a 
deflection of water and air currents to the right in the 
Northern Hemisphere and to the left in the Southern 
Hemisphere. Because of the Earth’s rotation, high tides on 
the open sea lag behind the meridian transit of the Moon.

For most navigational purposes, the Earth can be 
considered a sphere. However, like the other planets, the 
Earth is approximately an oblate spheroid, or ellipsoid of 
revolution, flattened at the poles and bulged at the equator. 
See Figure 1309. Therefore, the polar diameter is less than 
the equatorial diameter, and the meridians are slightly 
elliptical, rather than circular. The dimensions of the Earth 
are recomputed from time to time, as additional and more 
precise measurements become available. Since the Earth is 
not exactly an ellipsoid, results differ slightly when equally 
precise and extensive measurements are made on different 
parts of the surface.

1310. Inferior Planets (Mercury and Venus)

The orbits of Mercury and Venus are closer to the Sun than 
the Earth's orbit, thus they always appear in the neighborhood of 
the Sun. Over a period of weeks or months, they appear to 
oscillate back and forth from one side of the Sun to the other. 

Figure 1307. The huge sunspot group observed on March 
30, 2001 spanned an area 13 times the entire surface of the 

Earth. Courtesy of SOHO, a project of international 
cooperation between ESA and NASA.
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They are seen either in the eastern sky before sunrise or in the 
western sky after sunset. For brief periods they disappear into the 
Sun’s glare. At this time they are between the Earth and Sun 
(known as inferior conjunction) or on the opposite side of the 
Sun from the Earth (superior conjunction). On rare occasions at 
inferior conjunction, the planet will cross the face of the Sun as 
seen from the Earth. This is known as a transit of the Sun.

When Mercury or Venus appears most distant from the Sun 
in the evening sky, it is at greatest eastern elongation. (Although 
the planet is in the western sky, it is at its easternmost point from 
the Sun.) From night to night the planet will appear to approach 
the Sun until it disappears into the glare of twilight. At this time 
it is moving between the Earth and Sun to inferior conjunction. 
A few days later, the planet will appear in the morning sky at 
dawn. It will gradually appear to move away from the Sun to its 
greatest western elongation, then move back toward the Sun. 
After disappearing in the morning twilight, it will move behind 
the Sun to superior conjunction. After this it will reappear in the 
evening sky, heading toward eastern elongation, beginning the 
cycle again. See Figure 1310.

Mercury is never seen more than about 28° from the 
Sun. For this reason it is not commonly used for navigation. 
Near greatest elongation it appears near the western horizon 
after sunset or the eastern horizon before sunrise. At these 

times it resembles a first magnitude star and is sometimes 
reported as a new or strange object in the sky. The interval 
during which it appears as a morning or evening star can 
vary from about 30 to 50 days. Around inferior conjunction, 

Figure 1309. Oblate spheroid or ellipsoid of revolution.

Figure 1310. Planetary configurations.
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Mercury is difficult to observe for about 5 days; near supe-
rior conjunction, it is as long as 35 days. Observed with a 
telescope, Mercury is seen to go through phases similar to 
those of the Moon.

Venus can reach a distance of 47° from the Sun, 
allowing it to dominate the morning or evening sky. At 
maximum brilliance, about five weeks before and after 
inferior conjunction, it has a magnitude of about –4.4 and is 
brighter than  any other object in the sky except  the Sun 
 and  Moon. At these times it can be seen during the day and 
is sometimes observed for a celestial line of position. It 
appears as a morning or evening “star” for approximately 
263 days in succession. Near inferior conjunction Venus 
disappears for 8 days; around superior conjunction it 
disappears for 50 days. Through strong binoculars or a 
telescope, Venus can be seen to go through a full set of 
phases. This actually has the effect of offsetting Venus' 
center of light from its center of mass. Reductions of celestial 
navigation sights taken of Venus take this offset into account.

1311. Superior Planets (Mars, Jupiter, Saturn, Uranus, 
and Neptune)

All other planets besides Mercury and Venus have 
orbits further from the Sun than Earth's orbit; these are 
called superior planets. While Mercury and Venus never 
appear too far from the Sun, the superior planets are not 
confined to the proximity of the Sun as seen from the Earth. 
They can pass behind the Sun (conjunction), but they 
cannot pass between the Sun and the Earth. We see them 
move away from the Sun until they are opposite the Sun in 
the sky (opposition). When a superior planet is near 
conjunction, it rises and sets approximately with the Sun 
and is thus lost in the Sun’s glare. Gradually it becomes 
visible in the early morning sky before sunrise. From day to 
day, it rises and sets earlier, becoming increasingly visible 
through the late night hours until dawn. At opposition, it 
will rise about when the Sun sets, be visible throughout the 
night, and set about when the Sun rises.

Observed against the background stars, the planets 
normally move eastward in what is called direct motion. 
Approaching opposition, however, a planet will slow down, 
pause (at a stationary point), and begin moving westward 
(retrograde motion), until it reaches the next stationary 
point and resumes its direct motion. This is not because the 
planet is moving strangely in space. This relative, observed 
motion results because the faster moving Earth is “catching 
up” with and “passing” by the slower moving superior 
planet.

The superior planets are brightest and closest to the 
Earth at opposition, when they are visible throughout the 
night. The interval between oppositions is known as the
synodic period. This period is longest for the closest 
planet, Mars, and becomes increasingly shorter for the outer 
planets.

Unlike Mercury and Venus, the superior planets do not 
go through a full cycle of phases. They are always full or 
highly gibbous. With the exception of Mars, the offset 
between a superior planet's center of light from its center of 
mass (due to phase) does not need to be accounted for in 
traditional celestial navigation. Reductions of celestial 
navigation sights of Mars often take this offset into account.

Mars can usually be identified by its orange color. It 
can become as bright as magnitude –2.8 but is more often 
between –1.0 and –2.0 at opposition. Oppositions occur at 
intervals of about 780 days. The planet is visible for about 
330 days on either side of opposition. Near conjunction it is 
lost from view for about 120 days. Its two satellites can only 
be seen in a large telescope.

Jupiter, largest of the known planets, normally 
outshines Mars, regularly reaching magnitude –2.0 or 
brighter at opposition. Oppositions occur at intervals of 
about 400 days, with the planet being visible for about 180 
days before and after opposition. The planet disappears for 
about 32 days at conjunction. Four satellites (of a total 67 
currently known) are bright enough to be seen with 
binoculars. Their motions around Jupiter can be observed 
over the course of several hours.

Saturn, the outermost of the navigational planets, 
comes to opposition at intervals of about 380 days. It is 
visible for about 175 days before and after opposition, and 
disappears for about 25 days near conjunction. At 
opposition it becomes as bright as magnitude +0.8 to –0.2. 
Through good, high powered binoculars, Saturn appears as 
elongated because of its system of rings. A telescope is 
needed to examine the rings in any detail. Saturn is now 
known to have at least 62 satellites, none of which are 
visible to the unaided eye.

Uranus, Neptune and the dwarf planet, Pluto, are too 
faint to be used for navigation; Uranus, at about magnitude 
5.5, is faintly visible to the unaided eye.

1312. The Moon

The Moon is the only satellite of direct navigational in-
terest. It revolves around the Earth once in about 27.3 days, 
as measured with respect to the stars. This is called the si-
dereal month. Because the Moon rotates on its axis with 
the same period with which it revolves around the Earth, the 
same side of the Moon is always turned toward the Earth. 
The cycle of phases depends on the Moon’s revolution with 
respect to the Sun. This synodic month is approximately 
29.53 days, but can vary from this average by up to a quar-
ter of a day during any given month.

When the Moon is in conjunction with the Sun (new 
Moon), it rises and sets with the Sun and is lost in the Sun’s 
glare. The Moon is always moving eastward at about 12.2°
per day, so that sometime after conjunction (as little as 16 
hours, or as long as two days), the thin lunar crescent can be 
observed after sunset, low in the west. For the next couple 
of weeks, the Moon will wax, becoming more fully illumi-
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nated. From day to day, the Moon will rise (and set) later, 
becoming increasingly visible in the evening sky, until 
(about 7 days after new Moon) it reaches first quarter, when 
the Moon rises about noon and sets about midnight. Over 
the next week the Moon will rise later and later in the after-
noon until full Moon, when it rises about sunset and 
dominates the sky throughout the night. During the next 
couple of weeks the Moon will wane, rising later and later 
at night. By last quarter (a week after full Moon), the Moon 
rises about midnight and sets at noon. As it approaches new 
Moon, the Moon becomes an increasingly thin crescent, 
and is seen only in the early morning sky. Sometime before 
conjunction (16 hours to 2 days before conjunction) the thin 
crescent will disappear in the glare of morning twilight.

At full Moon, the Sun and Moon are on opposite sides of 
the ecliptic. Therefore, in the winter the full Moon rises early, 
crosses the celestial meridian high in the sky, and sets late; as 
the Sun does in the summer. In the summer the full Moon 
rises in the southeastern part of the sky (Northern 
Hemisphere), remains relatively low in the sky, and sets 
along the southwestern horizon after a short time above the 
horizon.

At the time of the autumnal equinox, the part of the ecliptic 
opposite the Sun is most nearly parallel to the horizon. Since the 
eastward motion of the Moon is approximately along the ecliptic, 
the delay in the time of rising of the full Moon from night to night 
is less than at other times of the year. The full Moon nearest the 
autumnal equinox is called the Harvest Moon; the full Moon a 

month later is called the Hunter’s Moon. See Figure 1312a for 
an image of the Phases of the Moon.

See Figure 1312b for a depiction of Earthrise from the 
surface of the moon. 

Figure 1312a. Phases of the Moon. The inner figures of the Moon represent its appearance from the Earth.

Figure 1312b. Earthrise from the surface of the Moon. 
Image courtesy of NASA.
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1313. Comets and Meteors

Although comets are noted as great spectacles of na-
ture, very few are visible without a telescope. Those that 
become widely visible do so because they develop long, 
glowing tails. Comets consist of a solid, irregularly shaped 
nucleus, a few kilometers across, composed of rock and ice. 
As the nucleus approaches the Sun in its orbit, the ice evap-
orates and forms an atmosphere around the nucleus, called 
the coma, and the tail. The tail, which may eventually ex-
tend tens of millions of kilometers or more, consists of both 
gas and dust; the dust reflects sunlight while the gases flu-
oresce. The tail is driven away from the direction of the Sun 
by radiation pressure and solar wind. The tail is so thin that 
stars can easily be seen through it. 

Compared to the well-ordered orbits of the planets, 
comets are erratic and inconsistent. Some travel east to west 
and some west to east, in highly eccentric orbits inclined at 
any angle to the ecliptic. Periods of revolution range from 
about 3 years to thousands of years. Some comets may 
speed away from the solar system after gaining velocity as 
they pass by Jupiter or Saturn.

 Of the known comets in our solar system, Halley's 
comet is the most famous because it returns about every 75 
years. Its appearance in 1910 was spectacular but its 1986 
apparition was hardly noticed, especially in the northern 
hemisphere. It will return in 2061. Comet Hale-Bopp, easi-
ly visible from the northern hemisphere in the spring of 
1997, is said to have been seen by more people than any 
other comet in history. Other recent bright comets include 
Comet Ikeya-Seki (1965), Comet West (1976), and Comet 
McNaught (2007), the last of which was most spectacular 
from the southern hemisphere. 

The short-period comets long ago lost the gasses need-
ed to form a tail. Long period comets, such as comet 
Hyakutake, are more likely to develop tails. See Figure 
1313. The visibility of a comet depends very much on how 
close it approaches the Earth. Hyakutake's passage on 
March 25, 1996 was one of the closest cometary approaches 
of the previous 200 years. 

The visibility of a comet depends very much on how 
close it approaches the Earth. In 1910, Halley’s comet 
spread across the sky. Yet when it returned in 1986, the 
Earth was not well situated to get a good view, and it was 
barely visible to the unaided eye.

Meteors, popularly called shooting stars, are rocks or 
rock particles from space that fall toward the Earth and are 
heated to incandescence by air friction in the Earth's upper 
atmosphere. They are visible as streaks of light in the night 
sky that generally last no longer than a few seconds. The 
particles involved, called meteoroids, range in size from 
dust grains to boulders, with the former much more fre-
quent than the latter. A particularly bright meteor is called 
a fireball. One that explodes is called a bolide. The rare 
meteoroid that survives its trip through the atmosphere and 
lands as a solid particle is called a meteorite.

Millions of meteors large enough to be seen enter the 
Earth's atmosphere each hour, and many times this number 
undoubtedly enter, but are too small to be seen. The cosmic 
dust they create constantly rains down on the Earth, tons per 
day. Meteors are seen more frequently in the pre-dawn 
hours than at other times of the night because the pre-dawn 
sky is on the leading side of the Earth as it moves along its 
orbit, where more meteoroid particles collect. 

Meteor showers occur at certain times of the year 
when the Earth passes through meteor swarms (streams of 
meteoroid particles), the scattered remains of  comets  that 
 have  broken  apart.  At these times the number of meteors 
observed is many times the usual number.

A faint glow sometimes observed extending upward 
approximately along the ecliptic before sunrise and after 
sunset has been attributed to the reflection of sunlight from 
quantities of this material. This glow is called zodiacal 
light. A faint glow at that point of the ecliptic 180° from the 
Sun is called the gegenschein or counterglow.

1314. Stars

Stars are distant Suns, in many ways resembling our 
own. Like the Sun, stars are massive balls of gas that create 
their own energy through thermonuclear reactions.

Although stars differ in size and temperature, these 
differences are apparent only through analysis by 
astronomers. Some differences in color are noticeable to the 
unaided eye. While most stars appear white, some (those of 
lower temperature) have a reddish hue. Orion, blue Rigel 
and red Betelgeuse, located on opposite sides of the belt, 
constitute a noticeable contrast.

The stars are not distributed uniformly around the sky. 
Stars appearing in the same area of the sky can bring to 
mind patterns. Ancient peoples supplied star patterns with 
names and myths; today we call them constellations. To-
day professional astronomers recognize 88 “modern” 

Figure 1313. Comet Hyakutake made its closest approach 
to the Earth on March 25, 1996. Image courtesy of NASA.
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constellations, used to identify areas of the sky.

Under ideal viewing conditions, the dimmest star that 
can be seen with the unaided eye is of the sixth magnitude. 
In the entire sky there are about 6,000 stars of this 
magnitude or brighter. Half of these are below the horizon 
at any time. Because of the greater absorption of light near 
the horizon, where the path of a ray travels for a greater 
distance through the atmosphere, not more than perhaps 
2,500 stars are visible to the unaided eye at any time. 
However, the average navigator seldom uses more than 
perhaps 20 or 30 of the brighter stars.

Stars which exhibit a noticeable change of magnitude 
are called variable stars. A star which suddenly becomes 
several magnitudes brighter and then gradually fades is 
called a nova. A particularly bright nova is called a
supernova. Supernovae that are visible to the unaided eye 
are very rare, occurring less than once per century on 
average.

Two stars which appear to be very close together are 
called a double star system. They may just lie in the same 
direction of the sky and not be physically related to each 
other. If they are gravitational bound to each other, they are 
known as a binary star system. The bright star Sirius is 
actually one component of a binary star system; the other 
component is too faint to be seen without a telescope. If 
more than two stars are included in a group, it is called a 
multiple star system. 

A group of a few dozen to several hundred stars mov-
ing through space together is called an open cluster. The 
Pleiades is an example of an open cluster. There are also 
spherically symmetric clusters of hundreds of thousands of 
stars known as globular clusters. The globular clusters are 
all too distant to be seen with the naked eye.

A cloudy patch of matter in the heavens is called a 
nebula. If it is within the galaxy of which the Sun is a part, 
it is called a galactic nebula; if outside, it is called an 
extragalactic nebula.

Motion of a star through space can be classified by its 
vector components. That component in the line of sight is 
called radial motion, while that component across the line 
of sight, causing a star to change its apparent position 
relative to the background of more distant stars, is called 
proper motion.

1315. Galaxies

A galaxy is a vast collection of clusters of stars and 
clouds of gas. In many galaxies the stars tend to 
congregate in groups called star clouds arranged in 
long spiral arms. The spiral nature is believed due to 
matter density waves that propagate through the galaxy 
over time (Figure 1315).

The Earth is located in the Milky Way galaxy, a 
slowly spinning disk more than 100,000 light years in 
diameter. All the bright stars in the sky are in the Milky 
Way. However, the most dense portions of the galaxy 
are seen as the great, broad band that glows in the sum-
mer nighttime sky. When we look toward the 
constellation Sagittarius, we are looking toward the 
center of the Milky Way, 25,000 light years away.

Despite their size and luminance, almost all other 
galaxies are too far away to be seen with the unaided 
eye. An exception in the northern hemisphere is the 
Great Galaxy (sometimes called the Great Nebula) in 
Andromeda, which appears as a faint glow. In the 
southern hemisphere, the Large and Small Magellanic 
Clouds (named after Ferdinand Magellan) are the near-
est known neighbors of the Milky Way. They are 
approximately 200,000 light years distant. The Magel-
lanic Clouds can be seen as sizable glowing patches in 
the southern sky.

APPARENT MOTION

1316. Apparent Motion due to Rotation of the Earth

The apparent motion of the heavens arising from the 
Earth's rotation is much greater than other motions of 
celestial bodies. This motion causes celestial bodies to 
appear to rise along the eastern half of the horizon, climb to 
their maximum altitude as they cross the meridian, and set 
along the western horizon, at about the same point relative 

to due west as the rising point was to due east. This apparent 
motion of a body along the daily path, or diurnal circle, is 
approximately parallel to the plane of the equator. It would 
be exactly so if rotation of the Earth were the only motion 
and the axis of rotation of the Earth were stationary in 
space.

The apparent effect due to rotation of the Earth varies 
with the latitude of the observer. At the equator, where the 

Figure 1315. Spiral nebula Messier 51. Image courtesy of 
NASA.
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equatorial plane is perpendicular to the horizon (since the 
axis of rotation of the Earth is parallel to the plane of the 
horizon), bodies appear to rise and set vertically. Every 
celestial body is above the horizon approximately half the 
time. The celestial sphere as seen by an observer at the 
equator is called the right sphere, shown in Figure 1316a.

For an observer at one of the poles, bodies having constant 
declination neither rise nor set, remaining parallel to the horizon 

(neglecting precession of the equinoxes and changes in 
refraction). They circle the sky, always at the same altitude, 
making one complete trip around the horizon each sidereal day 
(See Section 1611). At the North Pole the motion is clockwise, 
and at the South Pole it is counterclockwise. Approximately half 
the stars are always above the horizon and the other half never 
are. The parallel sphere at the poles is illustrated in Figure 1316b.

Between these two extremes, the apparent motion is a 
combination of the two. On this oblique sphere, illustrated 
in Figure 1316c, circumpolar celestial bodies are those that 
remain above the horizon during the entire 24 hours, cir-
cling the elevated celestial pole. The portion of the sky 
where bodies are circumpolar extends from the elevated 
pole to approximately the declination equal to 90º minus the 
observer's latitude. For example, the stars of Ursa Major 

(the Big Dipper) and Cassiopeia are circumpolar for many 
observers in the United States. 

An area of the celestial sphere approximately equal to 
the circumpolar area around the depressed pole remains 
constantly below the horizon. For example, Crux is not vis-
ible to most observers in the United States. Other celestial 
bodies rise obliquely along the eastern horizon, climb to 
maximum altitude at the celestial meridian, and set along 

Figure 1316a. The right sphere. Figure 1316b. The parallel sphere.

Figure 1316c. The oblique sphere at latitude 40°N. Figure 1316d. The various twilight at latitude 20°N and 
latitude 60°N.
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the western horizon. The length of time above the horizon 
and the altitude at meridian transit vary with both the lati-
tude of the observer and the declination of the body. Days 
and nights are always about the same length in the tropics. 
At higher latitudes the increased obliquity result in a greater 
change in the length of the day and longer periods of twi-
light. North of the Arctic Circle and south of the Antarctic 
Circle the Sun is circumpolar for part of the year. This is 
sometimes termed the land of the midnight Sun, where the 
Sun does not set during part of the summer and does not rise 
during part of the winter.

The increased obliquity at higher latitudes explains 
why days and nights are always about the same length in 
the tropics, and the change of length of the day becomes 
greater as latitude increases, and why twilight lasts longer 
in higher latitudes. Evening twilight begins at sunset, and 
morning twilight ends at sunrise. The darker limit of twi-
light occurs when the center of the Sun is a stated number 
of degrees below the celestial horizon. Three kinds of twi-
light are defined: civil, nautical and astronomical. See 
Table 1316.

The conditions at the darker limit are relative and vary 
considerably under different atmospheric conditions.

In Figure 1316d, the twilight band is shown, with the 
darker limits of the various kinds indicated. The nearly 
vertical celestial equator line is for an observer at lati-
tude 20°N. The nearly horizontal celestial equator line is 
for an observer at latitude 60°N. The broken line for each 
case is the diurnal circle of the Sun when its declination 
is 15°N. The portion of the diurnal circle between the 
lighter and the darker limits indicates the relative dura-
tion of a particular type of twilight at the two example 
latitudes. But the relative duration is not directly propor-
tional to the relative length of line shown since the 
projection is orthographic. Note that complete darkness 
will not occur at latitude 60°N when the declination of 
the Sun is 15°N. 

1317. Apparent Motion due to Revolution of the Earth

If it were possible to stop the rotation of the Earth so 
that the celestial sphere would appear stationary, the effects 
of the revolution of the Earth would become more 
noticeable. The Sun would appear to move eastward a little 

less than 1° per day, to make one complete trip around the 
Earth in a year. If the Sun and stars were visible at the same 
time this motion could be observed by watching the 
changing position of the Sun with respect to the stars. A 
better way is to observe the constellations at the same time 
each night. Each night, a star rises nearly four minutes 
earlier than on the previous night. The period from star rise 
on one night to its rise on the next night is called a sidereal 
day. Thus, the celestial sphere appears to shift westward 
nearly 1° each night, so that different constellations are 
associated with different seasons of the year.

Apparent motions of planets and the Moon are due to a 
combination of their motions and those of the Earth. If the 
rotation of the Earth were stopped, the combined apparent 
motion due to the revolutions of the Earth and other bodies 
would be similar to that occurring if both rotation and 
revolution of the Earth were stopped. Stars would appear 
nearly stationary in the sky but would undergo a small annual 
cycle of change due to aberration. The motion of the Earth in 
its orbit is sufficiently fast to cause the light from stars to 
appear to shift slightly in the direction of the Earth’s motion. 
This is similar to the effect one experiences when walking in 
vertically-falling rain that appears to come from ahead due to 
the observer’s own forward motion. The apparent direction of 
the light ray from the star is the vector difference of the motion 
of light and the motion of the Earth, similar to that of apparent 
wind on a moving vessel. This effect is most apparent for a 
body perpendicular to the line of travel of the Earth in its orbit, 
for which it reaches a maximum value of 21.2 seconds of arc. 
The effect of aberration can be noted by comparing the 
coordinates (declination and sidereal hour angle) of various 
stars throughout the year. A change is observed in some bodies 
as the year progresses, but at the end of the year the values have 
returned almost to what they were at the beginning. The reason 
they do not return exactly is due to proper motion and 
precession of the equinoxes. It is also due to nutation, an 
irregularity in the motion of the Earth due to the disturbing 
effect of other celestial bodies, principally the Moon. Polar 
motion is a slight wobbling of the Earth about its axis of 
rotation and sometimes wandering of the poles. This motion, 
which does not exceed 40 feet from the mean position, 
produces slight variation of latitude and longitude of places on 
the Earth.

Twilight Lighter limit Darker limit At darker limit

Civil sunrise/set –6° Horizon clear; bright stars visible

Nautical –6° –12° Horizon not visible

Astronomical –12° –18° Full night

Table 1316. Limits of the three twilights.
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1318. Apparent Motion due to Movement of other 
Celestial Bodies

Each celestial body makes its own contribution to its 
apparent motion: 

The Moon revolves about the Earth each month, rising 
in the west and setting in the east. Its orbital plane is slightly 
inclined to the ecliptic (see Section 1319), and is contin-
uously changing in response to perturbations in its motion, 
primarily by the Sun.

The planets revolve about the Sun (technically, the 
solar system barycenter, which is within the sun's interior). 
The inferior planets, Mercury and Venus, appear to move 
eastward and westward relative to the Sun. The period for 
Mercury's motion is 116 days and the period for Venus is 
584 days (see Section 1310). The superior planets make an 
apparent revolution around the Earth, from west to east. 
The periods for their motion varies from 780 to 367 days, 
depending on the planet (see Section 1311).

The stars revolve about the galactic center. As they 
move about the galactic center, the stars, including the Sun, 
move with respect to one another. The component of their 
motion across the line of sight is called proper motion. The 
maximum observed proper motion is that of Barnard's Star, 
which is moving at the rate of 10.3 seconds of arc per year. 
Barnard's Star is a tenth-magnitude star, not visible to the 
unaided eye. Rigil Kentaurus has the greatest proper motion 
of the 57 stars listed on the daily pages of the almanacs, 
about 3.7 seconds per year. Arcturus has the greatest proper 
motion of the navigational stars in the Northern 
Hemisphere, 2.3 seconds per year. Over the course of a few 
years, proper motions are very small; they can be ignored 
when reducing celestial navigation sights. A few thousand 
years of proper motion is sufficient to materially alter the 
look of some familiar constellations. 

1319. The Ecliptic and the Inclination of the Earth's 
Axis

The ecliptic is the mean path of the Sun through the 
heavens arising from the annual revolution of the Earth in 
its orbit and appears as a great circle on the celestial sphere. 
The ecliptic is currently inclined at an angle of about 23°26' 
to the celestial equator. This angle is called the obliquity of 
the ecliptic and is due to the inclination or tilt of Earth's ro-
tational axis relative to its orbital plane. The perturbations 
of the other planets on the Earth's orbital plane decreases 
the obliquity of the ecliptic by about 2/3 of an arc minute 
per century. The obliquity of the ecliptic causes the Sun to 
appear to move north and south over the course of the year, 
giving the Earth its seasons and changing lengths of periods 
of daylight.

Refer to Figure 1319a. The vernal equinox occurs 
when the center of the Sun crosses the equator going north. 
It occurs on or about March 21, and is the start of astronom-
ical spring in the northern hemisphere. At this time the Sun 

is rising at the North Pole and setting at the South Pole, the 
Sun shines equally on both hemispheres, and day and night 
are approximately the same length over the entire world. 
The summer solstice occurs on or about June 21. On this 
date, the northern pole of the Earth's axis is tilted toward the 
Sun. The north polar regions are continuously in sunlight; 
the Northern Hemisphere is having its summer with long, 
warm days and short nights; the Southern Hemisphere is 
having winter with short days and long, cold nights; and the 
south polar region is in continuous darkness. The autumnal 
equinox occurs on or about September 23. On this date, the 
Sun is setting at the North Pole and rising at the South Pole, 
the Sun again shines equally on both hemispheres, and day 
and night are approximately the same length over the entire 
world. The winter solstice occurs on or about December 
22. On this date, the Southern Hemisphere is tilted toward 
the Sun and conditions are the reverse of those six months 
earlier; the Northern Hemisphere is having its winter, and 
the Southern Hemisphere its summer.

The word equinox means “equal nights”. At the equi-
noxes, the Sun is directly over the equator. It remains above 
the horizon for approximately 12 hours. The length of day-
light is not exactly 12 hours because of refraction, the solar 
semidiameter, and the height of the eye of the observer. 
These cause the Sun to be above the horizon a few minutes 
longer than below the horizon. Following the vernal equi-
nox, the Sun's declination increases (becomes more 
northerly), and the Sun climbs higher in the sky each day (at 
the latitudes of the United States), until the summer sol-
stice, when a declination of about 23°26' north of the 
celestial equator is reached. The word solstice, meaning 
“Sun stands still,” is used because the Sun halts its apparent 
northward or southward motion and momentarily “stands 
still” before it starts in the opposite direction. This action, 
somewhat analogous to the “stand” of the tide, refers to the 
motion in a north-south direction, not to the daily apparent 
revolution around the Earth.

Over the course of a year the distance between the 
Earth and the Sun changes by about 1.7%. The Earth is 
closest to the Sun during the northern hemisphere winter. 
To conserve angular momentum, the Earth travels faster 
when nearest the Sun, like a spinning ice skater pulling her 
arms in. As a result, the northern hemisphere (astronomical) 
winter is shorter than its summer by about seven days.

 The distance between the Earth and Sun is not the pri-
mary source for the difference in temperature during the 
different seasons. Over a year, the change in Earth-Sun dis-
tance changes the solar energy flux only 3% from the 
average value. The tilt of the Earth's axis has a much larger 
affect. During the summer the rays are more nearly vertical, 
and hence more concentrated, as shown in Figure 1319b. At 
the polar circle on the summer solstice for a hemisphere, the 
solar flux (energy per unit area per unit time) is 73% of the 
flux at the tropic where the Sun is directly overhead. Winter 
sunlight is distributed over a larger area and shines fewer 
hours each day, causing less total heat energy to reach the 
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Earth. The solar flux at the polar circle on the winter sol-
stice is nearly zero and the flux at the tropic is only 69% of 
the flux at the summer solstice.

Astronomically, the seasons begin at the equinoxes and 
solstices. Meteorologically, they differ from place to place. 
During the summer the Sun is above the horizon more than 
half the time. So, the total energy being added by absorption 
during a longer period than it is being lost by radiation. Fol-
lowing the summer solstice, the surface at a given latitude 
continues to receive more energy than it dissipates, but a 
decreasing amount. Gradually, the amount decreases until 
the surface is losing more energy than it gains from the Sun. 
This effect explains the lag of the seasons. It is analogous to 
the day, when the highest temperatures normally occur sev-
eral hours after the Sun reaches maximum altitude at local 
noon.

At some time during the year, the Sun is directly 
overhead everywhere between the latitudes of about 
23°26'N and about 23°26'S. Except at the limits, this occurs 
twice: once as the Sun appears to move northward, and the 
second time as it moves southward. The area on Earth 
between these latitudes is called the Tropics, or the torrid 
zone. The northern limit is the Tropic of Cancer, and the 
southern limit is the Tropic of Capricorn. These names 
come from the constellations the Sun entered at the 

solstices when the names were first used more than 2,000 
years ago. Today, the Sun is in the next constellation to the 
west because of precession of the equinoxes. The parallels 
about 23°26' from the poles, marking the approximate 
limits of the circumpolar Sun, are called polar circles. The 
polar circle in the Northern Hemisphere is called the Arctic 
Circle, and the one in the Southern Hemisphere is called 
the Antarctic Circle. The areas inside the polar circles are 
the north and south frigid zones. The regions between the 
frigid zones and the torrid zones are the north and south 
temperate zones.

The expression “vernal equinox” and associated 
expressions are applied both to the times and points of 
occurrence of these phenomena. The vernal equinox is also 
called the first point of Aries (symbol ) because, when 
the name was given, the Sun entered the constellation 
Aries, the ram, as the Sun crossed the equator going north. 
The vernal equinox is of interest to navigators because it is 
the origin for measuring sidereal hour angle. The terms 
March equinox, June solstice, September equinox, and 
December solstice are occasionally applied as appropriate, 
because the more common names are associated with the 
seasons in the Northern Hemisphere and are six months out 
of step for the Southern Hemisphere.

Figure 1319a. Apparent motion of the Sun in the ecliptic.
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1320. Precession and Nutation

The Earth's axis precesses: the motion of its rotation 
axis is similar to that of a top spinning with its axis tilted. 
The precession is in response to torques principally by the 
Sun and Moon. The spinning Earth responds to these 
torques in the manner of a gyroscope. The result is a slow 
westward movement of the equinoxes and solstices. This 
westward motion of the equinoxes along the ecliptic is 
called precession of the equinoxes. The precession has a pe-
riod of about 25,800 years. There are also a series of short 
period motions of the Earth's axis of rotation called nuta-
tion. See Figure 1320. The nutations are all quite small. The 
largest nutation has an amplitude of 0.'2 and a period of 
18.6 years. The next largest nutation has an amplitude of 
just 0.'01 and a period of 0.5 years.

The sidereal hour angle is measured from the vernal 
equinox, and declination from the celestial equator, so the 
coordinates of celestial bodies change because of preces-
sion. The total motion with respect to the ecliptic, called 
general precession, is about 50."29 per year. It may be di-
vided into two components with respect to the celestial 
equator: precession in right ascension (about 46."12 per 
year) measured along the celestial equator, and precession 
in declination (about 20."04 per year) measured perpendic-
ular to the celestial equator. The annual change in the 
coordinates of any given star, due to precession alone, de-
pends upon its position on the celestial sphere.

Since precession changes the direction of Earth's pole, 
Polaris will not always be Earth's “Pole Star”. Currently, 

the north celestial pole is moving closer to Polaris because 
of precession. It will pass at a distance of approximately 28' 
about the year 2102. Afterward, the polar distance will in-
crease, and eventually other stars, in their turn, will become 
the Pole Star. 

1321. The Zodiac

The zodiac is a circular band of the sky extending 8°
on each side of the ecliptic. The navigational planets and 
the Moon are within these limits. The zodiac is divided into 
12 sections of 30° each, each section being given the name 
and symbol (“sign”) of a constellation. These are shown in 
Figure 1321. The names were assigned more than 2,000 
years ago, when the Sun entered Aries at the vernal equi-
nox, Cancer at the summer solstice, Libra at the autumnal 
equinox, and Capricornus at the winter solstice. Because of 
precession, the zodiacal signs have shifted with respect to 
the constellations. Thus at the time of the vernal equinox, 
the Sun is said to be at the “first point of Aries,” though it 
is in the constellation Pisces.

1322. Time and the Calendar

Traditionally, astronomy has furnished the basis for 
measurement of time, a subject of primary importance to 
the navigator. The year is associated with the revolution of 
the Earth in its orbit. The day is one rotation of the Earth 
about its axis.

The duration of one rotation of the Earth depends upon 
the external reference point used, the most common is using 
the Sun. One rotation relative to the Sun is called a solar 
day. However, an actual solar day varies in length. This 
variation is removed by using a “fictitious mean” Sun, 
leading to what we refer to as “mean time.” For a more 
complete discussion see Chapter 16 - Time; Section 1600 
discusses apparent and mean solar time. 

Universal Time (UT) is a generic reference to one (of 
several) time scales that approximate the mean diurnal mo-
tion of the Sun. Loosely, UT is mean solar time on the 
Greenwich meridian. The terms “Universal Time” and 
“Greenwich Mean Time” are sometimes used inter-
changeably, but the latter is being deprecated. Universal 
Time is the standard in the application of astronomy to nav-
igation. See Chapter 16 - Section 1602 for a more complete 
discussion.

If the vernal equinox is used as the reference, a sidere-
al day is obtained, and from it, sidereal time. This 
indicates the approximate positions of the stars, and for this 
reason it is the basis of star charts and star finders. Because 
of the revolution of the Earth around the Sun, a sidereal day 
is about 3 minutes 56 seconds shorter than a solar day, and 
there is one more sidereal than solar days in a year. One 
mean solar day equals 1.00273791 mean sidereal days. Be-
cause of precession of the equinoxes, one rotation of the 
Earth with respect to the stars is not quite the same as one 

Figure 1319b. Sunlight in summer and winter. Winter 
sunlight is distributed over a larger area and shines fewer 

hours each day, causing less heat energy to reach the 
Earth. 
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rotation with respect to the vernal equinox. One mean solar 
day averages 1.0027378118868 rotations of the Earth with 
respect to the stars.

In tide analysis, the Moon is sometimes used as the 
reference, producing a lunar day averaging 24 hours 50 
minutes (mean solar units) in length, and lunar time.

Since each kind of day is divided arbitrarily into 24 
hours, each hour having 60 minutes of 60 seconds, the 

length of each of these units differs somewhat in the various 
kinds of time.

Time is also classified according to the terrestrial 
meridian used as a reference. Local time results if one’s own 
meridian is used, zone time if a nearby reference meridian is 
used over a spread of longitudes, and Greenwich or Universal 
Time if the Greenwich meridian is used.

The period from one vernal equinox to the next (the 

Figure 1320. Precession and nutation.
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cycle of the seasons) is known as the tropical year. It is 
approximately 365 days, 5 hours, 48 minutes, 45 seconds, 
though the length has been slowly changing for many 
centuries. Our calendar, the Gregorian calendar, approx-
imates the tropical year with a combination of common 
years of 365 days and leap years of 366 days. A leap year
is any year divisible by four, unless it is a century year, 
which must be divisible by 400 to be a leap year. Thus, 
1700, 1800, and 1900 were not leap years, but 2000 was. A 
critical mistake was made by John Hamilton Moore in 
calling 1800 a leap year, causing an error in the tables in his 
book, The Practical Navigator. This error caused the loss of 
at least one ship and was later discovered by Nathaniel 
Bowditch while writing the first edition of The New 
American Practical Navigator.

See Chapter 16 for an in-depth discussion of time.

1323. Eclipses

If the orbit of the Moon coincided with the plane of the 
ecliptic, the Moon would pass in front of the Sun at every 
new Moon, causing a solar eclipse. At full Moon, the Moon 
would pass through the Earth’s shadow, causing a lunar 
eclipse. Because of the Moon’s orbit is inclined 5° with 
respect to the ecliptic, the Moon usually passes above or 
below the Sun at new Moon and above or below the Earth’s 
shadow at full Moon. However, there are two points at 

which the plane of the Moon’s orbit intersects the ecliptic. 
These are the nodes of the Moon’s orbit. If the Moon passes 
one of these points at the same time as the Sun, a solar 
eclipse takes place. This is shown in Figure 1323.

The Sun and Moon are of nearly the same apparent size 
to an observer on the Earth. If the Moon is near perigee (the 
point in its orbit closest to the Earth), the Moon's apparent 
diameter is larger than that of the Sun, and its umbra 
(darkest part of the shadow) reaches the Earth as a nearly 
round dot. The dot moves rapidly across the Earth, from 
west to east, as the Moon continues in its orbit. Within the 
dot, the Sun is completely hidden from view, and a total 
eclipse of the Sun occurs. The width of this dot on the 
Earth's surface varies from eclipse to eclipse, but can be as 
large as a couple hundred miles. On the path of totality, a 
partial eclipse occurs as the disk of the Moon appears to 
move slowly across the face of the Sun, hiding an ever-
increasing part of it, until the total eclipse occurs. Because 
of the uneven edge of the mountainous Moon, the light is 
not cut off evenly. But several last illuminated portions 
appear through the Moon's valleys or passes between the 
Moon's mountain peaks. These are called Baily's Beads. 
For a considerable distance around the umbral shadow, part 
of the surface of the Sun is obscured, and a partial eclipse 
occurs. 

A total eclipse is a spectacular phenomenon. As the last 
light from the Sun is cut off, the solar corona, or envelope of 

Figure 1321. The Zodiac.
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thin, illuminated gas around the Sun becomes visible. Wisps 
of more dense gas may appear as solar prominences. The 
only light reaching the observer is that diffused by the atmo-
sphere surrounding the shadow. As the Moon appears to 
continue on across the face of the Sun, the Sun finally emerg-
es from the other side, first as Baily’s Beads, and then as an 
ever widening crescent until no part of its surface is obscured 
by the Moon.

The duration of a total eclipse depends upon how 
nearly the Moon crosses the center of the Sun, the location 
of the shadow on the Earth, the relative orbital speeds of the 
Moon and Earth, and (principally) the relative apparent 
diameters of the Sun and Moon. The maximum length that 
can occur is a little more than seven minutes.

If the Moon is near apogee, its apparent diameter is less 
than that of the Sun, and its shadow does not quite reach the 

Earth. Over a small area of the Earth directly in line with the 
Moon and Sun, the Moon appears as a black disk almost 
covering the surface of the Sun, but with a thin ring of the 
Sun around its edge. This is known as an annular eclipse; 
these occur a little more often than total eclipses.

If the umbral shadow of the Moon passes close to the 
Earth, but not directly in line with it, a partial eclipse may 
occur without a total or annular eclipse.

An eclipse of the Moon (or lunar eclipse) occurs when 
the Moon passes through the shadow of the Earth, as shown 
in Figure 1323. Since the diameter of the Earth is about 31/2 
times that of the Moon, the Earth’s shadow at the distance 
of the Moon is much larger than that of the Moon. A total 
eclipse of the Moon can last nearly 13/4 hours, and some 
part of the Moon may be in the Earth’s shadow for almost 
4 hours.

During a total solar eclipse no part of the Sun is visible 
because the Moon is in the line of sight. But during a lunar 
eclipse some light does reach the Moon, diffracted by the 
atmosphere of the Earth, and hence the eclipsed full Moon 
is visible as a faint reddish disk. A lunar eclipse is visible 
over the entire hemisphere of the Earth facing the Moon. 
Anyone who can see the Moon can see the eclipse.

During any one year there may be as many as five 
eclipses of the Sun, and always there are at least two. There 
may be as many as three eclipses of the Moon, or none. The 
total number of eclipses during a single year does not exceed 

seven, and can be as few as two. There are more solar than 
lunar eclipses, but the latter can be seen more often because 
of the restricted areas over which solar eclipses are visible.

The Sun, Earth, and Moon are nearly aligned on the line 
of nodes twice each “eclipse year” of 346.6 days. This is less 
than a calendar year because of regression of the nodes. In 
a little more than 18 years the line of nodes returns to approx-
imately the same position with respect to the Sun, Earth, and 
Moon. During an almost equal period, called the saros, a 
cycle of eclipses occurs. During the following saros the cycle 
is repeated with only minor differences.

COORDINATES

1324. Latitude and Longitude

Latitude and longitude are coordinates used to locate 
positions on the Earth. This section discusses three different 
definitions of these coordinates.

Astronomic latitude is the angle (ABQ, Figure 1324) 
between a line in the direction of gravity (AB) at a station 
and the plane of the equator (QQ'). Astronomic longitude
is the angle between the plane of the celestial meridian at a 
station and the plane of the celestial meridian at Greenwich. 
These coordinates are customarily found by means of celes-
tial observations. If the Earth were perfectly homogeneous 
and round, these positions would be consistent and satisfac-

tory. However, because of deflection of the vertical due to 
uneven distribution of the mass of the Earth, lines of equal 
astronomic latitude and longitude are not circles, although 
the irregularities are small. In the United States the east-
west component of the deflection of the vertical (affecting 
longitude) may be a little more than 18", and the north-
south component (affecting latitude) may be as much as 
25".

Geodetic latitude is the angle (ACQ, Figure 1324) be-
tween a normal to the spheroid (AC) at a station and the 
plane of the geodetic equator (QQ'). Geodetic longitude is 
the angle between the plane defined by the normal to the 
spheroid and the axis of the Earth and the plane of the geo-

Figure 1323. Eclipses of the Sun and Moon.
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detic meridian at Greenwich. These values are obtained 
when astronomical latitude and longitude are corrected for 
deflection of the vertical. These coordinates are used for 
charting and are frequently referred to as geographic lati-

tude and geographic longitude, although these 
expressions are sometimes used to refer to astronomical 
latitude. 

Geocentric latitude is the angle (ADQ, Figure 1324 ) 
at the center of the ellipsoid between the plane of its equator 
(QQ') and a straight line (AD) to a point on the surface of 
the Earth. This differs from geodetic latitude because the 
Earth is a spheroid rather than a sphere, and the meridians 
are ellipses. Since the parallels of latitude are considered to 
be circles, geodetic longitude is geocentric, and a separate 
expression is not used. The difference between geocentric 
and geodetic latitudes is a maximum of about 11.6' at lati-
tude 45°.

Because of the oblate shape of the ellipsoid, the length 
of a degree of geodetic latitude is not everywhere the same, 
increasing from about 59.7 nautical miles at the equator to 
about 60.3 nautical miles at the poles. The value of 60 
nautical miles customarily used by the navigator is correct 
at about latitude 45°.

MEASUREMENTS ON THE CELESTIAL SPHERE

1325. Elements of the Celestial Sphere

The celestial sphere (Section 1301) is an imaginary 
sphere of infinite radius with the Earth at its center (Figure 
1325a). The north and south celestial poles of this sphere, 
PN and PS respectively, are located by extension of the 
Earth's mean pole of rotation. The celestial equator (some-
times called equinoctial) is the projection of the plane of 
the Earth’s equator to the celestial sphere. A celestial me-
ridian is a great circle passing through the celestial poles 
and the zenith of any location on the Earth.

The point on the celestial sphere vertically overhead of 
an observer is the zenith, and the point on the opposite side 
of the sphere vertically below him or her is the nadir. The 
zenith and nadir are the extremities of a diameter of the ce-
lestial sphere through the observer and the common center 
of the Earth and the celestial sphere. The arc of a celestial 
meridian between the poles is called the upper branch if it 
contains the zenith and the lower branch if it contains the 
nadir. The upper branch is frequently used in navigation, 
and references to a celestial meridian are understood to 
mean only its upper branch unless otherwise stated.

In order to uniquely define every point on the celestial 
sphere, a coordinate system must be defined. One such 
coordinate system uses hour angles and declination. With 
these two angular measurements, every position on the 
celestial sphere can be uniquely described.

Hour circles are great circles on the celestial sphere 
that pass through the celestial poles, and are therefore per-
pendicular to the celestial equator. An hour angle is the 
angle from a “reference” hour circle to the hour circle of a 
point (or object). There are three main “reference” hour cir-
cles used in celestial navigation. The first is the hour circle 

through the vernal equinox (also known as the first point 

of Aries ( )). The angular distance west of this reference 
circle is called the sidereal hour angle (SHA) (Figure 
1325b). The second is using the local meridian as the refer-
ence hour circle. The angular distance west of the local 
meridian is known as a local hour angle (LHA). And the 
third reference is the Greenwich meridian. Measurements 
west from the Greenwich meridian are known as Green-
wich hour angles, or GHA. See Figure 1325c for a 
depiction of how to locate a point on the celestial sphere.

Since hour circles are perpendicular to the celestial 
equator, hour angles can be thought of as angular measure-
ments along the equator. This give us one of our two 
coordinates needed to define every point on the celestial 
sphere. The second coordinate, declination, is the angular 
distance from the celestial equator along an hour circle and 
is measured north or south of the celestial equator in de-
grees, from 0° through 90°, similar to latitude on the Earth. 
Northern and southern declinations are sometime labeled 
with positive or negative values, respectively if not labeled 
N or S. A circle parallel to the celestial equator is called a 
parallel of declination, since it connects all points of equal 
declination. It is similar to a parallel of latitude on the Earth. 

It is sometimes more convenient to measure hour 
angle either eastward or westward, as longitude is 
measured on the Earth, in which case it is called
meridian angle (designated “t”).

A point on the celestial sphere may also be located 
using altitude and azimuth, which are topocentric 
coordinates based upon the observer's local horizon as the 
primary great circle instead of the celestial equator.

Figure 1324. Three kinds of latitude at point A.
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COORDINATE SYSTEMS

1326. The Celestial Equator System of Coordinates

The familiar graticule of latitude and longitude lines, 
expanded until it reaches the celestial sphere, forms the basis 
of the celestial equator system of coordinates. On the 
celestial sphere latitude becomes declination, while 
longitude becomes sidereal hour angle, measured from the 
vernal equinox.

Polar distance (p) is angular distance from a celestial 
pole, or the arc of an hour circle between the celestial pole 
and a point on the celestial sphere. It is measured along an 
hour circle and may vary from 0° to 180°, since either pole 
may be used as the origin of measurement. It is usually 
considered the complement of declination, though it may be 
either 90° – d or 90° + d, depending upon the pole used. See 
Figure 1326a.

Local hour angle (LHA) is angular distance west of the 
local celestial meridian, or the arc of the celestial equator be-
tween the upper branch of the local celestial meridian and the 
hour circle through a point on the celestial sphere, measured 
westward from the local celestial meridian, through 360°. It is 

also the similar arc of the parallel of declination and the angle 
at the celestial pole, similarly measured. If the Greenwich (0°) 
meridian is used as the reference, instead of the local meridi-
an, the expression Greenwich hour angle (GHA) is applied. 
It is sometimes convenient to measure the arc or angle in ei-
ther an easterly or westerly direction from the local meridian, 
through 180°, when it is called meridian angle (t) and labeled 
E or W to indicate the direction of measurement. All bodies or 
other points having the same hour angle lie along the same 
hour circle.

Because of the apparent daily rotation of the celestial 
sphere, the hour angle of an object continually increases, 
but meridian angle increases from 0° at the celestial merid-
ian to 180°W, which is also 180°E, and then decreases to 0°
again. The rate of change in meridian angle for the mean 
Sun is 15° per hour. The rate of all other bodies  except  the 
Moon  is within 3'  of this value. The average rate of the 
Moon is about 15.5°.

As the celestial sphere rotates, each body crosses each 
branch of the celestial meridian approximately once a day. 
This crossing is called meridian transit (sometimes called 

Figure 1325a. Elements of the celestial sphere.
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culmination). For circumpolar bodies, it is called upper 
transit to indicate crossing the upper branch of the meridian 
and lower transit to indicate crossing the lower branch. 

The time diagram shown in Figure 1326b illustrates 
the relationship between the various hour angles and merid-
ian angle. The circle is the celestial equator as seen from 
above the South Pole, with the upper branch of the observ-
er’s meridian (PsM) at the top. The radius PsG is the 
Greenwich meridian; Ps is the hour circle of the vernal 
equinox. The Sun’s hour circle is to the east of the observ-
er’s meridian; the Moon’s hour circle is to the west of the 
observer’s meridian Note that when LHA is less than 180°, 
it is numerically the same and is labeled W, but that when 
LHA is greater than 180°, t = 360° – LHA and is labeled E. 
In Figure 1326b arc GM is the longitude, which in this case 
is west. The relationships shown apply equally to other ar-
rangements of radii, except for relative magnitudes of the 
quantities involved.

1327. Atmospheric Refraction of Light

The Earth's atmosphere acts like a lens which causes 
light rays to bend. This bending of a light ray or path is 
called refraction. The amount of the angular change 
caused by refraction is primarily a function of the atmo-
spheric density gradient. An incoming light ray is bent or 

refracted towards the direction of increasing atmospheric 
density. The apparent path of the refracted light ray is al-
ways closer to perpendicular to the atmospheric density 
gradient than the path of the unrefracted ray. A light ray ap-
proaching the observer from the zenith is perpendicular to 
the density gradient. So, the refraction angle for the zenith 
is 0, and the direction of the refraction angle for other light 
rays is towards the zenith, making an object appear higher 
than if it were not refracted. In other words, an object's ob-
served altitude is increased due to refraction. The greatest 
angular change occurs near the horizon where the light path 
is almost parallel to a given atmospheric density layer. The 
mean refraction angle near the horizon is approximately 
34'. The density gradient and refraction angle are a function 
of the atmospheric pressure and temperature. So, observa-
tions made near the horizon should be corrected for changes 
from the standard pressure (1010 mb) and temperature 
(10ºC) used in calculating the refraction.

1328. The Horizons

The second set of celestial coordinates with which the 
navigator is directly concerned is based upon the horizon as 
the primary great circle. However, since several different 
horizons are defined, these should be thoroughly 
understood before proceeding with a consideration of the 

Figure 1325b. A point on the celestial sphere can be located by its declination and sidereal hour angle.
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horizon system of coordinates.

The line where Earth and sky appear to meet is called 
the visible or apparent horizon. On land this is usually an 
irregular line unless the terrain is level. At sea the visible 
horizon appears very regular and is often very sharp. 
However, its position relative to the celestial sphere 
depends primarily upon (1) the refractive index of the air 
and (2) the height of the observer’s eye above the surface.

In Figure 1328, the observer's eye is a height h above 
the Earth at A. The line through A and the center of the 
Earth is the vertical of the observer and contains the zenith. 
The plane perpendicular to the vertical is the sensible hori-
zon. If the observer is at the Earth's surface, h = 0, then the 
plane of the sensible horizon is called the geoidal horizon. 
And if the observer is at the center of the Earth, then the 
plane of the sensible horizon is called the celestial horizon. 
The radius of the Earth is negligible with respect to that of 
the celestial sphere. Most measurements are referred only 
to the celestial horizon.

If the eye of the observer is at the surface of the Earth, 
the sensible horizon coincides with the geoidal horizon; but 
above the Earth's surface, at height h, the observer's eye is 
at the vertex of a cone, which is tangent to the Earth at the 
geometric horizon. The angle between the sensible and geo-
metric horizon is the geometric dip. So, it is possible to 

observe a body, which is above the geometric horizon but 
below the celestial horizon. That is, the body's altitude is 
negative and its zenith distance is greater than 90°.

The apparent (or visible) horizon, that is the horizon 
seen by the observer, is not identical to the geometric 
horizon because of the refraction of light by the atmosphere. 
The direction of refraction is towards the zenith, so the 
apparent horizon is above the geometric horizon. However, 
because the path of the light is bent the position of the 
apparent horizon, the place on the Earth's surface where the 
light path is tangent to the surface, is farther away than the 
geometric horizon. The difference between the geometric 
dip and the refraction angle is the total dip.

1329. The Horizon System of Coordinates

This system is based upon the celestial horizon as the 
primary great circle and a series of secondary vertical cir-
cles which are great circles through the zenith and nadir of 
the observer and hence perpendicular to his or her horizon
(Figure 1329a). Thus, the celestial horizon is similar to the 
equator, and the vertical circles are similar to meridians, but 
with one important difference. The celestial horizon and 
vertical circles are dependent upon the position of the ob-
server and hence move with changes position, while the 

Figure 1325c. A point on the celestial sphere can be located by its declination and hour angle.



NAVIGATIONAL ASTRONOMY 237

primary and secondary great circles of both the geographi-
cal and celestial equator systems are independent of the 
observer. The horizon and celestial equator systems coin-
cide for an observer at the geographical pole of the Earth 
and are mutually perpendicular for an observer on the equa-
tor. At all other places the two are oblique.

The celestial or local meridian passes through the ob-
server's zenith, nadir, and poles of the celestial equator system 
of coordinates. As such, it passes through north and south on 

the observer's horizon. One of these poles (having the same 
name, N or S, as the latitude) is above the horizon and is called 
the elevated pole. The other, called the depressed pole, is be-
low the horizon. In the horizon system it is called the principal 
vertical circle. The vertical circle through the east and west 
points of the horizon, and hence perpendicular to the principal 
vertical circle, is called the prime vertical circle, or simply 
the prime vertical.

As shown in Figure 1329b, altitude is angular distance 
above the horizon. It is measured along a vertical circle, 
from 0° at the horizon through 90° at the zenith. Altitude 
measured from the visible horizon may exceed 90° because 
of the dip of the horizon, as shown in Figure 1329a. Alti-
tude is nominally a positive value, however, angular 
distance below the celestial horizon, called negative alti-
tude, is provided for by including certain negative altitudes 
in some tables for use in celestial navigation. All points 
having the same altitude lie along a parallel of altitude.

Zenith distance (z) is angular distance from the zenith, 
or the arc of a vertical circle between the zenith and a point 
on the celestial sphere. It is measured along a vertical circle 
from 0° through 180°. It is usually considered the comple-
ment of altitude. For a body measured with respect to the 

celestial horizon z = 90° - h.

The horizontal direction of a point on the celestial 
sphere, or the bearing of the geographical position, is called 
azimuth or azimuth angle depending upon the method of 
measurement. In both methods it is an arc of the horizon (or 
parallel of altitude). It is true azimuth (Zn) if measured east 
from north on the horizon through 360°, and azimuth angle 
(Z) if measured either direction along the horizon through 
180°, starting at the north for an observer in north latitudes 
and the south in south latitudes.

1330. The Ecliptic System of Coordinates

The ecliptic system is based upon the ecliptic as the 
primary great circle, analogous to the equator. The ecliptic

Figure 1326a. The celestial equator system of coordinates, showing measurements of declination, polar distance, and 
local hour angle.
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Figure 1326b. Time diagram.

Figure 1328. The sensible horizon.
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is the apparent path of the Sun around the celestial sphere. 
The points 90° from the ecliptic are the north and south 
ecliptic poles. The series of great circles through these 
poles, analogous to meridians, are circles of latitude. The 
circles parallel to the plane of the ecliptic, analogous to par-
allels on the Earth, are parallels of latitude or circles of 
longitude. Angular distance north or south of the ecliptic, 
analogous to latitude, is ecliptic latitude. Ecliptic longitude 
is measured eastward along the ecliptic through 360°, start-
ing at the vernal equinox. The mean plane of the Sun's orbit 

lies in the ecliptic and the planes of the orbits of the Moon 
and planets are near the ecliptic. Because the planes of their 
orbits lie near the ecliptic, it is easier to predict the positions 
of the Sun, Moon, and planets using ecliptic coordinates. 

The four systems of celestial coordinates are analogous to 
each other and to the terrestrial system, although each has distinc-
tions such as differences in primary reference planes. Table 1329
indicates the analogous term or terms under each system. Also 
see Table 1330.

Figure 1329a. Elements of the celestial sphere. The celestial horizon is the primary great circle.

Earth Celestial Equator Horizon Ecliptic

equator celestial equator horizon ecliptic

poles celestial poles zenith; nadir ecliptic poles

meridians hours circle; celestial meridians vertical circles circles of latitude

prime meridian hour circle of Aries principal or prime vertical circle circle of latitude through Aries

parallels parallels of declination parallels of altitude parallels of latitude

latitude declination altitude ecliptic altitude

colatitude polar distance zenith distance ecliptic colatitude

longitude SHA; RA; GHA; LHA; t azimuth; azimuth angle; amplitude ecliptic longitude

Table 1329. The four systems of celestial coordinates and their analogous terms.
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Figure 1329b. Elements of the celestial sphere. The celestial horizon.

NAVIGATIONAL COORDINATES

Coordinate Symbol Measured from Measured along
Direc-
tion

Measured to Units
Preci-
sion

Maximum value Labels

latitude L, lat. equator meridian N, S parallel °, ¢ 0¢.1 90° N, S

colatitude colat. poles meridian S, N parallel °, ¢ 0¢.1 90° —

longitude l, long. prime meridian parallel E, W local meridian °, ¢ 0¢.1 180° E, W

declination d, dec. celestial equator hour circle N, S
parallel of 
declination °, ¢ 0¢.1 90° N, S

polar distance p elevated pole hour circle S, N
parallel of 
declination °, ¢ 0¢.1 180° —

altitude h horizon vertical circle up
parallel of 

altitude °, ¢ 0¢.1 90°* —

zenith distance z zenith vertical circle down
parallel of 

altitude °, ¢ 0¢.1 180° —

azimuth Zn north horizon E vertical circle ° 0°.1 360° —

azimuth angle Z north, south horizon E, W vertical circle ° 0°.1 180° or 90° N, S...E, W

amplitude A east, west horizon N, S body ° 0°.1 90° E, W...N, S

Greenwich 
hour angle

GHA Greenwich 
celestial meridian

parallel of 
declination

W hour circle °, ¢ 0¢.1 360° —

Table 1330. Navigational Coordinates.
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1331. The Navigational Triangle

A triangle formed by arcs of great circles of a sphere is 
called a spherical triangle. A spherical triangle on the ce-
lestial sphere is called a celestial triangle. The spherical 
triangle of particular significance to navigators is called the 
navigational triangle, formed by arcs of a celestial merid-
ian, an hour circle, and a vertical circle. Its vertices are the 
elevated pole, the zenith, and a point on the celestial sphere
(usually a celestial body). The terrestrial counterpart is also 
called a navigational triangle, being formed by arcs of two 
meridians and the great circle connecting two places on the 
Earth, one on each meridian. The vertices are the two places 
and a pole. In great-circle sailing these places are the point 
of departure and the destination. In celestial navigation they 
are the assumed position (AP) of the observer and the geo-
graphical position (GP) of the body (the point on the 
Earth’s surface having the body in its zenith). The GP of the 
Sun is sometimes called the subsolar point, that of the 
Moon the sublunar point, that of a satellite (either natural 
or artificial) the subsatellite point, and that of a star its sub-
stellar or subastral point. When used to solve a celestial 
observation, either the celestial or terrestrial triangle may 
be called the astronomical triangle.

local hour 
angle

LHA local celestial 
meridian

parallel of 
declination

W hour circle °, ¢ 0¢.1 360° —

meridian angle t local celestial 
meridian

parallel of 
declination

E, W hour circle °, ¢ 0¢.1 180° E, W

sidereal hour 
angle

SHA hour circle of 
vernal equinox

parallel of 
declination

W hour circle °, ¢ 0¢.1 360° —

right ascension RA hour circle of 
vernal equinox

parallel of 
declination

E hour circle h, m, s 1s 24h —

Greenwich 
mean time

GMT
lower branch 
Greenwich 

celestial meridian

parallel of 
declination

W
hour circle mean 

Sun
h, m, s 1s 24h —

local mean 
time

LMT
lower branch 
local celestial 

meridian

parallel of 
declination

W
hour circle mean 

Sun
h, m, s 1s 24h —

zone time ZT
lower branch 
zone celestial 

meridian

parallel of 
declination

W
hour circle mean 

Sun
h, m, s 1s 24h —

Greenwich 
apparent time

GAT
lower branch 
Greenwich 

celestial meridian

parallel of 
declination

W
hour circle 

apparent Sun
h, m, s 1s 24h —

local apparent 
time

LAT
lower branch 
local celestial 

meridian

parallel of 
declination

W
hour circle 

apparent Sun
h, m, s 1s 24h —

Greenwich 
sidereal time

GST Greenwich 
celestial meridian

parallel of 
declination

W
hour circle vernal 

equinox
h, m, s 1s 24h —

local sidereal 
time

LST
local celestial 

meridian
parallel of 
declination

W
hour circle vernal 

equinox
h, m, s 1s 24h —

NAVIGATIONAL COORDINATES

Coordinate Symbol Measured from Measured along
Direc-
tion

Measured to Units
Preci-
sion

Maximum value Labels

Table 1330. Navigational Coordinates.

Figure 1331a. The navigational triangle.
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The navigational triangle is shown in Figure 1331a on
a diagram on the plane of the celestial meridian. The Earth
is at the center, O. The star is at M, dd' is its parallel of dec-
lination, and hh' is its altitude circle.

In the figure, arc QZ of the celestial meridian is the lat-
itude of the observer, and PnZ, one side of the triangle, is
the colatitude. Arc AM of the vertical circle is the altitude
of the body, and side ZM of the triangle is the zenith dis-
tance, or coaltitude. Arc LM of the hour circle is the
declination of the body, and side PnM of the triangle is the
polar distance, or codeclination.

The angle at the elevated pole, ZPnM, having the hour
circle and the celestial meridian as sides, is the meridian an-
gle, t. The angle at the zenith, PnZM, having the vertical
circle and that arc of the celestial meridian, which includes
the elevated pole, as sides, is the azimuth angle. The angle
at the celestial body, ZMPn, having the hour circle and the
vertical circle as sides, is the parallactic angle (q) (some-
times called the position angle), which is not generally used
by the navigator.

A number of problems involving the navigational tri-
angle are encountered by the navigator, either directly or
indirectly. Of these, the most common are:

1. Given latitude, declination, and meridian angle, to find
of a celestial observation to establish a line of position.

2. Given latitude, altitude, and azimuth angle, to find
declination and meridian angle. This is used to
identify an unknown celestial body.

3. Given meridian angle, declination, and altitude, to
find azimuth angle. This may be used to find
azimuth when the altitude is known.

4. Given the latitude of two places on the Earth and
the difference of longitude between them, to find
the initial great-circle course and the great-circle
distance. This involves the same parts of the
triangle as in 1, above, but in the terrestrial triangle,
and hence is defined differently.

Both celestial and terrestrial navigational triangles
were shown in Figure 1529b of the Bowditch 2002 edition.

IDENTIFICATION OF STARS AND PLANETS

1332. Introduction

A basic requirement of celestial navigation is the
ability to identify the bodies observed. This is not diffi-
cult because relatively few stars and planets are
commonly used for navigation, and various aids are
available to assist in their identification. See Figure 1332,
Figure 1333, Figure 1334a and Figure 1334b.

Identification of the Sun and Moon is straight-
forward, however, the planets can be mistaken for stars.
A person working continually with the night sky
recognizes a planet by its changing position among the
relatively fixed stars. The planets are identified by
noting their positions relative to each other, the Sun, the
Moon, and the stars. They remain within the narrow
limits of the ecliptic, but are in almost constant motion
relative to the stars. The magnitude (brightness) and
color may be helpful; they are some of the brightest
objects in the sky. The information needed is found in
the Nautical Almanac. The “Planet Notes” near the front
of that volume are particularly useful. Planets can also be
identified by planet diagram, star finder, sky diagram, or
by computation.

1333. Stars

The Nautical Almanac lists full navigational informa-
tion on 19 first magnitude stars and 38 second magnitude
stars, plus Polaris given its proximity to the north celestial
pole. These are known as “selected stars” and are listed in the
Index to Selected Stars in the Nautical Almanac. These stars
can also be seen in Figure 1333 - Distribution of Selected
Stars from the Nautical Almanac. These are some of the

brightest stars, and span declinations from 70° south to 89°
north on the celestial sphere. Abbreviated information is list-
ed for 115 more, known as “tabulated stars.” Additional stars
are listed in the Astronomical Almanac and in various star
catalogs. About 6,000 stars are visible to the unaided eye on
clear, dark nights across the entire sky. 

Stars are designated by one or more of the following
naming systems:

• Common Name: Most names of stars, as now used,
were given by the ancient Arabs and some by the
Greeks or Romans. One of the stars of the Nautical
Almanac, Nunki, was named by the Babylonians.
Only a relatively few stars and often only the
brightest have common names. Several of the stars
on the daily pages of the almanacs had no name prior
to 1953.

• Bayer’s Name: Most bright stars, including those
with names, have been given a designation
consisting of a Greek letter followed by the
possessive form of the name of the constellation. For
example, the brightest star in the constellation
Cygnus is known as (Greek letter “alpha”) Cygni,
and also by its common name, Deneb. Roman letters
are used when there are not enough Greek letters.
Usually, the letters are assigned in order of
brightness within the constellation; however, this is
not always the case. For example, the letter
designations of the stars in Ursa Major or the Big
Dipper are assigned in order from the outer rim of
the bowl to the end of the handle. This system of star
designation was suggested by John Bayer of
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Figure 1332. Navigational stars and the planets.
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Augsburg, Germany, in 1603. All of the 173 stars 
included in the list near the back of the Nautical 
Almanac are listed by Bayer's name, and, when 
applicable, their common name.

• Flamsteed’s Number: This system assigns numbers 
to stars in each constellation, from west to east in the 
order in which they cross the celestial meridian. An 
example is 95 Leonis, the 95th star in the constel-
lation Leo. This system was suggested by John 
Flamsteed (1646-1719).

• Catalog Number: Stars are sometimes designated by 
the name of a star catalog and the number of the star 
as given in the catalog, such as the Henry Draper or 
Hipparcos catalogs. Stars are frequently listed in cata-
logs by increasing right ascension coordinate, without 
regard to constellation, for example, Polaris is known 
as HD 8890 and HIP 11767 in these catalogs. Naviga-
tors seldom have occasion to use this system.

1334. Star Charts

It is useful to be able to identify stars by relative position. A 
star chart (Figure 1334a and Figure 1334b) is helpful in locat-
ing these relationships and others which may be useful. This 
method is limited to periods of relatively clear, dark skies with 
little or no overcast. Stars can also be identified by the Air Alma-
nac sky diagrams, a star finder, Pub. No. 249, or by 

computation by hand, navigational calculator, computer soft-
ware or even smart phone applications.

Star charts are based upon the celestial equator sys-
tem of coordinates, using declination and sidereal hour 
angle (or right ascension). See Figure 1334c for a graphical 
depiction of right ascension. The zenith of the observer is 
at the intersection of the parallel of declination equal to his 
or her latitude, and the hour circle coinciding with his or 
her celestial meridian. This hour circle has an SHA equal 
to 360° – LHA (or RA = LHA ). The horizon is 
everywhere 90° from the zenith. 

A star globe is similar to a terrestrial sphere, but with stars 
(and often constellations) shown instead of geographical posi-
tions. The Nautical  Almanac (page 260) includes  instructions 
for  using  this device. On a star globe the celestial sphere is 
shown as it would appear to an observer outside the sphere. Con-
stellations appear reversed. Star charts may show a similar view, 
but more often they are based upon the view from inside the 
sphere, as seen from the Earth. On these charts, north is at the top, 
as with maps, but east is to the left and west to the right. The di-
rections seem correct when the chart is held overhead, with the 
top toward the north, so the relationship is similar to the sky.

The Nautical Almanac has four star charts, located on 
pages 266 and 267. Two are polar projections of each hemi-
sphere, and two are Mercator projections from 30°N to 30°S. 
On any of these charts, the zenith can be located as indicated, 
to determine which stars are overhead. The horizon is 90° from 
the zenith. The charts can also be used to determine the loca-
tion of a star relative to surrounding stars.

Figure 1333. Distribution of Selected Stars from the Nautical Almanac.
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Figure 1334a. Star chart from Nautical Almanac.
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Figure 1334b. Star chart from Nautical Almanac.
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The star charts shown in Figure 1335 through Figure 
1338 on the transverse Mercator projection, are designed to 
assist in learning Polaris and the stars listed on the daily 
pages of the Nautical Almanac. Each chart extends about 
20° beyond each celestial pole, and about 60° (four hours) 
each side of the central hour circle (at the celestial equator). 
Therefore, they do not coincide exactly with that half of the 
celestial sphere above the horizon at any one time or place. 

The zenith, and hence the horizon, varies with the position 
of the observer on the Earth. It also varies with the rotation 
of the Earth (apparent rotation of the celestial sphere). The 
charts show all stars of fifth magnitude and brighter as they 
appear in the sky, but with some distortion toward the right 
and left edges.

The overprinted lines add certain information of use in 
locating the stars. Only Polaris and the 57 stars listed on the 

Figure 1334c. Star chart from Nautical Almanac.

Fig. 1335 Fig.1336 Fig. 1337 Fig. 1338

Local sidereal time 0000 0600 1200 1800
LMT 1800 Dec. 21 Mar. 22 June 22 Sept. 21
LMT 2000 Nov. 21 Feb. 20 May 22 Aug. 21
LMT 2200 Oct. 21 Jan. 20 Apr. 22 July 22
LMT 0000 Sept. 22 Dec. 22 Mar. 23 June 22
LMT 0200 Aug. 22 Nov. 21 Feb. 21 May 23
LMT 0400 July 23 Oct. 22 Jan 21 Apr. 22
LMT 0600 June 22 Sept. 21 Dec. 22 Mar. 23

Table 1334. Locating the zenith on the star diagrams.
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daily pages of the Nautical Almanac are named on the 
charts. The almanac star charts can be used to locate the ad-
ditional stars given near the back of the Nautical Almanac
and the Air Almanac. Dashed lines connect stars of some of 
the more prominent constellations. Solid lines indicate the 
celestial equator and useful relationships among stars in dif-
ferent constellations. The celestial poles are marked by 
crosses, and labeled. By means of the celestial equator and 
the poles, an observer can locate the zenith approximately 
along the mid hour circle, when this coincides with the ce-
lestial meridian, as shown in Table 1334. At any time 
earlier than those shown in Table 1334. The zenith is to the 
right of center, and at a later time it is to the left, approxi-
mately one-quarter of the distance from the center to the 
outer edge (at the celestial equator) for each hour that the 
time differs from that shown. The stars in the vicinity of the 
north celestial pole can be seen in proper perspective by in-
verting the chart, so that the zenith of an observer in the 
Northern Hemisphere is up from the pole.

1335. Stars in the Vicinity of Pegasus

In autumn the evening sky has few first magnitude 
stars. Most are near the southern horizon of an observer in 
the latitudes of the United States. A relatively large number 
of second and third magnitude stars seem conspicuous, per-
haps because of the small number of brighter stars. High in 
the southern sky three third magnitude stars and one second 
magnitude star form a square with sides nearly 15° of  arc 
in length. This is Pegasus, the winged horse.

Only Markab at the southwestern corner and Alpheratz 
at the northeastern corner are listed on the daily pages of the 
Nautical Almanac. Alpheratz is part of the constellation 
Andromeda, the princess, extending in an arc toward the 
northeast and terminating at Mirfak in Perseus, legendary 
rescuer of Andromeda.

A line extending northward through the eastern side of 
the square of Pegasus passes through the leading (western) 
star of M-shaped (or W-shaped) Cassiopeia, the legendary 
mother of the princess Andromeda. The only star of this 
constellation listed on the daily pages of the Nautical Alma-
nac is Schedar, the second star from the leading one as the 
configuration circles the pole in a counterclockwise direc-
tion. If the line through the eastern side of the square of 
Pegasus is continued on toward the north, it leads to second 
magnitude Polaris, the North Star (less than 1° from the 
north celestial pole) and brightest star of Ursa Minor, the 
Little Dipper. Kochab, a second magnitude star at the other 
end of Ursa Minor, is also listed in the almanacs. At this 
season Ursa Major is low in the northern sky, below the ce-
lestial pole. A line extending from Kochab through Polaris 
leads to Mirfak, assisting in its identification when Pegasus 
and Andromeda are near or below the horizon.

Deneb, in Cygnus, the swan, and Vega are bright, first 
magnitude stars in the northwestern sky. The line through 
the eastern side of the square of Pegasus approximates the 

hour circle of the vernal equinox, shown at Aries on the ce-
lestial equator to the south. The Sun is at Aries on or about 
March 21, when it crosses the celestial equator from south 
to north. If the line through the eastern side of Pegasus is ex-
tended southward and curved slightly toward the east, it 
leads to second magnitude Diphda. A longer and straighter 
line southward through the western side of Pegasus leads to 
first magnitude Fomalhaut. A line extending northeasterly 
from Fomalhaut through Diphda leads to Menkar, a third 
magnitude star, but the brightest in its vicinity. Ankaa, 
Diphda, and Fomalhaut form an isosceles triangle, with the 
apex at Diphda. Ankaa is near or below the southern hori-
zon of observers in latitudes of the United States. Four stars 
farther south than Ankaa may be visible when on the celes-
tial meridian, just above the horizon of observers in 
latitudes of the extreme southern part of the United States. 
These are Acamar, Achernar, Al Na’ir, and Peacock. These 
stars, with each other and with Ankaa, Fomalhaut, and 
Diphda, form a series of triangles as shown in Figure 1335. 
Almanac stars near the bottom of Figure 1335 are discussed 
in succeeding articles.

Two other almanac stars can be located by their posi-
tions relative to Pegasus. These are Hamal in the 
constellation Aries, the ram, east of Pegasus, and Enif, west 
of the southern part of the square, identified in Figure 1335. 
The line leading to Hamal, if continued, leads to the Pleia-
des (the Seven Sisters), not used by navigators for celestial 
observations, but a prominent figure in the sky, heralding 
the approach of the many conspicuous stars of the winter 
evening sky.

1336. Stars in the Vicinity of Orion

As Pegasus leaves the meridian and moves into the 
western sky, Orion, the hunter, rises in the east. With the 
possible exception of Ursa Major, no other configuration of 
stars in the entire sky is as well known as Orion and its im-
mediate surroundings. In no other region are there so many 
first magnitude stars.

The belt of Orion, nearly on the celestial equator, is 
visible in virtually any latitude, rising and setting almost on 
the prime vertical, and dividing its time equally above and 
below the horizon. Of the three second magnitude stars 
forming the belt, only Alnilam, the middle one, is listed on 
the daily pages of the Nautical Almanac.

Four conspicuous stars form a box around the belt. 
Rigel, a hot, blue star, is to the south. Betelgeuse, a cool, red 
star lies to the north. Bellatrix, bright for a second 
magnitude star but overshadowed by its first magnitude 
neighbors, is a few degrees west of Betelgeuse. Neither the 
second magnitude star forming the southeastern corner of 
the box, nor any star of the dagger, is listed on the daily 
pages of the Nautical Almanac.

A line extending eastward from the belt of Orion, and 
curving toward the south, leads to Sirius, the brightest star 
in the entire heavens, having a magnitude of –1.6. Only 



NAVIGATIONAL ASTRONOMY 249

Figure 1335. Stars in the vicinity of Pegasus.
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Figure 1336. Stars in the vicinity of Orion.
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Mars and Jupiter at or near their greatest brilliance, the Sun, 
Moon, and Venus are brighter than Sirius. Sirius is part of 
the constellation Canis Major, the large hunting dog of 
Orion. Starting at Sirius a curved line extends northward 
through first magnitude Procyon, in Canis Minor, the small 
hunting dog; first magnitude Pollux and second magnitude 
Castor (not listed on the daily pages of the Nautical 
Almanac), the twins of Gemini; brilliant Capella in Auriga, 
the charioteer; and back down to first magnitude 
Aldebaran, the follower, which trails the Pleiades, the seven 
sisters. Aldebaran, brightest star in the head of Taurus, the 
bull, may also be found by a curved line extending 
northwestward from the belt of Orion. The V-shaped figure 
forming the outline of the head and horns of Taurus points 
toward third magnitude Menkar. At the summer solstice the 
Sun is between Pollux and Aldebaran.

If the curved line from Orion’s belt southeastward to 
Sirius is continued, it leads to a conspicuous, small, nearly 
equilateral triangle of three bright second magnitude stars 
of nearly equal brilliancy. This is part of Canis Major. Only 
Adhara, the westernmost of the three stars, is listed on the 
daily pages of the Nautical Almanac. Continuing on with 
somewhat less curvature, the line leads to Canopus, second 
brightest star in the heavens and one of the two stars having 
a negative magnitude (–0.9). With Suhail and Miaplacidus, 
Canopus forms a large, equilateral triangle which partly en-
closes the group of stars often mistaken for Crux. The 
brightest star within this triangle is Avior, near its center. 
Canopus is also at one apex of a triangle formed with Ad-
hara to the north and Suhail to the east, another triangle with 
Acamar to the west and Achernar to the southwest, and an-
other with Achernar and Miaplacidus. Acamar, Achernar, 
and Ankaa form still another triangle toward the west. Be-
cause of chart distortion, these triangles do not appear in the 
sky in exactly the relationship shown on the star chart. Oth-
er daily-page almanac stars near the bottom of Figure 1336
are discussed in succeeding articles.

In the winter evening sky, Ursa Major is east of Polaris, 
Ursa Minor is nearly below it, and Cassiopeia is west of it. 
Mirfak is northwest of Capella, nearly midway between it and 
Cassiopeia. Hamal is in the western sky. Regulus and Alphard 
are low in the eastern sky, heralding the approach of the 
configurations associated with the evening skies of spring.

1337. Stars in the Vicinity of Ursa Major

As if to enhance the splendor of the sky in the vicinity 
of Orion, the region toward the east, like that toward the 
west, has few bright stars, except in the vicinity of the south 
celestial pole. However, as Orion sets in the west, leaving 
Capella and Pollux in the northwestern sky, a number of 
good navigational stars move into favorable positions for 
observation.

Ursa Major, the great bear, appears prominently above 
the north celestial pole, directly opposite Cassiopeia, which 
appears as a “W” just above the northern horizon of most 

observers in latitudes of the United States. Of the seven 
stars forming Ursa Major, only Dubhe, Alioth, and Alkaid 
are in the list of selected stars in Nautical Almanac. See Fig-
ure 1337.

The two second magnitude stars forming the outer part 
of the bowl of Ursa Major are often called the pointers 
because a line extending northward (down in spring 
evenings) through them points to Polaris. Ursa Minor, the 
Little Bear, contains Polaris at one end and Kochab at the 
other. Relative to its bowl, the handle of Ursa Minor curves 
in the opposite direction to that of Ursa Major.

A line extending southward through the pointers, and 
curving somewhat toward the west, leads to first magnitude 
Regulus, brightest star in Leo, the lion. The head, shoulders, 
and front legs of this constellation form a sickle, with 
Regulus at the end of the handle. Toward the east is second 
magnitude Denebola, the tail of the lion. On toward the 
southwest from Regulus is second magnitude Alphard, 
brightest star in Hydra, the sea serpent. A dark sky and 
considerable imagination are needed to trace the long, 
winding body of this figure.

A curved line extending the arc of the handle of Ursa 
Major leads to first magnitude Arcturus. With Alkaid and 
Alphecca, brightest star in Corona Borealis, the Northern 
Crown, Arcturus forms a large, inconspicuous triangle. If 
the arc through Arcturus is continued, it leads next to first 
magnitude Spica and then to Corvus, the crow. The 
brightest star in this constellation is Gienah, but three others 
are nearly as bright. At autumnal equinox, the Sun is on the 
celestial equator, about midway between Regulus and 
Spica.

A long, slightly curved line from Regulus, east-
southeasterly through Spica, leads to Zubenelgenubi at the 
southwestern corner of an inconspicuous box-like figure 
called Libra, the scales.

Returning to Corvus, a line from Gienah, extending 
diagonally across the figure and then curving somewhat 
toward the east, leads to Menkent, just beyond Hydra.

Far to the south, below the horizon of most northern 
hemisphere observers, a group of bright stars is a prominent 
feature of the spring sky of the Southern Hemisphere. This is 
Crux, the Southern Cross. Crux is about 40° south of Corvus. 
The “false cross” to the west is often mistaken for Crux. 
Acrux at the southern end of Crux and Gacrux at the northern 
end are selected stars, listed on the daily pages of the 
Nautical Almanac.

The triangles formed by Suhail, Miaplacidus, and Canopus, 
and by Suhail, Adhara, and Canopus, are west of Crux. Suhail is 
in line with the horizontal arm of Crux. A line from Canopus, 
through Miaplacidus, curved slightly toward the north, leads to 
Acrux. A line through the east-west arm of Crux, eastward and 
then curving toward the south, leads first to Hadar and then to 
Rigil Kentaurus, both very bright stars. Continuing on, the 
curved line leads to small Triangulum Australe, the Southern 
Triangle, the easternmost star of which is Atria.



252 NAVIGATIONAL ASTRONOMY

Figure 1337. Stars in the vicinity of Ursa Major.
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1338. Stars in the Vicinity of Cygnus

As the celestial sphere continues in its apparent west-
ward rotation, the stars familiar to a spring evening 
observer sink low in the western sky. By midsummer, Ursa 
Major has moved to a position to the left of the north celes-
tial pole, and the line from the pointers to Polaris is nearly 
horizontal. Ursa Minor, is standing on its handle, with 
Kochab above and to the left of the celestial pole. Cassiope-
ia is at the right of Polaris, opposite the handle of Ursa 
Major. See Figure 1338.

The only first magnitude star in the western sky is Arc-
turus, which forms a large, inconspicuous triangle with 
Alkaid, the end of the handle of Ursa Major, and Alphecca, 
the brightest star in Corona Borealis, the Northern Crown.

The eastern sky is dominated by three very bright 
stars. The westernmost of these is Vega, the brightest 
star north of the celestial equator, and third brightest star 
in the heavens, with a magnitude of 0.1. With a 
declination of a little less than 39°N, Vega passes 
through the zenith along a path across the central part of 
the United States, from Washington in the east to San 
Francisco on the Pacific coast. Vega forms a large but 
conspicuous triangle with its two bright neighbors, 
Deneb to the northeast and Altair to the southeast. The 
angle at Vega is nearly a right angle. Deneb is at the end 
of the tail of Cygnus, the swan. This configuration is 
sometimes called the Northern Cross, with Deneb at the 
head. To modern youth it more nearly resembles a dive 
bomber, while it is still well toward the east, with Deneb 
at the nose of the fuselage. Altair has two fainter stars 
close by, on opposite sides. The line formed by Altair 
and its two fainter companions, if extended in a 
northwesterly direction, passes through Vega, and on to 
second magnitude Eltanin. The angular distance from 
Vega  to  Eltanin  is  about  half  that  from Altair to 
Vega. Vega and Altair, with second magnitude 
Rasalhague to the west, form a large equilateral triangle. 
This is less conspicuous than the Vega-Deneb-Altair 
triangle because the brilliance of Rasalhague is much 
less than that of the three first magnitude stars, and the 
triangle is overshadowed by the brighter one.

Far to the south of Rasalhague, and a little toward the 
west, is a striking configuration called Scorpius, the scorpi-
on. The brightest star, forming the head, is red Antares. At 
the tail is Shaula.

Antares is at the southwestern corner of an 
approximate parallelogram formed by Antares, Sabik, 
Nunki, and Kaus Australis. With the exception of Antares, 
these stars are only slightly brighter than a number of others 
nearby, and so this parallelogram is not a striking figure. At 
winter solstice the Sun is a short distance northwest of 
Nunki.

Northwest of Scorpius is the box-like Libra, the scales, 
of which Zubenelgenubi marks the southwest corner.

With Menkent and Rigil Kentaurus to the southwest, 

Antares forms a large but unimpressive triangle. For most 
observers in the latitudes of the United States, Antares is 
low in the southern sky, and the other two stars of the 
triangle are below the horizon. To an observer in the 
Southern Hemisphere Crux is to the right of the south 
celestial pole, which is not marked by a conspicuous star. A 
long, curved line, starting with the now-vertical arm of 
Crux and extending northward and then eastward, passes 
successively through Hadar, Rigil Kentaurus, Peacock, and 
Al Na’ir.

Fomalhaut is low in the southeastern sky of the southern 
hemisphere observer, and Enif is low in the eastern sky at 
nearly any latitude. With the appearance of these stars it is not 
long before Pegasus will appear over the eastern horizon 
during the evening, and as the winged horse climbs evening by 
evening to a position higher in the sky, a new annual cycle 
approaches.

1339. Planet Diagram

The planet diagram, on page 9 of the Nautical Almanac
shows, for any date, the Local Mean Time (LMT) of merid-
ian passage of the Sun, for the five planets Mercury, Venus, 
Mars, Jupiter, and Saturn, and of each 30° of SHA (Figure 
1339). The diagram provides a general picture of the avail-
ability of planets and stars for observation, and thus shows:

1. Whether a planet or star is too close to the Sun for 
observation.

2. Whether a planet is a morning or evening star.
3. Some indication of the planet’s position during 

twilight.
4. The proximity of other planets.
5. Whether a planet is visible from evening to 

morning twilight.

A band 45 minutes wide is shaded on each side of the 
curve marking the LMT of meridian passage of the Sun. 
Planets and stars lying within the shaded area are too close to 
the Sun for observation.

When the meridian passage occurs at midnight, the 
body is in opposition to the Sun and is visible all night; 
planets may be observable in both morning and evening 
twilights. When meridian passage is between 12h and 24h 
(that is, after the Sun's meridian passage), the object is vis-
ible in the evening sky, after sunset. When meridian 
passage is between 0 and 12 hours (that is, before the Sun's 
meridian passage) the object is visible in the morning sky, 
before sunrise. Graphically, if the curve for a planet inter-
sects the vertical line connecting the date graduations below 
the shaded area, the planet is a morning “star”; if the inter-
section is above the shaded area, the planet is an evening 
“star”. 

Only about one-half the region of the sky along the 
ecliptic, as shown on the diagram, is above the horizon at 
one time. At sunrise (LMT about 6h) the Sun and, hence, the 



254 NAVIGATIONAL ASTRONOMY

Figure 1338. Stars in the vicinity of Cygnus.
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region near the middle of the diagram, are rising in the east; 
the region at the bottom of the diagram is setting in the west. 
The region half way between is on the meridian. At sunset 
(LMT about 18h) the Sun is setting in the west; the region 
at the top of the diagram is rising in the east. Marking the 
planet diagram of the Nautical Almanac so that east is at the 
top of the diagram and west is at the bottom can be useful 
to interpretation.

A similar planet location diagram in the Air Almanac
(pages A122-A123) represents the region of the sky along 
the ecliptic. It shows, for each date, the Sun in the center 
and the relative positions of the Moon, the five planets Mer-
cury, Venus, Mars, Jupiter, Saturn and the four first 
magnitude stars Aldebaran, Antares, Spica, and Regulus, 
and also the position on the ecliptic which is north of Sirius 
(i.e. Sirius is 40° south of this point). The first point of Aries 
is also shown for reference. The magnitudes of the planets 
are given at suitable intervals along the curves. The Moon 
symbol shows the correct phase. A straight line joining the 
date on the left-hand side with the same date of the right-
hand side represents a complete circle around the sky, the 
two ends of the line representing the point 180° from the 
Sun; the intersections with the curves show the spacing of 
the bodies along the ecliptic on the date. The time scale in-
dicates roughly the local mean time at which an object will 
be on the observer’s meridian.

At any time only about half the region on the diagram 
is above the horizon. At sunrise the Sun (and hence the re-
gion near the middle of the diagram), is rising in the east 
and the region at the end marked “West” is setting in the 
west; the region half-way between these extremes is on the 
meridian, as will be indicated by the local time (about 6h). 
At the time of sunset (local time about 18h) the Sun is set-
ting in the west, and the region at the end marked “East” is 
rising in the east. The diagram should be used in conjunc-
tion with the Sky Diagrams.

1340. Finding Stars for a Fix

Various devices have been invented to help an observer 
find individual stars. The most widely used is the Star Finder 
and Identifier, also known as a Rude Star Finder and for-
merly published by the U.S. Navy Hydrographic Office as No. 
2102D. It is no longer issued, but it is still available commer-
cially. A navigational calculator or computer program, like the 
U.S. Navy STELLA program is much quicker, more accurate, 
and less tedious. A navigational calculator can be used to pre-
dict the best stars to observe for a fix. See Section 1900 - 
Computer Sight Reduction for a more thorough discussion.

HO Publication 249, (Rapid Sight Reduction Tables for 
Navigation), Volume 1, identifies the best three and seven 
stars for a navigational fix given an observer's latitude and 
LHA of Aries. This publication is also known as AP 3270. 

The navigational program also solves for the LOP's for 
each object observed, combines them into the best fix, and 
displays the lat./long. position. Most navigational programs 

also print out a plotted fix, just as the navigator might have 
drawn by hand. 

Computer sight reduction programs can also automati-
cally predict twilight on a moving vessel and create a plot 
of the sky at the vessel's twilight location (or any location, 
at any time). This plot will be free of the distortion inherent 
in the mechanical star finders and will show all bodies, even 
planets, Sun, and Moon, in their correct relative orientation 
centered on the observer's zenith. It will also indicate which 
stars provide the best geometry for a fix. 

Computer sight reduction programs or celestial naviga-
tion calculators, or apps are especially useful when the sky 
is only briefly visible thorough broken cloud cover. 

1341. Identification by Computation

If the altitude and azimuth of the celestial body, and the 
approximate latitude of the observer, are known, the navi-
gational triangle can be solved for meridian angle and 
declination. The meridian angle can be converted to LHA, 
and this to GHA. With this and GHA  at the time of ob-
servation, the SHA of the body can be determined. With 
SHA and declination, one can identify the body by refer-
ence to an almanac. Any method of solving a spherical 
triangle, with two sides and the included angle being given, 
is suitable for this purpose. 

Although no formal star identification tables are 
included in Pub. No. 229, a simple approach to star identi-
fication is to scan the pages of the appropriate latitudes, and 
observe the combination of arguments which give the 
altitude and azimuth angle of the observation. Thus the 
declination and LHA H are determined directly. The star’s 
SHA is found from SHA H = LHA H – LHA . From 
these quantities the star can be identified from the Nautical 
Almanac.

Another solution is available through an interchange of 
arguments using the nearest integral values. The procedure 
consists of entering Pub. No. 229 with the observer’s latitude 
(same name as declination), with the observed azimuth angle 
(converted from observed true azimuth as required) as LHA 
and the observed altitude as declination, and extracting from 
the tables the altitude and azimuth angle respondents. The 
extracted altitude becomes the body’s declination; the 
extracted azimuth angle (or its supplement) is the meridian 
angle of the body. Note that the tables are always entered 
with latitude of same name as declination. In north latitudes 
the tables can be entered with true azimuth as LHA.

If the respondents are extracted from above the C-S 
Line on a right-hand page, the name of the latitude is 
actually contrary to the declination. Otherwise, the 
declination of the body has the same name as the latitude. If 
the azimuth angle respondent is extracted from above the C-
S Line, the supplement of the tabular value is the meridian 
angle, t, of the body. If the body is east of the observer’s 
meridian, LHA = 360° – t; if the body is west of the 
meridian, LHA = t.



256 NAVIGATIONAL ASTRONOMY

Figure 1339. Reproduction of Nautical Almanac Page 9.



NAVIGATIONAL ASTRONOMY 257

Figure 1341. The Ghost of Cassiopeia. Image Credits: NASA, ESA and STScl; Acknowledgment: H. Arab (University of 
Strasbourg). Powerful gushers of energy from seething stars can sculpt eerie-looking figures with long, flowing veils of gas 
and dust. One striking example is "the Ghost of Cassiopeia" officially known as IC 63, located 550 light-years away in the 
constellation Cassiopeia the Queen.The constellation Cassiopeia is visible every clear night from mid-northern and higher 
latitudes. Its distinctive "W" asterism, which forms the queen's throne, is best seen high in the sky on autumn and winter 

evenings. Gamma Cassiopeiae, the middle star in the W, is visible to the unaided eye, but a large telescope is needed to see 
IC 63. Hubble photographed IC 63 in August 2016.
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CHAPTER 14 

INSTRUMENTS FOR CELESTIAL NAVIGATION

THE MARINE SEXTANT

1400. Description and Use

The marine sextant measures the angle between two 
points by bringing the direct image from one point and a 
double-reflected image from the other into coincidence. Its 
principal use is to measure the altitudes of celestial bodies 
above the visible sea horizon. It may also be used to measure 
vertical angles to find the range from an object of known 
height. The marine sextant can also be used to render a 
visual Line of Position (LOP) by turning it on its side to 
horizontally measure the angular distance between two 
terrestrial objects. See Chapter 11- Use of Sextant in 
Piloting.

A marine sextant can measure angles up to approxi-
mately 120°. Originally, the term “sextant” was applied to 
the navigator’s double-reflecting, altitude-measuring 
instrument only if its arc was 60° in length, or 1/6 of a 
circle, permitting measurement of angles from 0° to 120°. 
In modern usage the term is applied to all modern naviga-
tional altitude-measuring instruments regardless of angular 
range or principles of operation.

1401. Optical Principles of a Sextant

When a plane surface reflects a light ray, the angle of re-
flection equals the angle of incidence. The angle between the 
first and final directions of a ray of light that has undergone 
double reflection in the same plane is twice the angle the two 
reflecting surfaces make with each other.

In Figure 1401 - Optical principle of the marine sextant, 
S to M is a ray of light from a celestial body. 

The index mirror of the sextant is at M, the horizon 
glass at F, and the eye of the observer at A. The ray of light 
from S is reflected at mirror M, proceeds to mirror F, where 
it is again reflected, and then continues on to the eye of the 
observer. Geometrically, it can be shown that the altitude of 
the object S (angle ) is two times that of the angle between 

the mirrors (angle ). The graduations on the arc give the 
altitude. 

1402. Micrometer Drum Sextant

Figure 1402 shows a modern marine sextant, called a 
micrometer drum sextant. In most marine sextants, brass 
or aluminum comprise the frame, A. Frames come in vari-

ous designs; most are similar to this. Teeth mark the outer 
edge of the limb, B; each tooth marks one degree of alti-
tude. The altitude graduations, C, along the limb, mark the 
arc. Some sextants have an arc marked in a strip of brass, 
silver, or platinum inlaid in the limb.

The index arm, D, is a movable bar of the same material 
as the frame. It pivots about the center of curvature of the 
limb. The tangent screw, E, is mounted perpendicularly on 
the end of the index arm, where it engages the teeth of the 
limb. Because the observer can move the index arm through 
the length of the arc by rotating the tangent screw, this is 
sometimes called an “endless tangent screw.” The release, F, 
is a spring-actuated clamp that keeps the tangent screw 
engaged with the limb’s teeth. The observer can disengage 

α
β

Figure 1401. Optical principle of the marine sextant.
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the tangent screw and move the index arm along the limb for 
rough adjustment. The end of the tangent screw mounts a 
micrometer drum, G, graduated in minutes of altitude. One 
complete turn of the drum moves the index arm one degree 
along the arc. Next to the micrometer drum and fixed on the 
index arm is a vernier, H, that reads in fractions of a minute. 
The vernier shown is graduated into ten parts, permitting 
readings to 1/10 of a minute of arc (0.1'). Some sextants have 
verniers graduated into only five parts, permitting readings to 
0.2'.

The index mirror, I, is a piece of silvered plate glass 
mounted on the index arm, perpendicular to the plane of 
the instrument, with the center of the reflecting surface 
directly over the pivot of the index arm. The horizon 
glass, J, is a piece of optical glass silvered on its half 
nearer the frame. It is mounted on the frame, perpen-
dicular to the plane of the sextant. The index mirror and 
horizon glass are mounted so that their surfaces are 
parallel when the micrometer drum is set at 0°, if the 
instrument is in perfect adjustment. Shade glasses, K, of 
varying darkness are mounted on the sextant’s frame in 
front of the index mirror and horizon glass. They can be 
moved into the line of sight as needed to reduce the 
intensity of light reaching the eye.

The telescope, L, screws into an adjustable collar in 
line with the horizon glass and parallel to the plane of the 
instrument. Most modern sextants are provided with only 
one telescope. When only one telescope is provided, it is 

of the “erect image type,” either as shown or with a wider 
“object glass” (far end of telescope), which generally is 
shorter in length and gives a greater field of view. The 
second telescope, if provided, may be the “inverting 
type.” The inverting telescope, having one lens less than 
the erect type, absorbs less light, but at the expense of 
producing an inverted image. A small colored glass cap is 
sometimes provided, to be placed over the “eyepiece” 
(near end of telescope) to reduce glare. With this in place, 
shade glasses are generally not needed. A “peep sight,” or 
clear tube which serves to direct the line of sight of the 
observer when no telescope is used, may be fitted.

Sextants are designed to be held in the right hand. 
Some have a small light on the index arm to assist in 
reading altitudes. The batteries for this light are fitted 
inside a recess in the handle, M. Not clearly shown in 
Figure 1402 is the tangent screw, E, and the three legs.

There are two basic designs commonly used for 
mounting and adjusting mirrors on marine sextants. On 
the U.S. Navy Mark 3 and certain other sextants, the mir-
ror is mounted so that it can be moved against retaining or 
mounting springs within its frame. Only one perpendicu-
lar adjustment screw is required. On the U.S. Navy Mark 
2 and other sextants the mirror is fixed within its frame. 
Two perpendicular adjustment screws are required. One 
screw must be loosened before the other screw bearing on 
the same surface is tightened.

Figure 1402. U.S. Navy Mark 2 micrometer drum sextant.
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1403. Vernier Sextant

Most recent marine sextants are of the micrometer 
drum type, but at least two older-type sextants are still in 
use. These differ from the micrometer drum sextant 
principally in the manner in which the final reading is 
made. They are called vernier sextants.

The clamp screw vernier sextant is the older of the 
two. In place of the modern release clamp, a clamp screw is 
fitted on the underside of the index arm. To move the index 
arm, the clamp screw is loosened, releasing the arm. When 
the arm is placed at the approximate altitude of the body 
being observed, the clamp screw is tightened. Fixed to the 
clamp screw and engaged with the index arm is a long 
tangent screw. When this screw is turned, the index arm 
moves slowly, permitting accurate setting. Movement of 
the index arm by the tangent screw is limited to the length 
of the screw (several degrees of arc). Before an altitude is 
measured, this screw should be set to the approximate mid-
point of its range. The final reading is made on a vernier set 
in the index arm below the arc. A small microscope or 
magnifying glass fitted to the index arm is used in making 
the final reading.

The endless tangent screw vernier sextant is 
identical to the micrometer drum sextant, except that it has 
no drum, and the fine reading is made by a vernier along the 
arc, as with the clamp screw vernier sextant. The release is 
the same as on the micrometer drum sextant, and teeth are 
cut into the underside of the limb which engage with the 
endless tangent screw.

1404. Sextant Sun Sights

For a Sun sight, hold the sextant vertically and direct the 
sight line at the horizon directly below the Sun. After moving 
suitable shade glasses into the line of sight, move the index 
arm outward along the arc until the reflected image appears in 
the horizon glass near the direct view of the horizon. Rock the 
sextant (also known as “swinging the arc” or “to swing the arc) 
slightly to the right and left to ensure it is perpendicular. As 
you rock the sextant, the image of the Sun appears to move in 
an arc, and you may have to turn slightly to prevent the image 
from moving off the horizon glass.

The sextant is vertical when the Sun appears at the 
bottom of the arc. This is the correct position for making the 
observation. The Sun’s reflected image appears at the 
center of the horizon glass; one half appears on the silvered 
part, and the other half appears on the clear part. Move the 
index arm with the drum or vernier slowly until the Sun 
appears to be resting exactly on the horizon, tangent to the 
lower limb. The novice observer needs practice to 
determine the exact point of tangency. Beginners often err 
by bringing the image down too far.

Some navigators get their most accurate observations 
by letting the body contact the horizon by its own motion, 
bringing it slightly below the horizon if rising, and above if 

setting. At the instant the horizon is tangent to the disk, the 
navigator notes the time. The sextant altitude is the 
uncorrected reading of the sextant.

1405. Sextant Moon Sights

When observing the Moon, follow the same procedure 
as for the Sun. Because of the phases of the Moon, the upper 
limb of the Moon is observed more often than that of the 
Sun. When the terminator (the line between light and dark 
areas) is nearly vertical, be careful in selecting the limb to 
shoot. Sights of the Moon are best made during either 
daylight hours or that part of twilight in which the Moon is 
least luminous. At night, false horizons may appear below 
the Moon because the Moon illuminates the water below it.

1406. Sextant Star and Planet Sights

While the relatively large Sun and Moon are easy to 
find with a sextant, stars and planets can be more difficult 
to locate because the field of view is so narrow. One of three 
methods may help locate a star or planet:

Method 1. Set the index arm and micrometer drum on 
0° and direct the line of sight at the body to be observed. 
Then, while keeping the reflected image of the body in the 
mirrored half of the horizon glass, swing the index arm out 
and rotate the frame of the sextant down. Keep the reflected 
image of the body in the mirror until the horizon appears in 
the clear part of the horizon glass; then, make the 
observation. When there is little contrast between 
brightness of the sky and the body this procedure can be 
difficult. If the body is “lost” while it is being brought 
down, it may not be recovered without starting over again.

Method 2. Direct the line of sight at the body while 
holding the sextant upside down. Slowly move the index 
arm out until the horizon appears in the horizon glass. Then 
invert the sextant and take the sight in the usual manner.

Method 3. Determine in advance the approximate 
altitude and azimuth of the body by a star finder such as No. 
2102D. Set the sextant at the indicated altitude and face in 
the direction of the azimuth. The image of the body should 
appear in the horizon glass with a little searching.

When measuring the altitude of a star or planet, bring 
its center down to the horizon. Stars and planets have no 
discernible upper or lower limb; you must observe the 
center of the point of light. Because stars and planets have 
no discernible limb and because their visibility may be 
limited, the method of letting a star or planet intersect the 
horizon by its own motion is not recommended. As with the 
Sun and Moon, however, “swing the arc” to establish 
perpendicularity.

1407. Taking a Sight

Unless you have a navigation calculator, computer 
program, or app that will identify bodies automatically, 
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predict expected altitudes and azimuths for up to eight 
bodies when preparing to take celestial sights. Choose the 
stars and planets that will provide the best bearing spread. 
Try to select bodies with a predicted altitude between 30°
and 70°. Take sights of the brightest stars first in the 
evening; take sights of the brightest stars last in the 
morning. See Chapter 18, Section 1810 - Sight Planning, 
for a more in depth discussion.

Occasionally, fog, haze, or other ships in a formation 
may obscure the horizon directly below a body which the 
navigator wishes to observe. If the arc of the sextant is 
sufficiently long, a back sight might be obtained, using the 
opposite point of the horizon as the reference. For this the 
observer faces away from the body and observes the 
supplement of the altitude. If the Sun or Moon is observed 
in this manner, what appears in the horizon glass to be the 
lower limb is in fact the upper limb, and vice versa. In the 
case of the Sun, it is usually preferable to observe what 
appears to be the upper limb. The arc that appears when 
rocking the sextant for a back sight is inverted; that is, the 
highest point indicates the position of perpendicularity.

If more than one telescope is furnished with the 
sextant, the erecting telescope is used to observe the Sun. A 
wider field of view is present if the telescope is not used. 
The collar into which the sextant telescope fits may be 
adjusted in or out, in relation to the frame. When moved in, 
more of the mirrored half of the horizon glass is visible to 
the navigator, and a star or planet is more easily observed 
when the sky is relatively bright. Near the darker limit of 
twilight, the telescope can be moved out, giving a broader 
view of the clear half of the glass, and making the less 
distinct horizon more easily discernible. If both eyes are 
kept open until the last moments of an observation, eye 
strain will be lessened. Practice will permit observations to 
be made quickly, reducing inaccuracy due to eye fatigue.

When measuring an altitude, have an assistant note and 
record the time if possible, with a “stand-by” warning when 
the measurement is almost ready, and a “mark” at the 
moment a sight is made. If a flashlight is needed to see the 
comparing watch, the assistant should be careful not to 
interfere with the navigator’s night vision.

If an assistant is not available to time the observations, the 
observer holds the watch in the palm of his or her left hand, 
leaving his or her fingers free to manipulate the tangent screw of 
the sextant. After making the observation, s/he notes the time as 
quickly as possible. The delay between completing the altitude 
observation and noting the time should not be more than one or 
two seconds.

1408. Reading the Sextant

Reading a micrometer drum sextant is done in three 
steps. The degrees are read by noting the position of the ar-
row on the index arm in relation to the arc. The minutes are 
read by noting the position of the zero on the vernier with 
relation to the graduations on the micrometer drum. The 

fraction of a minute is read by noting which mark on the 
vernier most nearly coincides with one of the graduations 
on the micrometer drum. This is similar to reading the time 
with the hour, minute, and second hands of a watch. In both, 
the relationship of one part of the reading to the others 
should be kept in mind. Thus, if the hour hand of a watch 
were about on “4,” one would know that the time was about 
four o’clock. But if the minute hand were on “58,” one 
would know that the time was 0358 (or 1558), not 0458 (or 
1658). Similarly, if the arc indicated a reading of about 40°, 
and 58' on the micrometer drum were opposite zero on the 
vernier, one would know that the reading was 39° 58', not 
40°58'. Similarly, any doubt as to the correct minute can be 
removed by noting the fraction of a minute from the posi-
tion of the vernier. In Figure 1408a the reading is 29° 42.5'.
The arrow on the index mark is between 29° and 30°, the 
zero on the vernier is between 42' and 43', and the 0.5' grad-
uation on the vernier coincides with one of the graduations 
on the micrometer drum.

The principle of reading a vernier sextant is the same, but 
the reading is made in two steps. Figure 1408b shows a typical 
altitude setting. Each degree on the arc of this sextant is grad-
uated into three parts, permitting an initial reading by the 
reference mark on the index arm to the nearest 20' of arc. In this
illustration the reference mark lies between 76° 20' and 76° 40', 
indicating a reading between these values. The reading for the 
fraction between 20' and 40' is made using the vernier, which 
is engraved on the index arm and has the small reference mark 
as its zero graduation. On this vernier, 20 graduations coincide 
with 19 graduations on the arc. Each graduation on the vernier 
is equivalent to 1/20 of one graduation of 20' on the arc, or 0.5', 
or 30". In the illustration, the vernier graduation representing 
6' most nearly coincides with one of the graduations on the arc. 
Therefore, the reading is 76° 20' + 6' 00" or 76° 26' 00". When 
a vernier of this type is used, any doubt as to which mark on 
the vernier coincides with a graduation on the arc can usually 
be resolved by noting the position of the vernier mark on each 
side of the one that seems to be in coincidence.

Negative readings, such as a negative index correction, 
are made in the same manner as positive readings; the 
various figures are added algebraically. Thus, if the three 
parts of a micrometer drum reading are ( - )1°, 56' and 0.3', 
the total reading is ( - )1° + 56' + 0.3' = ( - )3.7'.

1409. Developing Observational Skill

A well-constructed marine sextant is capable of 
measuring angles with an instrument error not exceeding 0.1'. 
Lines of position from altitudes of this accuracy would not be 
in error by more than about 200 yards. However, there are 
various sources of error, other than instrumental, in altitudes 
measured by sextant. One of the principal sources is the 
observer.

The first fix a student celestial navigator plots is likely 
to be disappointing. Most navigators require a great amount 
of practice to develop the skill necessary for consistently 
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good observations. But practice alone is not sufficient. 
Good technique should be developed early and refined 
throughout the navigator’s career. Many good pointers can 
Many good pointers can be obtained from experienced 
navigators, but each student navigator must develop his or 
her own technique because one method proves successful 
for one observer may not be helpful to another. Also, 

experienced navigators have a natural tendency to judge the 
accuracy of their observations solely by the size of the 
figure formed with the intersection of the plotted lines of
position. Although a small area of intersection (or a “tight 
fix”) may be present, it may not necessarily be an accurate 
reflection of the ship’s position if individual observation 
errors are allowed to be introduced. There are many errors, 

Figure 1408a. Micrometer drum sextant set at 29° 42.5'.

Figure 1408b. Vernier sextant set at 76° 26' 00". Image courtesy of Omar F. Reis.
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some of which are beyond the navigator’s control. 
Therefore, lines of position from celestial observations 
should be compared often with accurate position obtained 
by electronics or piloting.

Common sources of error are:

1. Time errors.
2. Sextant adjustment.
3. Improper rocking of the sextant.
4. The height of eye input may be wrong.
5. Index correction computation errors.
6. Subnormal refraction (dip) might be present.
7. Inaccurate judgment of tangency.
8. Using a false horizon.
9. Other computation errors. 

Generally, it is possible to correct observation 
technique errors, but occasionally a personal error will 
persist. This error might vary as a function of the body 
observed, degree of fatigue of the observer, and other 
factors. For this reason, a personal error should be applied 
with caution.

To obtain greater accuracy, take a number of closely-
spaced observations. Plot the resulting altitudes versus time 
and draw a curve through the points. Unless the body is near 
the celestial meridian, this curve should be a straight line. 
Use this graph to determine the altitude of the body at any 
time covered by the graph. It is best to use a point near the 
middle of the line. Using a navigational calculator, 
computer program, or app to reduce sights will yield greater 
accuracy because of the rounding errors inherent in the use 
of sight reduction tables, and because many more sights can 
be reduced in a given time, thus averaging out errors. 

A simpler method involves making observations at 
equal intervals. This procedure is based upon the 
assumption that, unless the body is on the celestial 
meridian, the change in altitude should be equal for equal 
intervals of time. Observations can be made at equal 
intervals of altitude or time. If time intervals are constant, 
the mid time and the average altitude are used as the 
observation. If altitude increments are constant, the average 
time and mid altitude are used.

If only a small number of observations is available, 
reduce and plot the resulting lines of position; then adjust 
them to a common time. The average position of the line 
might be used, but it is generally better practice to use the 
middle line. Reject any observation considered unreliable 
when determining the average.

1410. Care of the Sextant

A sextant is a rugged instrument. However, careless 
handling or neglect can cause it irreparable harm. If you 
drop it, take it to an instrument repair shop for testing and 
inspection. When not using the sextant, stow it in a sturdy 
and sufficiently padded case. Keep the sextant away from 
excessive heat and dampness. Do not expose it to excessive 

vibration. Do not leave it unattended when it is out of its 
case. Do not hold it by its limb, index arm, or telescope. Lift 
it only by its frame or handle. Do not lift it by its arc or 
index bar.

Next to careless handling, moisture is the sextant’s 
greatest enemy. Wipe the mirrors and the arc after each use. 
If the mirrors get dirty, clean them with lens paper and a 
small amount of alcohol. Clean the arc with ammonia; 
never use a polishing compound. When cleaning, do not 
apply excessive pressure to any part of the instrument.

Silica gel kept in the sextant case will help keep the 
instrument free from moisture and preserve the mirrors. 
Occasionally heat the silica gel to remove the absorbed 
moisture.

Rinse the sextant with fresh water if sea water gets on 
it. Wipe the sextant gently with a soft cotton cloth and dry 
the optics with lens paper.

Glass optics do not transmit all the light received 
because glass surfaces reflect a small portion of light 
incident on their face. This loss of light reduces the 
brightness of the object viewed. Viewing an object through 
several glass optics affects the perceived brightness and 
makes the image indistinct. The reflection also causes glare 
which obscures the object being viewed. To reduce this 
effect to a minimum, the glass optics are treated with a thin, 
fragile, anti-reflection coating. Therefore, apply only light 
pressure when polishing the coated optics. Blow loose dust 
off the lens before wiping them so grit does not scratch the 
lens.

Occasionally, oil and clean the tangent screw and the 
teeth on the side of the limb. Use the oil provided with the 
sextant or an all-purpose light machine oil. Occasionally set 
the index arm of an endless tangent screw at one extremity 
of the limb, oil it lightly, and then rotate the tangent screw 
over the length of the arc. This will clean the teeth and 
spread oil over them. When stowing a sextant for a long 
period, clean it thoroughly, polish and oil it, and protect its 
arc with a thin coat of petroleum jelly. If the mirrors need 
re-silvering, take the sextant to an instrument shop.

1411. Non Adjustable Sextant Errors

The non-adjustable sextant errors are prismatic error, 
graduation error, and centering error. The higher the quality 
of the instrument, the less these error will be. 

Prismatic error occurs when the faces of the shade 
glasses and mirrors are not parallel. Error due to lack of 
parallelism in the shade glasses may be called shade error. 
The navigator can determine shade error in the shade glasses 
near the index mirror by comparing an angle measured when 
a shade glass is in the line of sight with the same angle 
measured when the glass is not in the line of sight. In this 
manner, determine and record the error for each shade glass. 
Before using a combination of shade glasses, determine their 
combined error. If certain observations require additional 
shading, use the colored telescope eyepiece cover. This does 
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not introduce an error because direct and reflected rays are 
traveling together when they reach the cover and are, 
therefore, affected equally by any lack of parallelism of its 
two sides.

Graduation errors occur in the arc, micrometer drum, 
and vernier of a sextant which is improperly cut or incorrectly 
calibrated. Normally, the navigator cannot determine whether 
the arc of a sextant is improperly cut, but the principle of the 
vernier makes it possible to determine the existence of 
graduation errors in the micrometer drum or vernier. This is a 
useful guide in detecting a poorly made instrument. The first 
and last markings on any vernier should align perfectly with 
one less graduation on the adjacent micrometer drum.

Centering error results if the index arm does not pivot 
at the exact center of the arc’s curvature. Calculate centering 
error by measuring known angles after removing all 
adjustable errors. Use horizontal angles accurately measured 
with a theodolite as references for this procedure. Several 
readings by both theodolite and sextant should minimize 
errors. If a theodolite is not available, use calculated angles 
between the lines of sight to stars as the reference, comparing 
these calculated values with the values determined by the 
sextant. To minimize refraction errors, select stars at about 
the same altitude and avoid stars near the horizon. The same 
shade glasses, if any, used for determining index error should 
be used for measuring centering error.

The manufacturer normally determines the magnitude 
of all three non-adjustable errors and reports them to the 
user as instrument error. The navigator should apply the 
correction for this error to each sextant reading.

1412. Adjustable Sextant Error

The navigator should measure and remove the 
following adjustable sextant errors in the order listed:

1. Perpendicularity Error: Adjust first for perpen-
dicularity of the index mirror to the frame of the sextant. To 
test for perpendicularity, place the index arm at about 35° 
on the arc and hold the sextant on its side with the index 
mirror up and toward the eye. Observe the direct and re-
flected views of the sextant arc, as illustrated in Figure 
1412a. If the two views are not joined in a straight line, the 
index mirror is not perpendicular. If the reflected image is 
above the direct view, the mirror is inclined forward. If the 
reflected image is below the direct view, the mirror is in-
clined backward. Make the adjustment using two screws 
behind the index mirror.

2. Side Error: An error resulting from the horizon glass 
not being perpendicular to the frame is called side error. To test 
for side error, set the index arm at zero and direct the line of sight 
at a star. Then rotate the tangent screw back and forth so that the 
reflected image passes alternately above and below the direct 
view. If, in changing from one position to the other, the reflected 
image passes directly over the unreflected image, no side error 
exists. If it passes to one side, side error exists. Figure 1412b il-
lustrates observations without side error (left) and with side error 
(right). Whether the sextant reads zero when the true and reflect-
ed images are in coincidence is immaterial for this test. An 
alternative method is to observe a vertical line, such as one edge 
of the mast of another vessel (or the sextant can be held on its 
side and the horizon used). If the direct and reflected portions do 
not form a continuous  line,  the  horizon  glass  is  not 
perpendicular  to the frame of the sextant. A third method in-

Figure 1412a. Testing the perpendicularity of the index mirror. Here the mirror is not perpendicular.
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volves holding the sextant vertically, as in observing the altitude 
of a celestial body. Bring the reflected image of the horizon into 
coincidence with the direct view until it appears as a continuous 
line across the horizon glass. Then tilt the sextant right or left. If 
the horizon still appears continuous, the horizon glass is perpen-
dicular to the frame, but if the reflected portion appears above or 
below the part seen directly, the glass is not perpendicular. Make 
the appropriate adjustment using two screws behind the horizon 
glass.

3. Collimation Error: If the line of sight through the 
telescope is not parallel to the plane of the instrument, a col-
limation error will result. Altitudes measured will be 
greater than their actual values. To check for parallelism of 
the telescope, insert it in its collar and observe two stars 90°
or more apart. Bring the reflected image of one into coinci-
dence with the direct view of the other near either the right 
or left edge of the field of view (the upper or lower edge if 
the sextant is horizontal). Then tilt the sextant so that the 
stars appear near the opposite edge. If they remain in coin-
cidence, the telescope is parallel to the frame; if they 
separate, it is not. An alternative method involves placing 
the telescope in its collar and then laying the sextant on a 
flat table. Sight along the frame of the sextant and have an 
assistant place a mark on the opposite bulkhead, in line with 
the frame. Place another mark above the first, at a distance 
equal to the distance from the center of the telescope to the 
frame. This second line should be in the center of the field 
of view of the telescope if the telescope is parallel to the 
frame. Adjust the collar to correct for non-parallelism.

4. Index Error: Index error is the error remaining after the 
navigator has removed perpendicularity error, side error, and 
collimation error. The index mirror and horizon glass not being 
parallel when the index arm is set exactly at zero is the major 
cause of index error. To test for parallelism of the mirrors, set the 
instrument at zero and direct the line of sight at the horizon. 
Adjust the sextant reading as necessary to cause both images of 
the horizon to come into line. The sextant’s reading when the 
horizon comes into line is the index error. If the index error is 
positive, subtract it from each sextant reading. If the index error 
is negative, add it to each sextant reading.

1413. Selecting a Sextant

Carefully match the selected sextant to its required uses. 
For occasional small craft or student use, a plastic sextant may 
be adequate. A plastic sextant may also be appropriate for an 
emergency navigation kit. Accurate offshore navigation 
requires a quality metal instrument. For ordinary use in 
measuring altitudes of celestial bodies, an arc of 90° or slightly 
more is sufficient. If back sights or determining horizontal 
angles are often required, purchase one with a longer arc. An 
experienced mariner or nautical instrument technician can 
provide valuable advice on the purchase of a sextant.

1414. The Artificial Horizon

Measurement of altitude requires an exact horizontal 
reference, normally provided at sea by the visible horizon. If 
the horizon is not clearly visible, however, a different 
horizontal reference is required. Such a reference is commonly 
termed an artificial horizon. If it is attached to, or part of, the 
sextant, altitudes can be measured at sea, on land, or in the air, 
whenever celestial bodies are available for observations. 

 An external artificial horizon can be improvised by a 
carefully leveled mirror or a pan of dark liquid. To use an 
external artificial horizon, stand or sit so that the celestial body 
is reflected in the mirror or liquid, and is also visible in direct 
view. With the sextant, bring the double-reflected image into 
coincidence with the image appearing in the liquid. For a lower 
limb observation of the Sun or the Moon, bring the bottom of 
the double-reflected image into coincidence with the top of the 
image in the liquid. For an upper-limb observation, bring the 
opposite sides into coincidence. If one image covers the other, 
the observation is of the center of the body.

After the observation, apply the index correction and any 
other instrumental correction. Then take half the remaining 
angle and apply all other corrections except dip (height of eye) 
correction, since this is not applicable. If the center of the Sun 
or Moon is observed, omit the correction for semidiameter.

1415. Artificial Horizon Sextants

Various types of artificial horizons have been used, 
including a bubble, gyroscope, and pendulum. Of these, the 
bubble has been most widely used. This type of instrument is 
fitted as a backup system to inertial and other positioning 
systems in a few aircraft, fulfilling the requirement for a self-
contained, non-emitting system. On land, a skilled observer 
using a 2-minute averaging bubble or pendulum sextant can 
measure altitudes to an accuracy of perhaps 2', (2 miles). 
This, of course, refers to the accuracy of measurement only, 
and does not include additional errors such as abnormal 
refraction, deflection of the vertical, computing and plotting 
errors, etc. In steady flight through smooth air the error of a 
2-minute observation is increased to perhaps 5 to 10 miles.

At sea, with virtually no roll or pitch, results should 
approach those on land. However, even a gentle roll causes 

Figure 1412b. Testing the perpendicularity of the horizon 
glass. On the left, side error does not exist. At the right, side 

error does exist.
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large errors. Under these conditions observational errors of 
10-16 miles are not unreasonable. With a moderate sea, 
errors of 30 miles or more are common. In a heavy sea, any 
useful observations are virtually impossible to obtain. 
Single altitude observations in a moderate sea can be in 
error by a matter of degrees.

When the horizon is obscured by ice or haze, polar 
navigators can sometimes obtain better results with an 
artificial-horizon sextant than with a marine sextant. Some 
artificial-horizon sextants have provision for making 
observations with the natural horizon as a reference, but 

results are not generally as satisfactory as by marine sextant. 
Because of their more complicated optical systems, and the 
need for providing a horizontal reference, artificial-horizon 
sextants are generally much more costly to manufacture than 
marine sextants.

Altitudes observed by artificial-horizon sextants are 
subject to the same errors as those observed by marine 
sextant, except that the dip (height of eye) correction does 
not apply. Also, when the center of the Sun or Moon is 
observed, no correction for semidiameter is required.

CHRONOMETERS

1416. The Marine Chronometer

Historically, the spring-driven marine chronometer
was a precision timepiece used aboard ship to provide 
accurate time for celestial observations. A chronometer 
differs from a spring-driven watch principally in that it 
contains a variable lever device to maintain even pressure 
on the mainspring, and a special balance designed to 
compensate for temperature variations. Today, many 
seagoing ships no longer have chronometers on board due 
to highly accurate time signals provided by GPS.

A spring-driven chronometer is set approximately to 
Coordinated Universal Time (UTC), also referred to as 
Greenwich Mean Time (GMT), or Universal Time (UT), 
which is the international time standard used in 
astronomical and aviation publications, weather products, 
navigation, and other applications. UTC is expressed in 24-
hour (military) time notation, and as with GMT it is based 
on the local standard time of the 0° longitude meridian 
which runs through Greenwich, England. A spring-driven 
chronometer, once set, is not reset until the instrument is 
overhauled and cleaned, usually at three year intervals. 

The difference between UTC and chronometer time 
(C) is carefully determined and applied as a correction to all 
chronometer readings. This difference, called chronometer 
error (CE), is fast (F) if chronometer time is later than UTC, 
and slow (S) if earlier. The amount by which chronometer 
error changes in 1 day is called chronometer rate. An er-
ratic rate indicates a defective instrument requiring repair.

The principal maintenance requirement is regular 
winding at about the same time each day. At maximum 
intervals of about three years, a spring-driven chronometer 
should be sent to a chronometer repair shop for cleaning 
and overhaul.

1417. Quartz Crystal Marine Chronometers

Quartz crystal marine chronometers have replaced 
spring-driven chronometers aboard many ships because of 
their greater accuracy. They are maintained on UTC directly 
from radio time signals. This eliminates chronometer error 
(CE) and watch error (WE) corrections. Should the second 

hand be in error by a readable amount, it can be reset 
electrically.

The basic element for time generation is a quartz 
crystal oscillator. The quartz crystal is temperature 
compensated and is hermetically sealed in an evacuated 
envelope. A calibrated adjustment capability is provided to 
adjust for the aging of the crystal.

The chronometer is designed to operate for a minimum 
of 1 year on a single set of batteries. A good marine 
chronometer has a built-in push button battery test meter. 
The meter face is marked to indicate when the battery 
should be replaced. The chronometer continues to operate 
and keep the correct time for at least 5 minutes while the 
batteries are changed. The chronometer is designed to 
accommodate the gradual voltage drop during the life of the 
batteries while maintaining accuracy requirements.

1418. Watches

A chronometer should not be removed from its case to 
time sights. Observations may be timed and ship’s clocks 
set with a comparing watch, which is set to chronometer 
time (UTC, GMT, also known as UT) and taken to the 
bridge wing for recording sight times. In practice, a wrist 
watch coordinated to the nearest second with the 
chronometer will be adequate.

A stop watch, either spring wound or digital, may also 
be used for celestial observations. In this case, the watch is 
started at a known UTC by chronometer, and the elapsed 
time of each sight added to this to obtain UT of the sight. 

All chronometers and watches should be checked 
regularly with a radio time signal. Times and frequencies of 
radio time signals are listed in NGA Pub. 117, Radio 
Navigational Aids. 

1419. Navigational Calculators

While not considered “instruments” in the strict sense 
of the word, certainly one of the professional navigator’s 
most useful tools is the navigational calculator or computer 
program. Calculators eliminate several potential sources of 
error in celestial navigation, and permit the solution of 
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many more sights in much less time, making it possible to 
refine a celestial position much more accurately than is 
practical using mathematical or tabular methods. 

Calculators also save space and weight, a valuable con-
sideration on many craft. One small calculator can replace 
several heavy and expensive volumes of tables, and is inex-
pensive enough that there is little reason not to carry a spare 
for backup use should the primary one fail. The pre-pro-
grammed calculators are at least as robust in construction, 
probably more so, than the sextant itself, and when properly 
cared for will last a lifetime with no maintenance except, to 
change batteries from time to time. 

If the vessel carries a computer for other ship’s chores 
such as inventory control or personnel administration, there 
is little reason not to use it for celestial navigation. Free-
ware or inexpensive programs are available which take up 
little hard disk space and allow rapid solution of all types of 
celestial navigation problems. Typically they will also take 
care of route planning, sailings, tides, weather routing, elec-
tronic charts, and numerous other tasks. 

U.S. Navy and Coast Guard navigators have access to a 
program called STELLA ( System To Estimate Latitude 
and Longitude Astronomically); do not confuse with a sim-

ilarly named commercial astronomy program). The 
Astronomical Applications Department of the U.S. Naval 
Observatory developed STELLA in response to a Navy re-
quirement. STELLA can perform almanac functions, 
position updating/DR estimations, celestial body 
rise/set/transit calculations, compass error calculations, sight 
planning, and sight reduction; on-line help and a user's guide 
are included. STELLA is now automatically distributed to 
each Naval ship; other Navy users may obtain a copy by 
contacting: 

Superintendent 
U.S. Naval Observatory 
Code: AA/STELLA
3450 Massachusetts Ave. NW 
Washington, DC, 20392-5420 

By using a calculator or sight reduction program, it is 
possible to take and solve half a dozen or more sights in a 
fraction of the time it would normally take to shoot two or 
three and solve them by hand. This will increase the accuracy 
of the fix by averaging out errors in taking the sights. The 
computerized solution is always more accurate than tabular 
methods because it is free of rounding and arithmetic errors. 
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CHAPTER 15 

AZIMUTHS AND AMPLITUDES

INTRODUCTION

1500. Checking Compass Error

The navigator must constantly be concerned about the 
accuracy of the ship’s primary and backup compasses, and 
should check them regularly. A regularly annotated compass 
log book will allow the navigator to notice a developing error 
before it becomes a serious problem. 

As long as at least two different types of compass (e.g. 
mechanical gyro and flux gate, or magnetic and ring laser 
gyro) are consistent with each other, one can be reasonably 
sure that there is no appreciable error in either system. Since 
different types of compasses depend on different scientific 
principles and are not subject to the same error sources, their 
agreement indicates almost certainly that no error is present. 

A navigational compass can be checked against the 
heading reference of an inertial navigation system if one is 
installed. One can also refer to the ship’s indicated GPS track 
as long as current and leeway are not factors, so that the 
ship’s COG and heading are in close agreement. 

The navigator’s only completely independent 
directional reference (because it is extra-terrestrial and not 
man-made) is the sky. The primary compass should be 

checked occasionally by comparing the observed and 
calculated azimuths and amplitudes of a celestial body. The 
difference between the observed and calculated values is the 
compass error. This chapter discusses these procedures.

Theoretically, these procedures work with any celestial 
body. However, the Sun and Polaris are used most often 
when measuring azimuths, and the rising or setting Sun 
when measuring amplitudes. 

While errors can be computed to the nearest tenth of a 
degree or so, it is seldom possible to steer a ship that 
accurately, especially when a sea is running, and it is 
reasonable to round calculations to the nearest half or 
perhaps whole degree for most purposes. 

Various hand-held calculators and computer programs 
are available to relieve the tedium and errors of tabular and 
mathematical methods of calculating azimuths and ampli-
tudes. Naval and Coast Guard navigators will find the 
STELLA program useful in this regard. This program is 
discussed in further in Chapter 19 - Sight Reductions. 
STELLA stands for the System to Establish Latitude and 
Longitude Astronomically.

AZIMUTHS

1501. Gyro Error by Azimuth of the Sun

Mariners not having STELLA may use Pub 229, Sight 
Reduction Tables for Marine Navigation to compute the 
Sun’s azimuth. They compare the computed azimuth to the 
azimuth measured with the compass to determine compass 
error. In computing an azimuth, interpolate the tabular 
azimuth angle for the difference between the table 
arguments and the actual values of declination, latitude, and 
local hour angle. Do this triple interpolation of the azimuth 
angle as follows:

1. Enter the Sight Reduction Tables with the integer 
values of declination, latitude, and local hour angle. 
For each of these arguments, extract a base azimuth 
angle.

2. Reenter the tables with the same latitude and LHA 
arguments but with the declination argument 1°
greater than the base declination argument. Record 
the difference between the respondent azimuth 

angle and the base azimuth angle and label it as the 
azimuth angle difference (Z Diff.).

3. Reenter the tables with the base declination and 
LHA arguments, but with the latitude argument 1°
greater than the base latitude argument. Record the 
Z Diff. for the increment of latitude.

4. Reenter the tables with the base declination and 
latitude arguments, but with the LHA argument 1°
greater than the base LHA argument. Record the Z 
Diff. for the increment of LHA.

5. Determine the increment of each of the three 
arguments, which is simply the actual minus the 
base argument. Use this to compute a correction 
for each of the three arguments, using the formula 
Correction = Z Diff. x (increment ÷ 60).

6. Sum the three corrections to obtain a total 
correction. Apply this to the base azimuth angle to 
obtain the true azimuth angle.
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The gyrocompass error is the difference between the 
true azimuth angle (Zn) and the measured azimuth angle 
per gyrocompass (Zn pgc). The gyro error is West if the 
gyro reads a larger value than true; it is East if the gyro read-
ing is the smaller value. One way to remember this is “gyro 

best, error West; gyro least, error East.” (Be careful of this 
mnemonic near the 360°/0° boundary, though, where a val-
ue slightly larger than 0° is actually treated as slightly larger 
than 360°.)

Example: 
In DR latitude 23° 55.0'N, the azimuth of the Sun is 124.0° 

per gyrocompass (pgc). At the time of the observation, the 
declination of the Sun is 8° 47.4'S; the local hour angle of the 
Sun is 317° 37.4. Determine gyro error.

Solution: 
(See Figure 1501) Enter the actual value of declination, 

DR latitude, and LHA. Round each argument down to the 
nearest whole degree. Enter the Sight Reduction Tables with 
these whole degree arguments and extract the base azimuth 
value for these rounded off arguments. Record the base 
azimuth value in the table.

As the first step in the triple interpolation process, 
increase the value of the declination by 1° to 9° because the 
actual declination was greater than the base declination. 
Enter the Sight Reduction Tables with the following 
arguments: (1) Declination = 9°; (2) DR Latitude = 23°; (3) 
LHA = 317°. Record the tabulated azimuth for these 
arguments.

As the second step in the triple interpolation process, 
increase the value of latitude by 1° to 24° because the 
actual DR latitude was greater than the base latitude. Enter 
the Sight Reduction Tables with the following arguments: 
(1) Declination = 8°; (2) DR Latitude = 24°; (3) LHA = 

317°. Record the tabulated azimuth for these arguments.
As the third and final step in the triple interpolation 

process, increase the value of LHA to 318° because the 
actual LHA value was greater than the base LHA. Enter the 
Sight Reduction Tables with the following arguments: (1) 
Declination = 8°; (2) DR Latitude = 23°; (3) LHA = 318°. 
Record the tabulated azimuth for these arguments.

Calculate the Z Difference by subtracting the base 
azimuth from the tabulated azimuth. Be careful to carry the 
correct sign.

Z Difference = Tab Z - Base Z

Next, determine the increment for each argument by 
taking the difference between the actual values of each 
argument and the base argument. Calculate the correction 
for each of the three argument interpolations by dividing 
the increment by 60, and multiplying the result by the Z 
difference.

The sign of each correction is the same as the sign of the 
corresponding Z difference used to calculate it. In the above 
example, the total correction sums to +1.9. Apply this value 
to the base azimuth of 121.3° to obtain the true azimuth 
123.2°. Compare this to the gyrocompass reading of 124.0° 
pgc. The compass error is 0.8°W. 

AZIMUTH OF POLARIS

1502. Gyro Error by Azimuth of Polaris

The Polaris tables in the Nautical Almanac list the 
azimuth of Polaris for latitudes between the equator and 65°
N. Figure 1912b in Chapter 19 shows this table. Compare a 
compass bearing of Polaris to the tabular value of Polaris to 
determine compass error. The entering arguments for the 
table are LHA of Aries and observer latitude.

Example: 
On February 23, 2016, at LAT 29°31.0' N and LON 

074°30.0'W, at 04-21-15 GMT, Polaris bears 359.9° pgc. 
Calculate the gyro error.

Actual
Base

Arguments
Base

Z
Tab*

Z Z Diff. Increments
Correction

Z Diff x (Inc.÷ 60)
Dec. 8°47.4' S 8° 121.3° 122.3° +1.0° 47.4' +0.8°
DR Lat. 23°55.0' N 23°(Contrary) 1213° 122.0° +0.7° 55.0' +0.6°
LHA 317°37.4' 317° 1213° 122.1° + 0.8° 37.4' +0.5°

Base Z 121.3° Total Corr. +1.9°
Corr. (+)     1.9°
Z N 121.3°E *Respondent for the two base arguments and 1° 

change from third base argument, in vertical 
order of Dec., DR Lat., and LHA.

Zn 123.2°
Zn pgc 124.0°
Gyro Error 0.8° W

Figure 1501. Azimuth by Pub. No. 229.

Date 23 February 2016

Time (GMT) 04-21-15
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Solution: 
Enter the azimuth section of the Polaris table with the 

calculated LHA of Aries. In this case, go to the column for 
LHA Aries between 140° and 149°. Follow that column 

down and extract the value for the given latitude. Since the 

increment between tabulated values is so small, visual 

interpolation is sufficient. In this case, the azimuth for 

Polaris for the given LHA of Aries and the given latitude 

is 359.2°.

AMPLITUDES

1503. Amplitudes

A celestial body’s amplitude angle is the complement 
of its azimuth angle. At the moment that a body rises or sets, 
the amplitude angle is the arc of the horizon between the 

body and the East/West point of the horizon where the 
observer’s prime vertical intersects the horizon (at 90°), 
which is also the point where the plane of the equator 
intersects the horizon (at an angle numerically equal to the 
observer’s co-latitude). See Figure 1503.

In practical navigation, a bearing (psc or pgc) of a body 
can be observed when it is on either the celestial or the 
visible horizon. To determine compass error, simply 
convert the computed amplitude angle to true degrees and 
compare it with the observed compass bearing.

The angle is computed by the formula: 

sin A = sin Dec / cos Lat.

This formula gives the angle at the instant the body is 
on the celestial horizon. It does not contain an altitude term 
because the body’s computed altitude is zero at this instant. 

The angle is prefixed E if the body is rising and W if it 
is setting. This is the only angle in celestial navigation 
referenced FROM East or West, i.e. from the prime 
vertical. A body with northerly declination will rise and set 

GHA Aries 217° 49.3' (from 
almanac daily pages & 
interpolation)

Longitude 074° 30.0'W
LHA Aries 143° 19.3'

Tabulated Azimuth 359.2°T

Gyrocompass Bearing 359.9°T

Error 0.7°W

Figure 1503. The amplitude angle (A) subtends the arc of the horizon between the body and the point where the prime 
vertical and the equator intersect the horizon. Note that it is the compliment of the azimuth angle (Z).
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North of the prime vertical. Likewise, a body with southerly 
declination will rise and set South of the prime vertical. 
Therefore, the angle is suffixed N or S to agree with the 
name of the body’s declination. A body whose declination 
is zero rises and sets exactly on the prime vertical.

Due largely to refraction, dip, and its disk size, the Sun 
is on the celestial horizon when its lower limb is approxi-
mately two thirds of a diameter above the visible horizon. 
The Moon is on the celestial horizon when its upper limb is 
on the visible horizon. Stars and planets are on the celestial 
horizon when they are approximately one Sun diameter 
above the visible horizon.

When observing a body on the visible horizon, a 
correction from Table 23 - Correction of Amplitude as 
Observed on the Visible Horizon must be applied. This 
correction accounts for the slight change in bearing as the 
body moves between the visible and celestial horizons. It 
reduces the bearing on the visible horizon to the celestial 
horizon, from which the table is computed. 

For the Sun, stars, and planets, apply this correction to 
the observed bearing in the direction away from the 
elevated pole. For the moon, apply one half of the 
correction toward the elevated pole. Note that the algebraic 
sign of the correction does not depend upon the body’s 
declination, but only on the observer’s latitude. Assuming 
the body is the Sun the rule for applying the correction can 
be outlined as follows: 

The following two articles demonstrate the procedure 
for obtaining the amplitude of the Sun on both the celestial 
and visible horizons.

1504. Amplitude of the Sun on the Celestial Horizon

Mariners may use Bowditch Table 22 (Amplitudes) to de-
termine the Sun's computed amplitude. The procedure is similar 
to that done in Section 1501. Comparing the computed amplitude 
to the amplitude measured with the gyrocompass determines the 
gyro error. In computing an amplitude, interpolate the tabular 
amplitude angle for the difference between the table arguments 
and the actual values of declination and latitude. 

Do this double interpolation of the amplitude angle as 
follows:

• Enter Bowditch Table 22 (Amplitudes) with the 
nearest integral values of declination and latitude. 
Extract a base amplitude angle.

• Reenter the table with the same declination 
argument but with the latitude to the next tabulated 
value (greater or less than the base latitude 
argument, depending upon whether the actual 
latitude is greater or less than the base argument). 
Record the amplitude and the difference between it 
and the base amplitude angle and label it Diff.

• Reenter the table with the base latitude argument but 
with the declination to the next tabulated value 
(greater or less than the base declination argument, 
depending upon whether the actual declination is 
greater or less than the base argument). Record the 
amplitude and the difference between it and the base 
amplitude angle and label it Diff.

• Compute the corrections due to latitude and 
declination not being exactly at a tabular value. 
Apply these corrections to obtain a final amplitude. 
The final amplitude is then converted to a true 
bearing. The difference between the true bearing and 
the gyro bearing gives the gyro error. 

Example: 
 The DR latitude of a ship is 51° 24.6' N. The navigator 

observes the setting Sun on the celestial horizon. Its decli-
nation is N 19° 40.4'. Its observed bearing is 303° pgc.

Required: 
Gyro error.

Solution: 
Interpolate in Table 22 for the Sun’s calculated 

amplitude as follows. See Figure 1504. The actual values 
for latitude and declination are L = 51.4° N and dec. = N 
19.67°. Find the tabulated values of latitude and 
declination closest to these actual values. In this case, these 
tabulated values are L = 51° and dec. = 19.5°. Record the 
amplitude corresponding to these base values, 32.0°, as the 
base amplitude.

Next, holding the base declination value constant at 
19.5°, increase the value of latitude to the next tabulated 
value: N 52°. Note that this value of latitude was increased 
because the actual latitude value was greater than the base 
value of latitude. Record the tabulated amplitude for L = 
52° and dec. = 19.5°: 32.8°. Then, holding the base latitude 
value constant at 51°, increase the declination value to the 
next tabulated value: 20°. Record the tabulated amplitude 
for L = 51° and dec. = 20°: 32.9°.

The latitude’s actual value (51.4°) is 0.4 of the way be-
tween the base value (51°) and the value used to determine 
the tabulated amplitude (52°). The declination’s actual val-
ue (19.67°) is 0.3 of the way between the base value (19.5°) 
and the value used to determine the tabulated amplitude 
(20.0°). To determine the total correction to base ampli-
tude, multiply these increments (0.4 and 0.3) by the 

Observer’s Lat. Rising/Setting How to Apply Correction

North Rising
Add correction to observed 
bearing

North Setting
Subtract correction from 
observed bearing

South Rising
Subtract correction from 
observed bearing

South Setting
Add correction to observed 
bearing

Table 1503. Amplitude correction for the Sun.
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respective difference between the base and tabulated values 
(+0.8 and +0.9, respectively) and sum the products. The to-
tal correction is +0.6°. Add the total correction (+0.6°) to 
the base amplitude (32.0°) to determine the final amplitude 
(32.6°) which will be converted to a true bearing.

Because of its northerly declination (in this case), the 

Sun was 32.6° north of west when it was on the celestial 
horizon. Therefore its true bearing was 302.6° (270° + 
32.6°) at this moment. Comparing this with the gyro bear-
ing of 303° gives an error of 0.4°W, which can be rounded 
to 1/2°W. 

1505. Amplitude of the Sun on the Visible Horizon

In higher latitudes, amplitude observations should be 
made when the body is on the visible horizon because the 
value of the correction is large enough to cause significant 
error if the observer misjudges the exact position of the 
celestial horizon. The observation will yield precise results 
whenever the visible horizon is clearly defined. 

Example: 
Observer’s DR latitude is 59°47’N, Sun’s declination 

is 5°11.3’S. At sunrise the Sun is observed on the visible 
horizon bearing 098.5° pgc. 

Required: 
Gyrocompass error.

Solution: 
Given this particular latitude and declination, the 

amplitude angle is 10.3°S, so that the Sun’s true bearing is 
100.3° at the moment it is on the celestial horizon, that is, 
when its Hc is precisely 0°. Applying the Table 23 
correction to the observed bearing of 098.5° pgc using the 
rules given in Section 1503, the Sun would have been 
bearing 099.7° pgc had the observation been made when 
the Sun was on the celestial horizon. Therefore, the gyro 
error is 0.6°E.

1506. Amplitude by Calculation

As an alternative to using the amplitude tables, if a 
calculator is available then the amplitudes can be computed 
using a slightly modified version of the altitude-azimuth 
formula. The modification is needed because azimuth (Z) 
and amplitude (A) angles are complimentary, and the co-
functions of complimentary angles are equal; i.e., cosine Z 
= sine A. In the following formulas, northerly latitudes and 
declinations are given positive values, and southerly 
latitudes and declinations are considered negative. If the 

resulting amplitude is positive, it is north of the prime 
vertical; conversely, a negative amplitude is south of the 
prime vertical. 

a)  The general case, when a body is not on the celes-
tial horizon, the formula is:

Amplitude = sin-1[(sin DEC- sin LAT sin Hc)/(cos 
LAT cosHc)

where DEC is the celestial body's declination, LAT is 
the observer's latitude, and Hc is the object's computed 
altitude. For the Sun on the visible horizon, Hc = -0.7°.

b)  When a body is on the celestial horizon (that is, its 
altitude, Hc = 0), the formula becomes:

Amplitude = sin-1 [sin DEC / cos LAT]

Example: 
Determine the gyrocompass error using the 

formulation instead of the tables, for the example in Section
1505. 

Required: 
Gyrocompass error.

Solution: 
The observed bearing of the Sun on the visible horizon 

is 098.5° pgc. The computed amplitude of the Sun when it is 
on the visible horizon (that is, Hc = -0.7°) is found by:

Amplitude = sin-1 [(sin -5.19° - sin 59.78° sin -0.7°) / 
(cos 59.78° cos -0.7°)].

Evaluating, we find the amplitude is 9.1°. This is 9.1° 
degrees away from E, in the “negative” (or southerly) di-
rection, so the calculated azimuth is 90° + 9.1° = 99.1°. 
The gyrocompass error is 99.1° - 98.5° = 0.6° E. This value 
matches the answer obtained in Section 1505 using the 
tables. 

Actual Base Base Amp. Tab. Amp. Diff. Inc. Correction

L=51.4°N 51° 32.0° 32.8° +0.8° 0.4 +0.3°
dec=19.67°N 19.5° 32.0° 32.9° +0.9° 0.3 +0.3°

Total +0.6°

Figure 1504. Interpolation in Table 22 for Amplitude.
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CHAPTER 16 

TIME

TIME IN NAVIGATION

1600. Apparent and Solar Time

The Earth's rotation on its axis presents the Sun and 
other celestial bodies to appear to proceed across the sky 
from east to west each day. If a navigator measures the time 
interval between two successive transits across the local 
meridian of a very distant star by the passage of time 
against another physical time reference such as a chronom-
eter, he or she would be measuring the period of the Earth's 
rotation.

In the most practical sense, the Earth’s rotation is the 
navigator's standard of time. When the navigator then 

makes a similar measurement of the transit of the Sun, the 
resulting time interval would be about four minutes longer 
than the period determined by the Earth's rotation. This is 
due to the Earth's yearly orbital motion around the Sun, 
which continuously changes the apparent position of the 
Sun against the background of stars, traditionally observed 
as the cyclical procession of the zodiac. Thus, during the 
course of a day, the Sun appears to lag a little to the east 
with respect to the stars, and the Earth's rotation must ex-
ceed a complete rotation (360°) in order to have the Sun 
appear overhead at the local meridian.

Apparent eastward lag of the Sun with diurnal obser-
vations - when the Sun is on the observer's meridian at point 
A in the Earth's orbit around the Sun (see Figure 1600a), it will 
not be on the observer's meridian after the Earth has rotated 
once (360°) because the Earth will have moved along its orbit 
to point B. Before the Sun can again be observed on the ob-
server's meridian, the Earth must turn a little more on its axis 
as shown in C. Thus, during the course of a day (as determined 
by the Earth's rotation period) the Sun appears to move east-
ward with respect to the celestial background of stars. 

The apparent positions of individual stars against the 
celestial background are commonly determined with refer-
ence to an imaginary point called the vernal equinox. The 
vernal equinox is the intersection of the celestial equator 
and the ecliptic (see Figure 1600b). The full rotation of the 
Earth measured with respect to the vernal equinox is called 
a sidereal day, and corresponds to the Earth's rotational pe-
riod. The period with respect to the Sun is called an 
apparent solar day, and includes the additional time to 
compensate for the Earth's orbital motion. 

Figure 1600a. Apparent eastward movement of the Sun with respect to the stars.
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A navigator using the observed position of the Sun, or 
the apparent Sun, to measure the passage of time from 
Earth's rotation results in apparent solar time. Apparent 
solar time is what a perfectly constructed and calibrated 
sundial would read at a given location, based on the appar-
ent position of the Sun in the sky. In astronomical terms, 
apparent solar time is determined by the local hour angle,
which is a measure of the Sun's projected angular distance 
east or west of the local meridian. Since each meridian is a 
line of constant longitude, at any instant of the Earth's rota-
tion, the apparent solar time will differ for every longitude. 

We define apparent solar time at a specific location as 12h

+ the local hour angle (expressed in hours) of the apparent 
position of the Sun in the sky. The local hour angle is neg-
ative when presenting east of the meridian.

Apparent solar time is not a uniform time scale; the ap-
parent Sun crosses the sky at slightly different rates at 
different times of the year. This means the apparent solar 
time runs “fast” with respect to a constant timescale, such 
as a chronometer, part of the year and “slow” during other 
parts of the year. Although the daily fractional change in the 
rate of the Sun's apparent motion is small, the accumulated 
time difference can reach as much as sixteen minutes. This 
effect is a function of the Earth's orbit around the Sun. It is 
the result of two superimposed cycles; the Earth's eccentric-
ity (no-circular orbit) and the tilt of Earth's axis with respect 
to the plane of its orbit (the ecliptic).

In order to create a uniform time scale for practical use, 
we imagine a point in the sky called the fictitious mean 
sun, which moves at a constant rate across the sky (at the 
celestial equator), regardless of the time of year. That is, the 
fictitious mean sun averages out the variations in the posi-
tion and rate of motion of the true Sun over the course of an 
entire year. The fictitious mean sun is never more than 
about 4 degrees east or west of the actual Sun, although it is 
only an imaginary point. We can define mean solar time in 
the same way as apparent solar time: mean solar time at a 

specific location is 12h + the local hour angle (expressed in 
hours) of the fictitious mean sun. Of course, the fictitious 
mean sun is not an observable point, so we need a mathe-
matical expression to tell us where it is with respect to the 
true Sun; this is the equation of time.

1601. Equation of Time

Mean solar time is sometimes ahead (fast) and some-
times behind (slow) of the apparent solar time. This 
difference is called the equation of time. The equation of 
time's minimum value is near -14 m 13 s in mid-February, 
and its maximum value is near 16 m 26 s in early 
November.

The equation of time gives the offset in minutes ap-
plied to mean solar time, as may be determined by a 
chronometer, to calculate the apparent solar time; specifi-
cally at the Sun's apparent passage at the local meridian.

The navigator most often deals with the equation of time 
when determining the time of upper meridian passage of the 
Sun, called Local Apparent Noon (LAN). Were it not for the 
difference in rate between the fictitious mean and apparent Sun, 

the Sun would always appear on the observer's meridian at 12h

(noon) local time. Except for four unique times of the year relat-
ed to the interaction of the Earth's eccentric orbit and inclination 
to the ecliptic, the LAN will always be offset from exactly noon 
mean solar time. This time difference, which is applied as the 
equation of time at meridian transit, is listed on the right hand 
daily pages of the Nautical Almanac. 

The sign of the equation of time is negative if apparent 
time is behind mean time; it is positive is apparent time is 
ahead of mean time. In either case, the equation is: 
Apparent Time = Mean Time + (equation of time). A 
negative equation of time is indicated by shading in the 
Nautical Almanac.

Example 1: Determine the local mean time of the Sun's 
meridian passage (Local Apparent Noon) on June 16, 2016.

Solution: See the Nautical Almanac's right hand daily 
page for June 16, 2016 (Figure 1601b). The equation of 
time is listed in the bottom right hand corner of the page. 
There are two ways to solve the problem, depending on the 

Figure 1600b. Solstices and equinoxes on the ecliptic.

Figure 1601a. Equation of time.
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accuracy required for the value of meridian passage. First, 
for minute accuracy, the time of the Sun at meridian 
passage is given to the nearest minute in the "Mer. Pass." 
column. For June 16, 2016, this time is 1201.

Second, to determine the nearest second of time of me-
ridian passage, use the value given for the equation of time 
listed immediately to the left of the "Mer. Pass." column on 
the daily pages. For June 16, 2016, the value is given as 
negative 00 m 47 s. (Use the "12 h" column because the 
problem asked for meridian passage at LAN.) 

Using the equation Apparent Time = Mean Time + 
(equation of time), we have 1200 = Mean Time + (-0047). 
Rearranging, we get Mean Time = 1200 + 0047. The exact 
mean time of meridian passage for June 16, 2016, is 12 h 
00 m 47 s.

To calculate latitude and longitude at LAN, the naviga-
tor seldom requires the time of meridian passage to 
accuracies greater than one minute (0.25 degrees of longi-
tude). Therefore, use the time listed under the “Mer. Pass.” 
column to estimate LAN unless extraordinary accuracy is 
required.

1602. Fundamental Systems of Time

Atomic based timekeeping is determined by the 
definition of the Systeme International (SI) second, with 
duration of 9,192,631,770 cycles of electromagnetic 
radiation corresponding to the transition between two 
hyperfine levels of the ground state of cesium 133. Interna-
tional Atomic Time (TAI) is an international time scale 
based on the non-stationary ensemble of atomic clock 
observations contributed by worldwide timekeeping 
laboratories, qualified by the Bureau International des 
Poids et Mesures (BIPM). 

Universal time (UT) is a generic reference to one of 
several timescales that approximate the mean diurnal mo-
tion of the fictitious mean sun. Loosely, UT is mean solar 
time at zero longitude, or the Greenwich meridian (pre-
viously known as Greenwich Mean Time (GMT). The 
term GMT has been dropped from scientific usage. In cur-
rent usage, UT either refers to UT1 or Coordinated 

Universal Time (UTC). In the navigational publications, 
UT always means UT1.

UT1 is a continuous timescale precisely defined by a 
mathematical expression that relates it to sidereal time, or
the angle and rate of Earth's rotation to fixed points (usually 
very distant objects) of reference on the celestial back-
ground. Thus, UT1 is observationally determined by the 
apparent diurnal motions of celestial bodies and is affected 
by irregularities and the slowing of Earth's rate of rotation.

Coordinated Universal Time (UTC) is a discontinuous 
timescale determined by TAI and maintained by the BIPM. 
UTC is recognized by nearly all worldwide timing centers 
as the standard reference clock for purposes ranging from 
navigation to precise time stamping of financial transac-
tions. UTC is accurately distributed (usually better than ± 1 
ms) by radiometric and optical fiber-based transmission. 
UTC defines the 24 hour cycle or clock as 86,400 SI sec-
onds, not related to the rotation rate of the Earth. In this 
way, UTC appears to run faster than UT1, although it is 
UT1 that is varying because of the slowing of the Earth. To 
maintain the long term coordination of UTC with UT1 to 
within ±0.9 seconds, a one second interval is typically add-
ed as necessary to UTC. This added interval is known as a 
leap second. Since the explicit synchronization of UTC and 
UT1 in 1958 through 2016, there have been 36 leap seconds 
inserted into UTC. Although the expectation of the leap 
second insertion should be regular, it is not, and it is this ir-
regularity that makes the implementation of the leap second 
undesirable to the highly synchronized worldwide systems 
based on UTC. The leap second insertion is what character-
izes UTC as a discontinuous time scale. The formal 
insertion of leap second is to expand the minute modulo by 
one (count the minute with a leap second as 58,59,60,00). 
Because the difference between UT1 and UTC are always 
less than 0.9 sec, navigators often do not need to account for 
the difference except when the highest precisions are 
required.

GPS Time is the time disseminated by the Navstar sat-
ellites of GPS, and is not UTC(USNO), meaning UTC as 
maintained by the United States Naval Observatory (US-
NO). Rather GPS Time is a continuous timescale monitored 
against the USNO master clock and maintained with a fixed 
offset of 19 seconds added to TAI. To formulate UTC, a 
leap second field is given within the navigation message of 
the GPS signal, which the receiver then uses to accordingly 
increment GPS Time. The need for a continuous timescale 
for Global Navigation Satellite Systems (GNSS), such as 
GPS Time, is necessary to allow for the determination of 
velocity and interaction with inertial navigation systems. In 
this way, real time system dynamics may be separated from 
the discrete time of day feature of GPS. See Section 1613
on dissemination systems for further details.

Terrestrial time (TT), formerly known as Terrestrial 
Dynamical Time (TDT), is rarely used by a navigator. In 
practice TT = TAI + 32.184 sec.

Sidereal time is the hour angle of the vernal equinox. If the 

Figure 1601b. Extract from the Nautical Almanac daily 
pages for June 16, 2016.
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mean equinox is used (that is, neglecting nutation), the result is 
mean sidereal time; if the true equinox is used, the result is appar-
ent sidereal time. The hour angle can be measured with respect to 
the local meridian or the Greenwich meridian, yielding, respec-
tively, local or Greenwich (mean or apparent) sidereal times.

Delta T is the difference between Terrestrial Time and Uni-
versal Time: Delta T = TT - UT1.

1603. Time and Longitude Arc

A navigator may be required to convert the measure of 
longitude arc to time or vice versa. The concept and math is 
not difficult, and calculators or tables (such as the one pro-
vided on page i in the back of the Nautical Almanac) can 
help. To illustrate, note that in this section, one day rep-
resents one complete rotation of the Earth as determined by 
a mean solar day. That is, one 24-hour period of 86,400 sec-
onds is the same as the Earth rotating 360°. Therefore, the 
time of day is an indication of the phase (amount of rota-
tion) within the Earth's orbital period, calculating how 
much of a mean solar day has elapsed, or what part of a ro-
tation has been completed. For example, initialing the day 
at zero hours, at one hour later, the Earth has turned through 
1/24 of its rotation, or 1/24 of 360°, or 360° ÷ 24 = 15°.

Smaller intervals can also be stated in angular units; since 1 
hour or 60 minutes is equivalent to 15° of arc, 1 minute of time is 
equivalent to 15° ÷ 60 = 0.25° = 15' of arc, and 1 second of time 
is equivalent to 15' ÷ 60 = 0.25' = 15" of arc. Therefore any time 
interval can be expressed as an equivalent amount of rotation, 
and vice versa. Conversion among these units can be aided by the 
relationships indicated below, summarizing in table form:

To convert time to arc:

If time is in hh:mm:ss format:

1. Convert to decimal hours. Take mm and divide by 
60 (60 is the number of minutes per hour). Take ss 
and divide by 3600 (3600 is the number of seconds 
per hour). Add both to hh. Mathematically, decimal 
hours = hh + mm ÷ 60 + ss ÷ 3600.

2. Multiply decimal hours by 15 to obtain decimal 
degrees of arc. 

3. If needed, convert decimal degrees of arc to deg° 
amin' asec” format, where deg is degree, amin is 
minutes of arc, and asec is seconds of arc. To do 
this, deg is simply the integer portion of the deci-
mal degrees. That is, the numbers before the 

decimal point. Take the remaining portion (that is, 
the decimal part) and multiply by 60. The minutes 
of arc, amin, is the integer portion of this. Take the 
remaining portion of this new value and again mul-
tiply it by 60. That is the seconds of arc, asec. 

Example 1: Convert 14h21m39s to arc.

Solution: 
Step 1: Convert to decimal hours. 14 + 21÷60 + 

39÷3600 = 14 + 0.35 + 0.01083 = 14.360833 hours
Step 2: Multiply by 15. 14.360833 × 15 = 215.4125°
Step 3: Convert to deg° amin' asec” format. The deg 

equal the integer portion of 215.4125, so deg = 215. The 
amin is found by taking the remainder,.4125, and multiply-
ing it by 60;.4125× 60 = 24.75. The amin equals the integer 
part, so amin = 24. The asec is found by taking the remain-
der of that,.75, and multiplying it by 60, which equals 45, so 
asec = 45. The final answer is

14 h 21 m 39 s of time = 215° 24' 45"

To covert arc to time, the steps are similar.

If arc is in the deg° amin' asec” format:

Step 1: Convert to decimal degrees. To do this, take 
amin and divide by 60 (60 is the number of minutes of arc 
per degree). Take asec and divide by 3600 (3600 is the 
number of seconds of arc per degree). Add both to deg. 
Mathematically, decimal degrees = deg + amin ÷ 60 + 
asec ÷ 3600.

Step 2: Divide decimal degrees of arc by 15 to obtain 
decimal hours of time. 

Step 3: If needed, convert decimal hours to hh:mm:ss 
format, where hh is hour, mm is minutes of time, and ss is 
seconds of time. To do this, hh is simply the integer portion 
of the decimal hours. That is, the numbers before the deci-
mal point. Take the remaining portion (that is, the decimal 
part) and multiply by 60. The minutes of time, mm, is inte-
ger portion of this. Take the remaining portion of this new 
value and again multiply it by 60. That is the seconds of 
time, ss. 

Convert 215° 24' 45" to time units.

Step 1: Convert to decimal degrees. Decimal degrees 
= deg + amin ÷ 60 + asec ÷ 3600. In this example, 215 + 
(24 ÷ 60) + (45 ÷ 3600), which equals 215.4125 degrees.

Step 2: Divide decimal degrees of arc by 15 to obtain 
decimal hours of time. 215.4125 ÷ 15 = 14.360833 hours.

Step 3: Convert decimal hours to hh:mm:ss format. 
The hh equal the integer portion of 14.360833, so hh = 14. 
The mm is found by taking the remainder, .360833, and 
multiplying it by 60; .360833 × 60 = 21.65. The mm equals 
the integer part, so mm = 21. The ss is found by taking the 

1d    = 24h = 360°
60m  =1h =15°
4m   = 1° = 60'

60s = 1m = 15'

4s = 1' = 60"

1s = 15" = 0.25'
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remainder of that, .65, and multiplying it by 60, which 
equals 39, so ss = 39. The final answer is

 215° 24' 45" =14 h 21 m 39 s. 

Solutions can also be made using arc to time conver-
sion tables in the almanacs. In the Nautical Almanac, the 
table given near the back of the volume is in two parts, per-
mitting separate entries with degrees, minutes, and quarter 
minutes of arc. This table is arranged in this manner be-
cause the navigator converts arc to time more often than the 
reverse.

Convert 334°18'22" to time units, using the Nautical 
Almanac arc to time conversion table.

Convert the 22" to the nearest quarter minute of arc for 
solution to the nearest second of time. Interpolate if more 
precise results are required.

334° 00.00 m = 22 h 16 m 00 s 

000° 18.25 m = 00 h 01 m 13 s 

334° 18' 22" = 22 h 17 m 13 s 

1604. Time Passage and Longitude

Section 1603 provides the direct coordination 
between the measure of longitude arc and the time 
passage of the mean solar day, equivalent to 24 hours 
equals 360 degrees of Earth's rotation. Thus, the 
measure of longitude between two fixed points is an 
angular equivalent of the time difference between these 
two points on the Earth. Therefore for any given time 
of day, places east of an observer have later time, and 
those places west have earlier time. The time difference 
observed between two places is equal to the difference 
of longitude between their meridians, expressed in 
units of time instead of arc. It is from this principle that 
longitude navigation through the use of a chronometer 
is derived. If an error free chronometer was set 
precisely at 12h at a given local noon, properly adjusted 
for the equation of time, then any longitudinal 
excursion (distance traveled east or west) could be 
determined through the interval of time passage on the 
chronometer, compared to the transit of the Sun across 
the new local (present) meridian. 

1605. The Date Line

Since time accumulates later when traveling toward the 
east and earlier toward the west, a traveler circling the Earth 
gains or loses an entire day depending on the direction of 
travel. To provide a starting place for each new mean solar 
day, a date line extending from Earth's poles is fixed by 
informal agreement, called the International Date Line. 
The International Date Line separates two consecutive 

calendar days. It coincides with the 180th meridian over most 
of its length. In crossing this line, the date is altered by one 
day. The date becomes one day earlier when traveling 
eastward from east longitude to west longitude. Conversely 
the date becomes one day later when traveling westward 
across it. When solving celestial problems, we convert local 
time to UTC and then convert this to local time on the 

opposite side of the date line.

1606. Civil Time vs. Mean Solar Time and Time Zones

Mean solar time is closely related to civil time, which is 
what our clocks read if they are set accurately. The 
worldwide system of civil time has historically been based on 
mean solar time, but in the modern system of timekeeping, 
there are some differences.

Civil time is based on a worldwide system of 1-hour 
time zone segments, which are spaced 15 degrees of 
longitude apart. (The time zone boundaries are usually 
irregular over land, and the system has broad variations; local 
time within a country is the prerogative of that country's 
government.) All places within a time zone, regardless of 
their longitudes, will have the same civil time, and when we 
travel over a time zone boundary, we encounter a 1-hour shift 
in civil time. The time zones are set up so that each is an 
integral number of hours from a time scale called 
Coordinated Universal Time (UTC). UTC is accurately 
distributed by GPS, the Internet, and radio time signals. So 
the minute and second “ticks” of civil time all over the world 
are synchronized and counted the same; it is only the hour 
count that is different. (There are a few odd time zones that 
are a ¼ or ½ hour offset from neighboring zones. The minute 

count is obviously different in these places.)

1607. Zone Time

At sea, as well as ashore, watches and clocks are normally 
set to some form of zone time (ZT). At sea the nearest merid-
ian exactly divisible by 15° is usually designated as the time 
meridian or zone meridian. Thus, within a time zone ex-
tending ±7.5° on each side of the time meridian the time is the 
same, and time in consecutive zone increments differs by exactly 
one hour. The time maintained by a clock is changed as conve-
nient, usually at a whole hour, when crossing the boundary 
between zones. Each time zone is identified by the number of 
times the longitude of its zone meridian is divisible by 15°, pos-
itive in west longitude and negative in east longitude. 
This number and its sign, called the zone description (ZD), is the 
number of whole hours that are added to or subtracted from the 
zone time to obtain UTC. Note that the zone description does not 
change when Daylight Savings Time is in effect. The mean ficti-
tious sun is the celestial reference point for zone time. See Table 
1607a and Figure 1607b for more detail.
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When converting ZT to UTC, a positive ZT is add-
ed and a negative one subtracted; converting UTC to 
ZT, a positive ZD is subtracted, and a negative one 
added.

Example: The UTC is 15h27m09s.

Required:    (1) ZT at long. 156°24.4' W 

Solutions: 15 h 27 m 09 s - (+150/15) = 05 h 27 m 09 s
In example (1), the nearest 15° increment is 150°W, 

leaving a remainder of less than ±7.5° (+6.407°).

Example: The UTC is 15h27m09s.

Required:    (2) ZT at long. 039°04.8' E

Solutions:  15 h 27 m 09 s + (-45/15) = 18 h 27m 09 s
In example (2), the nearest 15° increment is 45°E, 

leaving a remainder of less than ±7.5 °(-5.92°).

1608. Chronometer Time

Chronometer time (C) is time indicated by a chro-
nometer. Since a chronometer is set approximately to 
UTC and not reset until it is overhauled and cleaned 

about every 3 years, there is nearly always a chronom-
eter error (CE), either fast (F) or slow (S). The change 
in chronometer error in 24 hours is called chronometer 
rate, or daily rate, and designated gaining or losing. 
With a consistent error in chronometer rate of +1s per 
day for three years, the chronometer error would accu-
mulate 18 minutes. Since chronometer error is subject 
to change, it should be determined from time to time, 
preferably daily at sea. Chronometer error can be deter-
mined by comparison to a radio derived time signal, by 
comparison with another timekeeping system of known 
error, or by applying chronometer rate to previous read-
ings of the same instrument. It is recorded to the nearest 
whole or half second. Chronometer rate is recorded to 
the nearest 0.1 second/day.

Example: At UTC 1200 on May 12 the chronometer reads 
12h04m21s. At UTC 1600 on May 18 it reads 4h04m25s.

Required: 
1. Chronometer error at 1200 UTC May 12.

2. Chronometer error at 1600 UTC May 18.

3. Chronometer rate.

4. Chronometer error at UTC 0530, May 27.

Time Zones, Zone Descriptions, and Suffixes

ZONE ZD SUFFIX ZONE ZD SUFFIX

 7.5° W to 7.5° E  0 Z  7.5° W to 22.5° W + 1 N

 7.5° E to 22.5° E -1 A 22.5° W to 37.5° W + 2 O

 22.5° E to 37.5° E -2 B  37.5° W to 52.5° W + 3 P

37.5° E to 52.5° E -3 C  52.5° W to 67.5° W + 4 Q

 52.5° E to 67.5° E -4 D  67.5° W to 82.5° W + 5 R

 67.5° E to 82.5° E -5 E  82.5° W to 97.5° W + 6 S

 82.5° E to 97.5° E -6 F  97.5° W to 112.5° W + 7 T

 97.5° E to 112.5° E -7 G  112.5° W to 127.5° W + 8 U

 112.5° E to 127.5° E -8 H  127.5° W to 142.5° W + 9 V

127.5° E to 142.5° E -9 I  142.5° W to 157.5° W + 10 W

142.5° E to 157.5° E -10 K  157.5° W to 172.5° W + 11 X

157.5° E to 172.5° E -11 L  172.5° W to 7.5° W + 12 Y

172.5° E to 180° E -12 M

Note. - GMT is indicated by suffix Z. Standard times as kept in various places or countries are 
listed in The Nautical Almanac and The Air Almanac.

Table 1607a. Time zones, descriptions, and suffixes.
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Solutions: 

Because UTC is on a 24-hour basis and chronometer 
time on a 12-hour basis, a 12-hour ambiguity exists. This 
is ignored in finding chronometer error. However, if 
chronometer error is applied to chronometer time to find 
UTC, a 12-hour error can result. This can be resolved by 
mentally applying the zone description to local time to 
obtain approximate UTC. A time diagram can be used 
for resolving doubt as to approximate UTC with date. If 

the Sun for the kind of time used (mean or apparent) is 
between the lower branches of two time meridians (as 
the standard meridian for local time, and ZT 0 or Zulu 
meridian for UTC, the date at the place farther east is one 
day later than at the place farther west.

1609. Watch Time

Watch time (WT) is usually an approximation of 
zone time, except that for timing celestial observations it 
is easiest to set a comparing watch to UTC. If the watch 
has a second-setting hand, the watch can be set exactly to 
ZT or UTC, and the time is so designated. If the watch is 
not set exactly to one of these times, the difference is 
known as watch error (WE), labeled fast (F) or slow (S) 
to indicate whether the watch is ahead of or behind the 
correct time.

If a watch is to be set exactly to ZT or UTC, set it to 
some whole minute slightly ahead of the correct time and 
stopped. When the set time arrives, start the watch and 
check it for accuracy.

The UTC may be in offset by 12h, but if the watch is 
graduated to 12 hours, this will not be reflected. If a watch 
with a 24-hour dial is used, the actual UTC should be 
applied.

To determine WE, compare the reading of the watch 
with that of the chronometer at a selected moment. This 
may also be at some selected moment to UTC. Unless a 
watch is graduated to 24 hours, its time is designated as AM 
(ante meridian) before noon and PM (post meridian) after 
noon.

Figure 1607b. Time zones of the world.

1. UTC 12h00m00s May 12
C 12h04m21s

CE (F)4m21s gaining

2. UTC 16h00m00s May 18
C 04 04 25 
CE (F)4m25s gaining

3. UTC 18d16h present
UTC 12d12h past
diff. 06d04h = 6.2d

CE (F)4m21s 1200 May 12
CE (F)4m25s 1600 May 18
diff. 4s (gained)
daily rate 0.6s/d (gain) 4s/6.2d

4. UTC 27d05h30m present
UTC 18d16h00m past
diff. 08d13h30m (8.5d)
CE (F)4m25s 1600 May 18
corr. (+)0m05s diff. × rate
CE (F)4m30s 0530 May 27
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Even though a watch is set approximately to the zone 
time, its error to UTC can be determined and used for 
timing observations. In this case the 12-hour ambiguity to 
UTC should be resolved, and a time diagram used to avoid 
miscalculation. This method requires additional work, and 
presents a greater probability of error, and gains no greater 
advantage provided through WE compensation.

If a stopwatch is used for timing observations, it should 
be started at some convenient UTC, such as a whole 5m or 
10m. The time of each observation is then the UTC plus the 
watch time. Digital stopwatches and wristwatches are ideal 
for this purpose, as they can be set from a convenient UTC 
and read immediately after the observation is taken.

1610. Local Mean Time

Local mean time (LMT), like zone time, uses the 
mean Sun as the celestial reference point. It differs from 
zone time in that the local meridian is used as the terrestrial 
reference, rather than a zone meridian. Thus, the local mean 
time at each meridian differs from every other meridian, the 
difference being equal to the difference of longitude 
expressed in time units. At each zone meridian, including 
0°, LMT and ZT are identical.

In navigation the principal use of LMT is in rising, 
setting, and twilight tables. The problem is usually one of 
converting the LMT taken from the table to ZT. At sea, the 
difference between the times is normally not more than 
30m, and the conversion is made directly, without finding 
GMT as an intermediate step. This is done by applying a 
correction equal to the difference of longitude. If the 
observer is west of the time meridian, the correction is 
added, and if east of it, the correction is subtracted. If 
Greenwich time is desired, it is found from ZT.

Where there is an irregular zone boundary, the longitude 
may differ by more than 7.5° (30m) from the time meridian.

If LMT is to be corrected to daylight saving time, the 
difference in longitude between the local and time meridian 
can be used, or the ZT can first be found and then increased 
by one hour.

Conversion of ZT (including GMT) to LMT is the 
same as conversion in the opposite direction, except that the 
sign of difference of longitude is reversed. This problem is 
not normally encountered in navigation.

1611. Sidereal Time

Sidereal time uses the celestial datum of the vernal 
equinox (first point of Aries) as the celestial reference point 
instead of the apparent procession of Sun. Since the Earth 
revolves around the Sun, and since the direction of the 
Earth's rotation and revolution are the same, it completes a 
rotation with respect to the stars in less time (about 3 m 56.6 
s of mean solar units) than with respect to the Sun, and 
during one revolution about the Sun (1 year) it makes one 

complete rotation more with respect to the stars than with 
the Sun. This accounts for the daily shift of the stars nearly 
1° westward each night. Hence, sidereal days are shorter 
than solar days, and its hours, minutes, and seconds are 
correspondingly shorter. Because of nutation, sidereal time 
is not quite constant in rate. Time based upon the average 
rate is called mean sidereal time, when it is to be distin-
guished from the slightly irregular sidereal time. The ratio 
of mean solar time units to mean sidereal time units is 
1:1.00273791.

A navigator very seldom uses sidereal time. 

1612. Time and Hour Angle

As mentioned earlier, hour angle is a measure of how 
far east or west of a meridian a celestial object appears. If 
the local meridian is used, this measure is called a local 
hour angle (LHA). If the Greenwich meridian is used, 
then it is called a Greenwich hour angle, GHA. Hour an-
gles are often expressed in arc units, between 0 and 360°. 
The hour angle is zero for an object crossing the meridian, 
and increases as the object moves west of the meridian (set-
ting). In other words, an object transiting the meridian has 
an hour angle of 0°. Shortly after transit, its hour angle 
would be 1°, shortly before transit it would be 359°.

Sidereal time is the hour angle of the vernal equinox, 
but it is usually expressed in time units. Solar time at a spe-
cific location is also an hour angle measurement of the Sun, 
but since the day starts at midnight, 12 hours is added. That 
is, local solar time = 12 hours + local hour angle (expressed 
in hours) of the position of the Sun in the sky.

As with time, LHA at two places differs by their differ-
ence in longitude. In addition, it is often convenient to 
express hour angle in terms of the shorter arc between the 
local meridian and the body, that is, instead of 0° to 360°, it 
can be expressed 0° to 180°. This is similar to measurement 
of longitude from the Greenwich meridian. Local hour an-
gle measured in this way is called meridian angle (t), which 
must be labeled east or west, like longitude, to indicate the 
direction of measurement. A westerly meridian angle is nu-
merically equal to LHA, while an easterly meridian angle is 
equal to 360° - LHA. Mathematically, LHA = t (W), and 
LHA = 360° - t (E). Meridian angle is used in the solution 
of the navigational triangle.

Find LHA and t of the Sun at for long. 118°48.2' W if 
the GHA of the Sun is 231° 04.0'.

LHA = GHA - west longitude, and LHA = GHA + east 
longitude, thus, for our example

LHA(Sun) = 231° 04.0' - 118° 48.2' = 112° 15.8'

t = 112° 15.8' W
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RADIO DISSEMINATION OF TIME SIGNALS

1613. Dissemination Systems

Of the many systems for time and frequency dissemi-
nation, the majority employ some type of radio 
transmission, either in dedicated time and frequency 
emissions or established systems such as radionavigation 
systems. The most accurate means of time and frequency 
dissemination today are by the mutual exchange of round-
trip time signals through communication (commonly called 
Two-Way) and by the mutual observation of one-way 
signals from navigation satellites (such as Common View, 
All-in-View, and Differential GPS). One-way direct access 
to Global Navigation Satellite Systems (GNSS) is an 
excellent way to obtain UTC if many satellite observations 
are averaged.

Radio time signals can be used either to perform a 
clock’s function or to set clocks. When using a radio wave 
several factors must be considered. One is the delay time of 
approximately 3 microseconds per kilometer it takes the 
radio wave to propagate and arrive at the reception point. 
Thus, a user 1,000 kilometers from a transmitter receives 
the time signal about 3 milliseconds later than the on-time 
transmitter signal. If time is needed to better than 3 
milliseconds, a correction must be made for the time it takes 
the signal to pass through the receiver.

In most cases standard time and frequency emissions 
as received are more than adequate for ordinary needs. 
However, many systems exist for the more exacting 
scientific requirements, such as Precise Point Positioning 
using GNSS carrier phase.

1614. Characteristic Elements of Dissemination 
Systems

A number of common elements characterize most 
time and frequency dissemination systems. Among these 
elements, the most important are accuracy, ambiguity, 
repeatability or precision, coverage, availability of time 
signal, reliability, ease of use, cost to the user, and the 
number of users served. No single system optimizes all 
desired these characteristics. The relative importance of 
these characteristics will vary by application, and the 
solution for one user may not be satisfactory to another. 
These trade among these common elements are discussed 
in the following examination of a hypothetical radio 
signal.

Consider a very simple system consisting of an un-
modulated 10-kHz signal as shown in Figure 1614. This 
signal, leaving the transmitter at 0000 UTC, will reach the 
receiver at a later time due to the propagation delay. The 
user must know this delay because the accuracy of the re-
covered time from the transmitted signal can be no better 
than the certainty in this delay. Since all cycles of the sig-
nal waveform are identical, the signal is ambiguous and 

the user must resolve which cycle is the “on time” cycle, 
in this case the cycle leaving at 0000 UTC. This means, 
with respect to a 10-kHz signal waveform, the user must 
already know the propagation delay to within ± 50 micro-
seconds (half the period of the signal). The calibration of 
the waveform cycle over cycle phase (zero crossings as 
defined in the figure) to resolve ambiguity in time dissem-
ination is called the “tick to phase” determination. 
Further, the user may desire to periodically use the time-
transfer system, say once a day, to check their clock or fre-
quency standard. However, if the travel delay and 
instrument repeatability vary from one day to the next 
without the user knowing or correcting, the accuracy will 
be limited by the amounts attributed to these uncertainties. 

Many users are interested in making time-coordinated 
measurements over large geographic areas. They would 
like all measurements to be traceable to one master refer-
ence time to make corrections for the offsets between 
geographically distributed timekeeping systems. In addi-
tion, traceability to a master reference system increases 
confidence that all time measurements are related to each 
other in a consistent manner. Thus, the accuracy over the 
range of geographic coverage of a dissemination system is 
an important characteristic. Another important character-
istic of a time dissemination system is the percentage of 
availability.

For most social uses of time, people who have to keep 
an appointment usually need to know the time of day to 
within a few minutes. Although requiring only coarse time 
information, people keeping a social schedule want it on de-
mand, and thus carry a wristwatch or other portable device 
with a clock function that gives the time with continuous 
availability. People who have access to the internet can set 
the time of their personal computers to an accuracy of UTC 

Figure 1614. Single tone time dissemination.
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of ±100 milliseconds, or considerably better, through the 
Network Time Protocol (NTP), with near continuous avail-
ability, dependent on the network's reliability. On the other 
hand, a person with a scientific interest may possess a very 
good clock capable of maintaining a few microseconds with 
only an occasional need for an accuracy update, perhaps 
only once or twice a day. However, in this distinguishing 
case, the scientific user requires much greater precision and 
accuracy in time dissemination than the social user, when 
available. This leads to the characteristic of time dissemina-
tion reliability, i.e., the likelihood that a time signal will be 
available when scheduled. In the case of the scientific user, 
the availability of time dissemination may be a critical op-
erational need, and reliability may be as important as 
precision. Propagation fade-out or user location (such as in 
a basement or the woods) can sometimes prevent or distort 
signal reception. Thus, the quality and cost of time dissem-
ination services contrast accuracy, availability and 
reliability against the application needs of the user commu-
nity and the capability of their local clocks.

1615. Radio Wave Propagation Factors

Radio has been used to transmit standard time and 
frequency signals since the early 1900's. As opposed to the 
physical transfer of time via portable clocks, the transfer of 
timing information by radio involves the use of electro-
magnetic propagation from a transmitter, usually carrying 
the master reference time, to a navigator's receiver at long 
distance.

In the broadcast of frequency and time over radio, the 
transmitted signals are directly related to some master clock 
and are usually received with some degradation in accuracy. 
In a vacuum and with a noise-free background, timing 
signals should be received at a distant receiver essentially 
undistorted, with a constant path delay due to the propagation 
of the radio wave at the speed of light (299,773 kilometers 
per second). However the propagation media, including the 
Earth's atmosphere and ionosphere, reflections and 
refractions caused by man-made obstructions and geographic 
features, and space weather (solar-activity), as well as the 
inherent characteristics of transmitters and receivers, degrade 
the fidelity and accuracy of timing derived from the received 
radio signals. The amount of degradation in timing recovered 
from the signals is also dependent upon the frequency of the 
transmitted radio wave (carrier frequency), and the length of 
signal path. In many cases the application of propagation 
models or supplementary information must be used to correct 
for the distorting effects. For example, GPS receivers, which 
only use the L1 frequency, have correction models built into 
their systems to correct for propagation through the 
ionosphere from space

Radio dissemination systems can be classified in a 
number of different ways. One way is to separate those 
carrier frequencies low enough to be reflected by the 
ionosphere (below 30 MHz) from those sufficiently high to 

penetrate the ionosphere (above 30 MHz). The former can 
be observed at great distances from the transmitter but 
suffer from ionospheric propagation distortion that limits 
accuracy; the latter are restricted to line-of-sight 
applications but show less signal degradation caused by 
propagation effects. The most accurate systems tend to be 
those which use the higher, line-of-sight frequencies, and 
with the advent of space-based satellite navigation, such as 
GPS, these also have promoted the most users and 
applications for radio time dissemination.

1616. Standard Time Broadcasts

The World Radiocommunication Conference (WRC), 
is the means by which the International Telecommuni-
cations Union (ITU), allocates certain frequencies in five 
bands for standard frequency and time signal emission. For 
such dedicated standard frequency transmissions, the ITU 
Radiocommunication Sector (ITU-R) recommends that 
carrier frequencies be maintained so that the average daily 
fractional frequency deviations from the internationally 
designated standard for measurement of time interval 
should not exceed ± ten parts per trillion. 

1617. Time Signals

The modern method of determining chronometer error and 
daily rate is by comparison to time recovered from radionaviga-
tion signals. The most accurate and readily available method for 
vessels is from navigation receivers of GPS, or other GNSS, 
and/or, where available, Enhanced Long Range Navigation 
(eLORAN) signals. Also, many maritime nations broadcast 
time signals on short-wave frequencies, such as the U.S. station 
(WWV), or German station (DCF77). Further discussion can be 
found in NGA Pub. 117, Radio Navigational Aids and the Brit-
ish Admiralty List of Radio Signals. A list of signals transmitted 
by timing labs is published in the Annual Report of the Interna-
tional Bureau of Weights and Measures (BIPM). The BIPM 
report is currently available on the Internet (see Figure 1617a). 
An important reason for employing more than one technique is 
to guard against both malfunction in equipment or malicious in-
terference, such as spoofing.

If a vessel employs a mechanically actuated (main-
spring) chronometer or even an atomic clock, the time 
should nonetheless be checked daily against a time derived 
from radio signals, beginning at least three days prior to de-

Figure 1617a. BIPM Annual Report on Time Activities. 
http://www.bipm.org/en/bipm/tai/annual-report.html
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Figure 1617b. Broadcast format of station WWV.

Figure 1617c. Broadcast format of station WWVH.
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parture. The offset and computed rate should be entered in 
the chronometer record book (or record sheet) each time 
they are determined, although for an atomic clock the main 
concern is catastrophic or end of life failure. For example, 
cesium-beam tube atomic clocks have a limited life due to 
the consumption of the cesium metal during extended oper-
ation, typically 5 to 7 years.

For the U.S. the National Institute of Standards and 
Technology (NIST) broadcasts continuous time and fre-
quency reference signals from WWV, WWVH, and 
WWVB. Because of their wide coverage and relative sim-
plicity, the HF services from WWV and WWVH are used 
extensively for navigation. Station WWV broadcasts from 
Fort Collins, Colorado at the internationally allocated fre-
quencies of 2.5, 5.0, 10.0, 15.0, and 20.0 MHz; station 
WWVH transmits from Kauai, Hawaii on the same fre-
quencies with the exception of 20.0 MHz. The broadcast 
signals include standard time and frequencies, and various 
voice announcements. Details of these broadcasts are given 
in NIST Special Publication 432, NIST Frequency and 
Time Dissemination Services. Both HF emissions are de-
rived from cesium beam atomic frequency standards with 
traceable reference to the NIST atomic frequency and time 
standards.

The time ticks in the WWV and WWVH emissions are 
shown in Figure 1617b and Figure 1617c. The 1-second 
UTC markers are transmitted continuously by WWV and 
WWVH, except for omission of the 29th and 59th marker 
each minute. With the exception of the beginning tone at 
each minute (800 milliseconds) all 1-second markers are of 
5 milliseconds duration and at a tone of 440 Hz. Each pulse 
is preceded by 10 milliseconds of silence and followed by 
25 milliseconds of silence. Time voice announcements are 
given also at one minute intervals. All time announcements 
are UTC.

As explained in the next section, Coordinated Univer-
sal Time (UTC) may differ from (UT1) by as much as 0.9 
second; the actual difference can be found at IERS web 
pages Bulletin A, which published on the internet at 
http://datacenter.iers.org/eop/-/somos/5Rgv/latest/6. NGA 

Pub. No. 117, Radio Navigational Aids, should be referred 
to for further information on time signals.

1618. Leap-Second Adjustments

By international agreement, UTC is maintained to be 
no more than ± 0.9 seconds from agreement with the con-
tinuous celestial timescale, UT1. The introduction of leap 
seconds allows a clock maintaining UTC to stay approxi-
mately coordinated with mean solar time or stay near the 
procession of the fictitious mean sun across the sky. The in-
sertion of leap seconds makes UTC a discontinuous 
timescale. The main contributor to the need for a leap sec-
ond adjustment is the slowing of the Earth's rotation at 
about 1.7 ms/century. However, because of irregular varia-
tions in the yearly rate of the rotation of the Earth, year over 
year occurrences of the insertion of a leap seconds is not 
predictable.

The Central Bureau of the International Earth Rotation 
and Reference Frames Service (IERS) decides upon and an-
nounces the introduction of a leap second. The IERS 
announces the leap second insertion at least eight weeks in 
advance. Because of the irregularity of the Earth's rotation, 
the IERS provides that a second may be advanced or retard-
ed, positive or negative leap second, though a negative leap 
second has never been required since its institution in 1972. 
The leap second is introduced as the last second of a UTC 
month, but first preference is given to the end of December 
and June, and second preference is given to the end of 
March and September. A positive leap second begins at 23 
h 59 m 60 s and ends at 00 h 00 m 00 s of the first day of the 
following month. In the case of a negative leap second, 23 
h 59 m 58 s is followed one second later by 00 h 00 m 00 s 
(skipping 23 h 59 m 59 s) of the first day of the following 
month. Leap second adjustments of UTC are performed 
uniformly, and in synchrony (per interval of a SI second) 
across the world.

The dating of events in the vicinity of a leap second is 
effected in the manner indicated in Figure 1618a and Figure 
1618b. 

Figure 1618a. Dating of event in the vicinity of a positive leap second.
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Whenever a leap second adjustment is to be made to 
UTC, navigators are advised by information presented on 
the web pages of the United States Naval Observatory, US-
NO, IERS Bulletin C and the International Bureau of 
Weights and Measures (BIPM). Additional information is 
available on the USNO and IERS webpages (see Figure 
1618c and Figure 1618d).

1619. Use of Time, Time-interval, and other Novel 
Techniques for Approximate Determination of 
Chronometer Time, Latitude, and Longitude.

There may arise situations in which a mariner needs to 
address the problem of determining date, time, latitude, and 
longitude using only minimal resources and with little, if 
any, prior knowledge of the values of these parameters. 
Given this, it is useful to consider the value of using simple 
time, “time-interval”, azimuth, “azimuth interval”, and 
“instrument-free” or “instrument-limited” measurements, 
performed in conjunction with table look-up of data from 
the Air or Nautical Almanacs and/or back-of-the-envelope 
computations. The term “instrument-limited”, in this 
context, applies when azimuth readings are made with a 
simple compass, and elevation readings are accomplished 
using a handheld inclinometer rather than a sextant or 
tripod-mounted surveying transit. 

Figure 1619 illustrates a convenient instrument, which 
is a combined inclinometer/compass that can be used on 
land without a clearly defined horizon, and at night using 
internal illumination. One of the user's eyes reads the inter-
nal scales while the other eye lines the internal graticule up 
with the star or other object being measured. The human 
ability to merge the different optical images into one per-
ceived image is not universal. Up to 15% of individuals are 
unable to merge the different visual images. Although not 
of sextant accuracy, the device is rugged and portable, and 
is precise to about 1 degree for handheld use without a 
tripod.

Note that a modern smart phone, with its built in clock, 
camera, inclinometer, and compass can be used for the 
same purpose if GPS is denied, and can also be pro-
grammed with a star atlas, almanac data, and navigation 
algorithms. However, the successful use of a smartphone as 

Figure 1618b. Dating of event in the vicinity of a negative leap second.

Figure 1618c. USNO leap second data between January 
1972 and January 2017. Link: 

http://tycho.usno.navy.mil/leapsec.html

Figure 1619. Combined compass/inclinometer with 
internal lighting and automatic leveling.
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a combined sextant, chronometer, and navigation computer 
depends critically on battery life.

The level of precision of an inclinometer and compass 
can be compared with the celestial measurements described 
previously as follows. Sextant measurements typically have 
a best-case precision of 0.2 minutes of arc. Related time 
measurements are typically accomplished with a resolution 
of one second. Note that 1 minute of arc at the equator cor-
responds to a distance of one nautical mile and equates to 
four seconds of clock time. Thus, it takes 4 seconds for the 
earth to rotate one arc-second around its axis. 

With respect to precision measurement of time, knowl-
edge of Greenwich or Universal time is typically specified 
to less than quartz clock accuracy (i.e., to about one second 
resolution). When there is a clock offset bias, its value and 
drift rate are typically known. It will often be the case that 
local time is synchronized to Greenwich time within one 
second, even for everyday consumer applications, and far 
better than this for time signals disseminated from a wire-
less network to one's cell phone.

Note that the poor relative precision of a magnetic 
compass with respect to that of a sextant precludes the com-
bined use of sextant and azimuth measurements. However, 
when an inclinometer of limited precision is the best avail-
able instrument, it can also be beneficial to include 
compass-derived azimuth measurements of comparable 
precision.

With this background, some useful examples of rela-
tively simple, but in certain situations of great value, 
navigation techniques are presented.

1. Quick observation of Polaris and the northern 
sky to approximate latitude and longitude. To 
estimate latitude simply make an observation 
(when in the northern hemisphere) of Polaris, the 
north star. If Greenwich or universal time is 
available using a simple quartz watch or cell phone, 
longitude can be inferred. This can be done with the 
help of a star chart, by observing the “clock angles” 
of the constellation Cassiopeia and Canis Major 
(the big dipper).   Experienced viewers of the night 
sky routinely estimate time by unassisted 
observations of the moon and of the constellations 
of the Zodiac.

2. Noon observation of the sun to compare with an 
observation of Polaris to determine solar 
declination, and hence to determine approximate 
date and time. During daylight hours, the 
maximum angle of the sun above the horizon at 
local apparent noon can be determined by a series 
of measurements made at time intervals of a few 
minutes. The highest elevation angle of the sun, 
Elevationsun, occurs at local noon when the sun is 
due south of the observer. This measurement, 
combined with the estimate of latitude from 

measurement of the north star, Polaris, yields the 
declination of the sun. Specifically, the latitude 
value obtained from measurement of Polaris is 
related to the solar declination by the equation: 

The declination depends on time, but not on the 
observer's position. An approximate measurement 
of the declination can be matched to the daily tables 
in the Nautical Almanac to yield the date, and within 
a few hours, a value for Universal Time (which in 
this context can be regarded as being equivalent to 
Greenwich Mean Time, or GMT). For example, the 
elevation of the sun on September 30, 2016 
measured at 1700 hours GMT is computed, from the 
Nautical Almanac, to be 47:50:30 deg:min:sec with 
an azimuth of 180.8 degrees, indicating that the 
measurement is made at a time that is very close to 
local apparent noon. Using the equation above, we 
deduce that the declination is latitude + elevation - 
90 = 39:00:00 +47:50:30 - 90:00:00 = -3:09:30, in 
very close agreement with the Nautical Almanac 
lookup value of -3:09:18 deg:min:sec. 

Using this value of declination to identify a ta-
ble entry in the Nautical Almanac takes one 
immediately to the daily entry for September 30, 
2016 at 1700 hours universal time (e.g., GMT), 
thus illustrating the causal relationship between so-
lar declination and date and time. Once GMT is 
known, the traditional methods of determining lat-
itude and longitude using the stars, planets, and/or 
sun can be implemented.

Of course, if one knows Greenwich time to high 
precision from, for example, a digital watch, this 
same measurement, in conjunction with another 
measurement of the sun at a different point in time, 
yields the traditional running fix, which lies in the 
purview of the earlier sections of this chapter.

3. Observations of sunrise and sunset to determine 
longitude. If Greenwich time is known from a dig-
ital watch and an intelligent estimate of the relevant 
time zone, a simpler implementation of the running 
fix is easily accomplished. In this case, one mea-
sures only the times of sunrise and sunset, neither 
of which requires a sextant or artificial horizon 
when a clear horizon is available (i.e., on or near 
the ocean or other large body of water. The value 
for local noon is given as the midpoint in local time 
of the sunrise and sunset measurements. When this 
value is corrected to Greenwich time by the appro-
priate time zone corrections, the longitude is 
estimated by multiplying the time of local noon by 
15 degrees per hour.

A better estimate of longitude is then obtained 
by adding/subtracting the requisite correction for 
the equation of time. This is found on the daily page 

90 degrees Elevationsun declination+– Latitude=



TIME 289

of the Nautical Almanac for the date and time of the 
observation, and is added/subtracted to the value of 
time that is then multiplied by the factor of 15 de-
grees per hour.

For example, the Washington Post newspaper 
provides daily values for local sunrise and sunset. 
On September 30, 2016, these are given as 7:03 
A.M. and 6:52 P.M. EDT. Subtracting 1 hour to 
change to standard time, then taking the midpoint 
time yields a value for local noon of 11:57:30 
h:m:s. Adding 10 minutes as the approximate cor-
rection for the equation of time (taken from the 
Nautical Almanac daily page for September 30th) 
corrects the time of local noon to GMT/UT, result-
ing in a value of 12:07:30 h:m:s.

If Washington was precisely 5 times zones 
away from Greenwich, then local noon in Wash-
ington would occur at 12:00:00 local time, after 
correcting for the equation of time. Five time 
zones, at 15 degrees per hour, is 75 degrees of lon-
gitude. Adding the additional 7.5 minutes 
corresponds to an additional 1.9 degrees of longi-
tude, yielding a putative value for the longitude of 
Washington D.C. of 77 degrees West. (Note that 
the Naval Observatory, USNO, is at 38.9217° N, 
77.0669° W).

4. Compass measurement of the azimuth to Polaris 
to determine latitude and magnetic variation in 
order to determine position when latitude is al-
ready known. Measurements made using a simple 
compass can be surprisingly useful. Measurement 
of the bearing of Polaris can be used to determine 
the local value of magnetic variation. Combined 
with an observation of latitude using an inclinome-
ter or sextant, a map of magnetic variation versus 
latitude can then be used to generate an approxi-
mate position measurement.

In cases where magnetic variation is not known, 
relative bearing measurements yield “azimuth in-
terval” measurements which remove the common 
mode error due to magnetic variation. In any case, 
the approach described herein is used routinely for 
pointing certain types of portable satellite tele-
phone terminals at the appropriate satellite location 
in the geostationary arc. 

5. “Guess and Test” using simple Nautical Alma-
nac equations in order to take advantage of 
combined elevation and azimuth measurements. 
Nautical Almanac computations can be quite com-

plicated. For the purposes of this section, a 

convenient path forward is to use the straightfor-

ward equations for computing the calculated values 

of elevation angle Hc and azimuth Z from assumed 

values of the time, Greenwich Hour Angle (GHA), 

Sidereal Hour Angle (SHA), and declination for the 

celestial objects of interest. The relevant equations 

are given in the Nautical Almanac and are readily 

implemented using a calculator or perhaps a smart-

phone “App”.

Rather than use traditional iterative computa-

tions, this approach requires one to guess an 

“assumed position” and test the computed values of 

elevation Hc and azimuth Z against their measured 

values. One utility is that this provides a convenient 

way to integrate compass measurements of azi-

muth, corrected for magnetic variation as described 

above, into the data stream. The benefit is that a 

single sighting of the sun, if an azimuth measure-

ment is included, provides the two data points 

needed to compute a latitude and longitude fix. 

There simply may not be time, or suitable weather 

conditions, to compute a running fix. The running 

fix, as described above, requires multiple measure-

ments of the sun at widely spaced intervals of time.

6. Cloudy night celestial navigation. On a cloudy 

night, when only a single star is visible through a 

break in the clouds, a single measurement of the el-

evation and azimuth to a star lets one compute a 

location fix. Even if the identity of the star is not 

known, it is possible to perform the Hc and Z com-

putations, for the assumed position, for several 

stars. Then the star whose measurement yields the 

most plausible position fix can often be reliably be 

assumed to be the star that was actually observed. 

Note that even a poor measurement of azimuth can 

be used to help identify the name, and hence the 

correct declination and sidereal hour angle values, 

to be used in the position computation.

There are many variations and extensions of these 

techniques and methods. The combination of a preci-

sion time reference and an accurate sextant is 

regaining favor after decades of single-system depen-

dence on GPS, and more recently, E-LORAN. In 

extremis, and with little practice, even a combination 

of a protractor with a home-made plumb bob and a 

simple pendulum of length L and period 

might bring one safely home.

L g⁄2π
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CHAPTER 17 

THE ALMANACS

PURPOSE OF ALMANACS

1700. Introduction

Celestial navigation requires accurate predictions of the 
geographic positions of the celestial bodies observed. These 
predictions are available from three almanacs published 
annually by the U.S. Naval Observatory and H.M. Nautical 
Almanac Office (part of the U.K. Hydrographic Office) in 
England. 

The Astronomical Almanac precisely tabulates celestial 
data for the exacting requirements found in scientific fields. 
Its precision is far greater than that required by celestial 
navigation. Even if the Astronomical Almanac is used for 
celestial navigation, it will not necessarily result in more 
accurate fixes due to the limitations of other aspects of the 
celestial navigation process. This printed book is available in 
the U.S. through the Government Publishing Office 
eBookstore and resellers, and elsewhere via U.K. 
Hydrographic Office distributors. There is also an 
Astronomical Almanac Online complementary website.

The Nautical Almanac contains astronomical information 
specifically needed by marine navigators. Information is 
tabulated to the nearest 0.1' of arc and, with interpolation, to 1 
second of time. GHA and declination are available for the Sun, 
Moon, planets (Venus, Mars, Jupiter and Saturn), and 173 stars, 
as well as corrections necessary to reduce the observed values to 
true. Also included are Sun rise/set, equation of time, 
Moonrise/set, moon phase, twilight times, time zones, and star 
charts. Explanations, examples, and sight reduction procedures 
are also given. This printed book is available in the U.S. through 
the Government Publishing Office eBookstore and resellers, 
and elsewhere via U.K. Hydrographic Office distributors. 

The Air Almanac was originally intended for air 
navigators, but is used today mostly by the maritime 
community. In general, the information is similar to the 
Nautical Almanac, but is given to a precision of 1' of arc and 
1 second of time, at intervals of 10 minutes (values for the 
Sun and Aries are given to a precision of 0.1'). Unique to the 
Air Almanac are its monthly sky diagrams, used to find 

navigational stars, planets, Sun and Moon at various 
latitudes. This publication is suitable for ordinary 
navigation at sea, but lacks the precision of the Nautical 
Almanac, and provides GHA and declination for only the 
57 commonly used navigation stars. The Air Almanac is 
available on CD or as a free download through the 
Government Publishing Office eBookstore, The CD and 
download contain the same information as was found 
previously in the annual publications, with page images in 
PDF files.

The US Naval Observatory also provides celestial navi-
gation data via the web at http://aa.usno.navy.mil/data/. 

This robust website includes a navigational star chart and 
other data services, which provide GHA, declination, computed 
altitude, azimuth and altitude correction information for the nav-
igational objects above the horizon at a given assumed position
and time. Additional data services found on this website includes 
Rise/Set/Transit/Twilight data, Phases of the Moon, Eclipses and 
Transits, Positions of Selected Celestial Bodies, Synthetic Views 
of Selected Solar System Bodies and Dates & Times.

The Navy’s STELLA program (System To Estimate Lat-
itude and Longitude Astronomically), found aboard all 
seagoing Navy and Coast Guard vessels, contains an interactive 
almanac as well; this product is restricted to DoD and DoD con-
tractors. A variety of privately produced electronic almanacs are 
available as computer programs or applications (apps). These in-
variably are associated with sight reduction software which 
replaces tabular and mathematical sight reduction methods. 

FORMAT OF THE NAUTICAL AND AIR ALMANACS

1701. Nautical Almanac

The major portion of the Nautical Almanac (pages 10 
to 253) is devoted to hourly tabulations of Greenwich 

Hour Angle (GHA) and declination, to the nearest 0.1' of 
arc. On each set of facing pages, information is listed for 
three consecutive days. On the left-hand page, successive 
columns list GHA of Aries ( ), and both GHA and 

Figure 1700. USNO Data Services.
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declination of Venus, Mars, Jupiter, and Saturn, followed 
by the Sidereal Hour Angle (SHA) and declination of 57 
stars. The GHA and declination of the Sun and Moon, and 
the horizontal parallax of the Moon, are listed on the right-
hand page. Where applicable, the quantities v and d are 
given to assist in interpolation. The quantity v is the 
difference between the actual change of GHA in 1 hour 
and a constant value used in the interpolation tables, while 
d is the change in declination in 1 hour. Both v and d are 
listed to the nearest 0.1'.

On the left hand pages, the magnitude of each planet at 
Universal Time (UT) 1200 of the middle day of the three 
listed on a given page is found at the top of the column. The 
UT of transit across the Greenwich meridian is listed as 
“Mer. Pass.”. The value for the first point of Aries for the 
middle of the three days is listed to the nearest 0.1' at the 
bottom of the Aries column. The time of transit of the 
planets for the middle day is given to the nearest whole 
minute, with SHA (at UT 0000 of the middle day) to the 
nearest 0.1', below the list of stars.

On the right hand pages, to the right of the Moon data is 
listed the Local Mean Time (LMT) of sunrise, sunset, and be-
ginning and ending of nautical and civil twilight for latitudes 
from 72°N to 60°S. These times, which are given to the nearest 
minute, are UT of the phenomena on the Greenwich meridian. 
They are given for every day for moonrise and moonset, but 
only for the middle day of the three on each page for solar phe-
nomena. For the Sun and Moon, the time of transit to the nearest 
whole minute is given for each day. For the Moon, both upper 
and lower transits are given. Also listed, are the equation of 

time for 0h and 12h UT, without sign, to the nearest whole sec-
ond, with negative values shaded. The age and phase of the 
Moon is listed; age is given to the nearest whole day and phase 
is given by symbol. The semidiameters of both the Sun and 
Moon are also listed. 

The main tabulation is preceded by a list of religious 
and civil holidays, phases of the Moon, a calendar, infor-
mation on eclipses occurring during the year, and notes 
and a diagram giving information on the planets.

The main tabulation is followed by explanations and 
examples (pages 254 to 261). Next are four pages of standard 
times (zone descriptions). Star charts are next (pages 266-
267), followed by a list of 173 stars in order of increasing 
SHA. This list includes the 57 stars given on the daily pages, 
identified by a number in the “Name and Number” field. It 
gives the SHA and declination each month, and the 
magnitude.

Stars are listed by Bayer’s name, a designation that 
originated from Johann Bayer, a German uranographer 
(celestial cartographer), who in 1603 published an atlas that 
named the entire celestial sphere. The Bayer’s name is used 
to identify these stars and also the popular name is listed 
where applicable. The brightest stars have been given a 
designation consisting of a Greek letter followed by the 
possessive form of the name of the constellation to which 
they belong. 

Following the star list are the Polaris tables (pages 274-
276). These tables give the azimuth and the corrections to 
be applied to the observed Polaris altitude to find one's 
latitude. 

Following the Polaris table is the “Sight Reduction 
Procedures” section, divided into two subsections. The 
first, “Methods and Formula for Direct Computation” (pag-
es 277 to 283) gives formulas and examples for the entry of 
almanac data, the calculations that reduce a sight, and a 
method of solution for position, all for use with a calculator 
or computer. The second, “Use of Concise Sight Reduction 
Tables” (pages 284 to 319), gives instructions and exam-
ples of how to use the provided concise sight reduction 
tables and a sight reduction form. Tabular precision of the 
concise tables is one minute of arc.

The next pages (pp. 320-325) contain data on polar 
phenomena. Examples and graphs are given to estimate 
times of sunrise, sunset, civil twilight, moonrise, and 
moonset at extreme northern latitudes for each month of the 
year.

Next is a table for converting arc to time units (page i). 
This is followed by a 30-page table (pages ii - xxxi) called 
“Increments and Corrections,” used for interpolation of the 
hourly GHA and declination to get to the nearest second of 
the sextant observation. This table is printed on tinted paper 
for quick location. Then come tables for interpolating for 
times of rise, set, and twilight (page xxxii); followed by two 
indices of the 57 stars listed on the daily pages, one index 
in alphabetical order, and the other in order of decreasing 
SHA (page xxxiii).

Altitude corrections are given at the front and back of 
the almanac. Tables for the Sun, stars, and planets, and a dip 
table, are given on the inside front cover and facing page, 
with an additional correction for nonstandard temperature 
and atmospheric pressure on the following page. Tables for 
the Moon, and an abbreviated dip table, are given on the 
inside back cover and facing page. Corrections for the Sun, 
stars, and planets for altitudes greater than 10°, and the dip 
table, are repeated on one side of a loose bookmark. The 
star indices are repeated on the other side.

1702. Air Almanac

The Air Almanac, formerly a printed publication, is now 
available as a CD-ROM, and also as a free download from either 
the US Naval Observatory or Government Printing Office 
websites. The electronic version contains the same information 
as was previously found in the printed version, but with PDFs of 
the page images. Navigation through the e-book is done via a 
web interface and two options are given. The default option is a 
“logical” layout and a second is a “book layout”, which 
maintains the same page order as the printed book. The 
description below follows the book layout.

As in the Nautical Almanac, the major portion of the 
Air Almanac is devoted to a tabulation of GHA and decli-
nation. However, in the Air Almanac values are listed at 
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intervals of 10 minutes, to a precision of 0.1' for the Sun and 
Aries, and to a precision of 1' for the Moon and the planets. 
Values are given for the Sun, first point of Aries (GHA on-
ly), the three navigational planets most favorably located 
for observation, and the Moon. The magnitude of each 
planet listed is given at the top of its column, and the per-
centage of the Moon’s disc illuminated, waxing (+) or 
waning(-), is given at the bottom of each page. The magni-
tude of each planet listed is given at the top of its column. 
Values for the first 12 hours of the day are given on the 
right-hand page, and those for the second half of the day on 
the left-hand page. Each daily page includes the UT of 
moonrise and moonset on the Greenwich meridian for lati-
tudes from 72° N to 60° S; a “half-day” difference column 
provides data to find the time of moonrise and moonset at 
any longitude. In addition, each page has a critical table of 
the Moon's parallax in altitude, and below this the semidi-
ameter of the Sun and Moon, and the percentage of the 
Moon's disc illuminated and whether it is waxing (+) or 
waning (-).

Critical tables for interpolation for GHA are given on 
the inside front cover, which also has an alphabetical listing 
of the 57 navigational stars, with the number, magnitude, 

yearly mean SHA, and yearly mean declination of each. 
The same interpolation table and star list are printed on a 
flap which follows the daily pages. This flap also contains 
a star chart, a star list with the same data as the other, but in 
increasing navigational number order, and a table for inter-
polation of the UT of moonrise and moonset for longitude.

Following the flap are instructions for the use of the 
almanac; a list of symbols and abbreviations in English, 
French, and Spanish; a list of time differences between 
Greenwich and other places; monthly sky diagrams by 
latitude and time of day; planet location diagrams; star 
recognition diagrams for periscopic sextants; sunrise, 
sunset, and civil twilight tables; rising, setting, and 
depression graphs; semiduration graphs of Sunlight, 
twilight, and Moonlight in high latitudes; a single Polaris 
correction table; a list of 173 stars by number and Bayer 
designation (also popular name where there is one), giving 
the SHA and declination each month (to a precision of 0.1'), 
and the magnitude; tables for interpolation of GHA Sun and 
GHA ; a table for converting arc to time; a refraction 
correction table; a Coriolis correction table; and on the 
inside back cover, an aircraft standard dome refraction 
table; a correction table for dip of the horizon.

USING THE ALMANACS

1703. Entering Arguments

The time used as an entering argument in the almanacs 
is UT, (formerly referred to as GMT), which is equivalent to 

12h + GHA of the mean Sun. This scale may differ from the 

broadcast time signals by an amount of 0.9s which, if ig-
nored, will introduce an error of up to 0.2' in longitude 
determined from astronomical observations. The difference 
arises because the time argument depends on the variable 
rate of rotation of the Earth while the broadcast time signals 
are now based on atomic time. Leap seconds, that is step ad-
justments of exactly one second are made to the time 
signals as required (primarily at 24h on December 31 and 
June 30) so that the difference between the time signals and 

UT, as used in the almanacs, may not exceed 0.9s. If obser-
vations to a precision of better than 1s are required, 
corrections must be obtained from coding in the signal, or 
from other sources. The correction may be applied to each 
of the times of observation. Alternatively, the longitude, 
when determined from observations, may be corrected by 
the corresponding amount shown in Table 1703.

The main contents of the almanacs consist of data from 
which the GHA and the declination of all the bodies used 
for navigation can be obtained for any instant of UT. The 
LHA can then be obtained with the formula:

For the Sun, Moon, and the four navigational planets, 
the GHA and declination are tabulated directly in the 
Nautical Almanac for each hour of UT throughout the year; 
in the Air Almanac, the values are tabulated for each whole 
10 m of UT. For the stars, the SHA is given, and the GHA 
is obtained from:

GHA Star = GHA  + SHA Star.

The SHA and declination of the stars change slowly 
and may be regarded as constant over periods of several 
days or even months if lesser accuracy is required. The 
SHA and declination of stars tabulated in the Air Almanac 
may be considered constant to a precision of 1.5' to 2' for 
the period covered by each of the volumes providing the 

Correction to time
signals

Correction to
 longitude

-0.9s to -0.7s 0.2' to east

-0.6s to -0.3s 0.1' to east

-0.2s to +0.2s no correction

Table 1703. Corrections to time.

+0.3s to +0.6s 0.1' to west

+0.7s to +0.9s 0.2' to west

LHA = GHA + east longitude
LHA = GHA - west longitude

Correction to time
signals

Correction to
 longitude

Table 1703. Corrections to time.



294 THE ALMANACS

data for a whole year, with most data being closer to the 
smaller value. GHA , or the GHA of the first point of
Aries (the vernal equinox), is tabulated for each hour in the 
Nautical Almanac and for each whole 10m in the Air Alma-
nac. Permanent tables list the appropriate increments to the 
tabulated values of GHA and declination for the minutes 
and seconds of time.

In the Nautical Almanac, the permanent table for 
increments also includes corrections for v, the difference 
between the actual change of GHA in one hour and a 
constant value used in the interpolation tables; and d, the 
average hourly change in declination.

In the Nautical Almanac, v is always positive unless a 
negative sign (-) is shown. This occurs only in the case of 
Venus. For the Sun, the tabulated values of GHA have been 
adjusted to reduce to a minimum the error caused by 
treating v as negligible; there is no v tabulated for the Sun.

No sign is given for tabulated values of d; whether to add 
or subtract a correction to the declination must be done via in-
spection of the increasing or decreasing trend of the 
declination values. 

In the Air Almanac, the tabulated declination values, 
except for the Sun, are those for the middle of the interval 
between the time indicated and the next following time for 
which a value is given, making interpolation unnecessary. 
Thus, it is always important to take out the GHA and decli-
nation for the time immediately before the time of 
observation.

In the Air Almanac, GHA and the GHA and 
declination of the Sun are tabulated to a precision of 0.1'. If 
these values are extracted with the tabular precision, the 
“Interpolation of GHA” table on the inside front cover (and 
flap) should not be used; use the “Interpolation of GHA Sun” 
and “Interpolation of GHA Aries’ tables, as appropriate. These 
tables are found on pages A164 and A165.

1704. Finding GHA and Declination of the Sun

Nautical Almanac: Enter the daily page table with the 
whole hour before the given GMT, unless the exact time is 
a whole hour, and take out the tabulated GHA and 
declination. Inspect the trend in the following declination 
value to determine if declination is increasing or 
decreasing; this is needed to know whether to add or 
subtract the d correction. Also record the d value given at 
the bottom of the declination column. Next, enter the 
increments and corrections table for the number of minutes 
of GMT. If there are seconds, use the next earlier whole 
minute. On the line corresponding to the seconds of GMT, 
extract the value from the Sun-Planets column. Add this to 
the value of GHA from the daily page. This is GHA of the 
Sun. Next, enter the correction table for the same minute of 
GMT with the d value and take out the correction. Apply 
the d correction, either adding or subtracting (as determined 
earlier by inspection of the tabulated declination values), to 
the declination from the daily page. This is the declination.

The correction table for GHA of the Sun is based upon 
a rate of change of 15° per hour, the average rate during a 
year. At most times the rate differs slightly. Th e slight error 
is minimized by adjustment of the tabular values. The d
value is the average hourly amount that the declination 
changes on the middle day of the three shown.

Air Almanac: Enter the daily page with the whole 10m

preceding the given GMT, unless the time is itself a whole 
10m, and extract the GHA. The declination is extracted 
without interpolation from the same line as the tabulated 
GHA or, in the case of planets, the top line of the block of 
six. If the values extracted are rounded to the nearest 
minute, enter the “Interpolation of GHA” table on the inside 
front cover (and flap), using the “Sun, etc.” entry column, 
and take out the value for the remaining minutes and 
seconds of GMT. If the entry time is an exact tabulated 
value, use the correction listed half a line above the entry 
time. Add this correction to the GHA taken from the daily 
page. This is GHA. No adjustment of declination is needed. 
If the values are extracted with a precision of 0.1', the table 
for interpolating the GHA of the Sun to a precision of 0.1' 
must be used (page A164). Again no adjustment of 
declination is needed.

1705. Finding GHA and Declination of the Moon

Nautical Almanac: Enter the daily page table with the 
whole hour before the given GMT, unless this time is itself a 
whole hour, and extract the tabulated GHA and declination. 
Record the corresponding v and d values tabulated on the 
same line, and determine whether the d correction is to be 
added or subtracted, by inspecting the trend in the next tabular 
declination value. The v value of the Moon is always positive 
(+) but it is not marked in the almanac. Next, enter the 
increments and corrections table for the minutes of GMT, and 
on the line for the seconds of GMT, take the GHA correction 
from the Moon column. Then, enter the correction table for 
the same minute with the v value, and extract the correction. 
Add both of these corrections to the GHA from the daily page. 
This is the GHA of the Moon. Then, enter the same correction 
table page with the d value and extract the corresponding d 
correction. Apply the d correction, either adding or 
subtracting (as determined earlier by inspection of the trend of 
the tabulated declination values), to the declination from the 
daily page. This is the declination of the Moon.

The correction table for GHA of the Moon is based 
upon the minimum rate at which the Moon’s GHA 
increases, 14°19.0' per hour. The v correction adjusts for 
the actual rate. The v value is the difference between the 
minimum rate and the actual rate during the hour 
following the tabulated time. The d value is the amount 
that the declination changes during the hour following the 
tabulated time.

Air Almanac: Enter the daily page with the whole 10m

next preceding the given GMT, unless this time is a whole 
10m, and extract the tabulated GHA and the declination 
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without interpolation. Next, enter the “Interpolation of 
GHA” table on the inside front cover, using the “Moon” 
entry column, and extract the value for the remaining 
minutes and seconds of GMT. If the entry time is an exact 
tabulated value, use the correction given half a line above 
the entry time. Add this correction to the GHA taken from 
the daily page to find the GHA at the given time. No 
adjustment of declination is needed.

The declination given in the table is correct for the time 
5 minutes later than tabulated, so that it can be used for the 10-
minute interval without interpolation, to an accuracy to meet 
most requirements. Declination changes much more slowly 
than GHA. If greater accuracy is needed, it can be obtained by 
interpolation, remembering to allow for the 5 minutes.

1706. Finding GHA and Declination of a Planet

Nautical Almanac: Enter the daily page table with the 
whole hour before the given GMT, unless the time is a 
whole hour, and extract the tabulated GHA and declination. 
Record the v and d values given at the bottom of each of 
these columns; determine whether the d correction is to be 
added or subtracted by inspecting the trend in the 
declination. Next, enter the increments and corrections 
table for the minutes of GMT, and on the line for the 
seconds of GMT, take the GHA correction from the Sun-
planets column. Next, enter the correction table with the v
value and extract the correction, giving it the sign of the v
value. Add the first correction to the GHA from the daily 
page, and apply the second correction in accordance with its 
sign. This is the GHA of the planet. Then enter the 
increments and correction table for the same minute with 
the d value, and extract the correction. Apply the d
correction, either adding or subtracting (as determined 
earlier by inspection of the tabulated declination values), to 
the declination from the daily page to find the declination 
of the planet at the given time. 

The correction table for GHA of planets is based upon 
the mean rate of the Sun, 15° per hour. The v value is the 
difference between 15° and the average hourly change of 
GHA of the planet on the middle day of the three shown. 
The d value is the average hourly amount the declination 
changes on the middle day. Venus is the only body listed 
which ever has a negative v value.

Air Almanac: Enter the daily page with the whole 10m

before the given GMT, unless this time is a whole 10m, and 
extract the tabulated GHA and declination, without interpo-
lation. The tabulated declination is correct for the time 30m

later than tabulated, so interpolation during the hour 
following tabulation is not needed for most purposes. Next, 
enter the “Interpolation of GHA” table on the inside front 
cover, using the “Sun, etc.” column, and take out the value 
for the remaining minutes and seconds of GMT. If the entry 
time is an exact tabulated value, use the correction half a 
line above the entry time. Add this correction to the GHA 

from the daily page to find the GHA at the given time. No 
adjustment of declination is needed.

1707. Finding GHA and Declination of a Star

If the GHA and declination of each navigational star 
were tabulated separately, the almanacs would be several 
times their present size. But since the sidereal hour angle and 
the declination are nearly constant over several days (to the 
nearest 0.1') or months (to the nearest 1'), separate tabulations 
are not needed. Instead, the GHA of the first point of Aries, 
from which SHA is measured, is tabulated on the daily pages, 
In the Nautical Almanac, a single listing of SHA and decli-
nation for the 57 navigational stars is given for each double 
page (computed at 12 UT1 of the middle day); monthly val-
ues are given for 173 bright stars (pages 268 through 273). In 
the Air Almanac, the yearly mean SHA and declinations are 
listed on the inside cover and flap; for higher accuracy, 
monthly values are tabulated for the 173 navigation stars 
(pages A158 through A163). Finding the GHA is similar to 
finding the GHA of the Sun, Moon, and planets. 

Nautical Almanac: Enter the daily page table with the 
whole hour before the given GMT, unless this time is a 
whole hour, and extract the tabulated GHA of Aries. Also 
record the tabulated SHA and declination of the star from 
the listing on the left-hand daily page. Next, enter the 
increments and corrections table for the minutes of GMT, 
and, on the line for the seconds of GMT, extract the GHA 
correction from the Aries column. Add this correction and 
the SHA of the star to the GHA  on the daily page to 
find the GHA of the star at the given time. Subtraction of 
360° may be necessary to keep GHA between 0° and 360°. 
No adjustment of declination is needed.

The SHA and declination of 173 stars, including 
Polaris and the 57 listed on the daily pages, are given for 
the middle of each month. For a star not listed on the 
daily pages, this is the only almanac source of this 
information. Interpolation in this table is not necessary 
for ordinary purposes of navigation, but is sometimes 
needed for precise results.

Air Almanac: Enter the daily page with the whole 10m

before the given GMT, unless this is a whole 10m, and extract 
the tabulated GHA . Next, enter the “Interpolation of 
GHA” table on the inside front cover, using the “Sun, etc.” 
entry column, and extract the value for the remaining minutes 
and seconds of GMT. If the entry time is an exact tabulated 
value, use the correction given half a line above the entry 
time. From the tabulation at the left side of the same page, 
extract the SHA and declination of the star. Add the GHA 
from the daily page and the two values taken from the inside 
front cover to find the GHA at the given time. No adjustment 
of declination is needed. Should higher precision be needed, 
use the SHA and declination values on pages A158 to A163, 
and the interpolation of GHA Aries table on A165. 
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RISING, SETTING, AND TWILIGHT

1708. Rising, Setting, and Twilight

In both Air and Nautical Almanacs, the times of sunrise, 
sunset, moonrise, moonset, and twilight information, at 
various latitudes between 72°N and 60°S, is listed to the 
nearest whole minute. By definition, rising or setting occurs 
when the upper limb of the body is on the visible horizon, 
assuming standard refraction for zero height of eye. Because 
of variations in refraction and height of eye, computation to 
a greater precision than 1 minute of time is not justified.

In high latitudes, some of the phenomena do not occur 
during certain periods. Symbols are used in the almanacs to 
indicate:

1. Sun or Moon does not set, but remains contin-
uously above the horizon, indicated by an open 
rectangle.

2. Sun or Moon does not rise, but remains contin-
uously below the horizon, indicated by a solid 
rectangle.

3. Twilight lasts all night, indicated by 4 slashes (////).

Both the Nautical Almanac and the Air Almanac
provide graphs for finding the times of rising, setting, or 
twilight in polar regions. 

In the Nautical Almanac, sunrise, sunset, and twilight 
tables are given only once for the middle of the three days 
on each page opening. Moonrise and moonset tables are 
given for each day. For many purposes this information can 
be used for all three days. For high precision needs, interpo-
lation tables are provided (page xxxii). In the Air Almanac, 
sunrise, sunset, and twilight tables are given every three 
days (pages A130-A145). Graphs and tables are provided to 
compute phenomena at altitudes up to 60,000 feet. 
Moonrise and moonset tables are given daily in the main 
table. 

The tabulations are in UT on the Greenwich meridian. 
They are approximately the LMT of the corresponding 
phenomena on other meridians; they can be formally 
interpolated if desired. The conversion of UT to LMT and 
vice versa of a phenomenon is obtained by the formula:

UT = LMT + W Longitude
UT = LMT - E Longitude

To use this formula, convert the longitude to time using 
the table on page i or by computation, and add or subtract 
as indicated. 

1709. Finding Times of Sunrise and Sunset

To find the time of sunrise or sunset in the Nautical 
Almanac, enter the table on the daily page, and extract the 
LMT for the latitude next smaller than your own (unless it 
is exactly the same). Apply a correction from Table I on 
almanac page xxxii to interpolate for latitude, determining 

the sign by inspection. Then convert LMT to ZT using the 
difference of longitude between the local and zone 
meridians.

For the Air Almanac, the procedure is the same as for 
the Nautical Almanac, except that the LMT is taken from 
the tables of sunrise and sunset instead of from the daily 
page, and the latitude correction is by linear interpolation.

The tabulated times are for the Greenwich meridian. 
Except in high latitudes near the time of the equinoxes, the 
time of sunrise and sunset varies so little from day to day 
that no interpolation is needed for longitude. In high 
latitudes interpolation is not always possible. Between two 
tabulated entries, the Sun may in fact cease to set. In this 
case, the time of rising and setting is greatly influenced by 
small variations in refraction and changes in height of eye.

1710. Twilight

Morning twilight ends at sunrise, and evening twilight 
begins at sunset. The time of the darker limit can be found 
from the almanacs. The time of the darker limits of both 
civil and nautical twilights (center of the Sun 6° and 12°, 
respectively, below the celestial horizon) is given in the 
Nautical Almanac. The Air Almanac provides tabulations 
of civil twilight from 60°S to 72°N. The brightness of the 
sky at any given depression of the Sun below the horizon 
may vary considerably from day to day, depending upon the 
amount of cloudiness, haze, and other atmospheric 
conditions. In general, the most effective period for 
observing stars and planets occurs when the center of the 
Sun is between about 3° and 9° below the celestial horizon. 
Hence, the darker limit of civil twilight occurs at about the 
mid-point of this period. At the darker limit of nautical 
twilight, the horizon is generally too dark for good 
observations.

At the darker limit of astronomical twilight (center of 
the Sun 18° below the celestial horizon), full night has set 
in. The time of this twilight is given in the Astronomical 
Almanac. Its approximate value can be determined by 
extrapolation in the Nautical Almanac, noting that the 
duration of the different kinds of twilight is proportional to 
the number of degrees of depression for the center of the 
Sun. More precise determination of the time at which the 
center of the Sun is any given number of degrees below the 
celestial horizon can be determined by a large-scale 
diagram on the plane of the celestial meridian, or by 
computation. Duration of twilight in latitudes higher than 
65°N is given in a graph in both the Nautical and the Air 
Almanac.

In both Nautical and Air Almanacs, the method of 
finding the darker limit of twilight is the same as that for 
sunrise and sunset.

Sometimes in high latitudes the Sun does not rise but 
twilight occurs. This is indicated in the almanacs by a solid 
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black rectangle symbol in the sunrise and sunset column. 
To find the time of beginning of morning twilight, subtract 
half the duration of twilight as obtained from the duration 
of twilight graph from the time of meridian transit of the 
Sun; and for the time of ending of evening twilight, add it 
to the time of meridian transit. The LMT of meridian transit 
never differs by more than 16.4m (approximately) from 
1200. The actual time on any date can be determined from 
the almanac.

1711. Moonrise and Moonset

Finding the time of moonrise and moonset is similar to 
finding the time of sunrise and sunset, with one important 
difference. Because of the Moon’s rapid change of 
declination, and its fast eastward motion relative to the Sun, 
the time of moonrise and moonset varies considerably from 
day to day. These changes of position on the celestial 
sphere are continuous and complex. For precise results, it 
would be necessary to compute the time of the phenomena 
at any given place by lengthy complex calculation. For 
ordinary purposes of navigation, however, it is sufficiently 
accurate to interpolate between consecutive moonrises or 
moonsets at the Greenwich meridian. Since apparent 
motion of the Moon is westward, relative to an observer on 
the Earth, interpolation in west longitude is between the 
phenomenon on the given date and the following one. In 
east longitude it is between the phenomenon on the given 
date and the preceding one.

To find the time of moonrise or moonset in the Nautical 
Almanac, enter the daily pages table with latitude and extract 
the LMT for the tabulated latitude next smaller than the 
observer’s latitude (unless this is an exact tabulated value). 
Apply a correction from table I of almanac page xxxii to 
interpolate for latitude, determining the sign of the correction 
by inspection. Repeat this procedure for the day following 
the given date, if in west longitude; or for the day preceding, 
if in east longitude. Using the difference between these two 
times, and the longitude, enter table II of the almanac on the 
same page and take out the correction. Apply this correction 
to the LMT of moonrise or moonset at the Greenwich 
meridian on the given date to find the LMT at the position of 
the observer. The sign to be given the correction is such as to 
make the corrected time fall between the times for the two 
dates between which interpolation is being made. This is 
nearly always positive (+) in west longitude and negative (-) 
in east longitude. Convert the corrected LMT to ZT.

To find the time of moonrise or moonset by the Air 
Almanac for the given date, determine LMT for the 
observer’s latitude at the Greenwich meridian in the same 
manner as with the Nautical Almanac, except that linear 
interpolation is made directly from the main tables, since no 
interpolation table is provided. Extract, also, the value from 
the “Diff.” column to the right of the moonrise and moonset 
column, interpolating if necessary. This “Diff.” is the half-
daily difference. The error introduced by this approxi-

mation is generally not more than a few minutes, although 
it increases with latitude. Using this difference, and the 
longitude, enter the “Interpolation of moonrise, moonset” 
table on flap F4 of the Air Almanac and extract the 
correction. The Air Almanac recommends taking the 
correction from this table without interpolation. The results 
thus obtained are sufficiently accurate for ordinary 
purposes of navigation. If greater accuracy is desired, the 
correction can be taken by interpolation. However, since 
the “Diff.” itself is an approximation, the Nautical Almanac
or computation should be used if accuracy is a consid-
eration. Apply the correction to the LMT of moonrise or 
moonset at the Greenwich meridian on the given date to 
find the LMT at the position of the observer. The correction 
is positive (+) for west longitude, and negative (-) for east 
longitude, unless the “Diff.” on the daily page is preceded 
by the negative sign (-), when the correction is negative (-) 
for west longitude, and positive (+) for east longitude. If the 
time is near midnight, record the date at each step, as in the 
Nautical Almanac solution.

As with the Sun, there are times in high latitudes when 
interpolation is inaccurate or impossible. At such periods, the 
times of the phenomena themselves are uncertain, but an 
approximate answer can be obtained by the Moonlight graph 
in the almanacs. With the Moon, this condition occurs when 
the Moon rises or sets at one latitude, but not at the next higher 
tabulated latitude. It also occurs when the Moon rises or sets on 
one day, but not on the preceding or following day. This latter 
condition is indicated in the Air Almanac by the symbol * in 
the “Diff.” column.

Because of the eastward revolution of the Moon around 
the Earth, there is one day each synodical month (291/2 
days) when the Moon does not rise, and one day when it 
does not set. These occur near last quarter and first quarter, 
respectively. This day is not the same at all latitudes or at all 
longitudes, thus the time of moonrise or moonset found from 
the almanac may occasionally be the preceding or 
succeeding one to that desired (indicated by a time greater 
than 23h 59m). When interpolating near midnight, caution 
will prevent an error.

The effect of the revolution of the Moon around the 
Earth, generally, is to cause the Moon to rise or set later 
from day to day. The daily retardation due to this effect 
does not differ greatly from 50m. However, the change 
in declination of the Moon may increase or decrease 
this effect. This effect increases with latitude, and in 
extreme conditions it may be greater than the effect due 
to revolution of the Moon. Hence, the interval between 
successive moonrises or moonsets is more erratic in 
high latitudes than in low latitudes. When the two 
effects act in the same direction, daily differences can 
be quite large. When they act in opposite directions, 
they are small, and when the effect due to change in 
declination is larger than that due to revolution, the 
Moon sets earlier on succeeding days. 
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This condition is reflected in the Air Almanac by a 
negative “Diff.” If this happens near the last quarter or 
first quarter, two moonrises or moonsets might occur 
on the same day, one a few minutes after the day begins, 
and the other a few minutes before it ends. Interpolation 
for longitude is always made between consecutive 
moonrises or moonsets, regardless of the days on which 
they fall.

Beyond the northern limits of the almanacs the val-
ues can be obtained from a series of graphs given near 
the back of the books (pages 322-325 for Nautical, 
A153-A157 for Air). For high latitudes, graphs are used 
instead of tables because graphs give a clearer picture 
of conditions, which may change radically with rela-
tively little change in position or date. Under these 

conditions interpolation to practical precision is sim-
pler by graph than by table. In those parts of the graph 
which are difficult to read, the times of the phenome-
na’s occurrence are uncertain, being altered 
considerably by a relatively small change in refraction 
or height of eye.

On all of these graphs, any given latitude is 
represented by a horizontal line and any given date by 
a vertical line. At the intersection of these two lines the 
duration is read from the curves, interpolating by eye 
between curves; see Figure 1711a for an example of a 
Semiduration of Moonlight plot for the month of 
January 2016.

The “Semiduration of Sunlight” graph gives the num-
ber of hours between sunrise and meridian transit or 
between meridian transit and sunset. The dot scale near the 
top of the graph indicates the LMT of meridian transit, the 
time represented by the minute dot nearest the vertical date-
line being used. If the intersection occurs in the area marked 
“Sun above horizon,” the Sun does not set; and if in the area 
marked “Sun below horizon,” the Sun does not rise.

The “Duration of Twilight” graph gives the number of 
hours between the beginning of morning civil twilight 
(center of Sun 6° below the horizon) and sunrise, or 
between sunset and the end of evening civil twilight. If the 
Sun does not rise, but twilight occurs, the time taken from 
the graph is half the total length of the single twilight 
period, or the number of hours from beginning of morning 
twilight to LAN, or from LAN to end of evening twilight. 
If the intersection occurs in the area marked “continuous 
twilight or Sunlight,” the center of the Sun does not move 
more than 6° below the horizon, and if in the area marked 
“no twilight nor Sunlight,” the Sun remains more than 6°

below the horizon throughout the entire day.
The “Semiduration of Moonlight” graph gives the 

number of hours between moonrise and meridian transit or 
between meridian transit and moonset. The dot near the top 
of the graph indicates the LMT of meridian passage, and the 
spacing between each dot is approximately 50 minutes. The 
phase symbols indicate the date on which the principal 
Moon phases occur, the open circle indicating full Moon 
and the dark circle indicating new Moon. If the intersection 
of the vertical dateline and the horizontal latitude line falls 
in the “Moon above horizon” or “Moon below horizon” 
area, the Moon remains above or below the horizon, respec-
tively, for the entire 24 hours of the day.

If approximations of the times of moonrise and 
moonset are sufficient, the semiduration of Moonlight 
is taken for the time of meridian passage (dots along top 
scale) and can be used without adjustment. For exam-
ple, to estimate moonrise on 19 January 2016 at latitude 
70°N and the following moonset, see Figure 1711b. Us-
ing the dot along the top scale, the semiduration of 

Figure 1711a. Semiduration of moonlight for high latitudes in January 2016.
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moonlight is 10h at 70°N.   The meridian passage itself 
is about at 20:30 LMT, found by adding 50 minutes to 
each successive dot after the 18h one. Approximate 
moonrise is the semiduration minus meridian passage, 
10h - 20:30, or at 10:30 LMT. The following moonset 
is semiduration plus meridian passage, 10h + 20:30, or 
at 06:30 the following day. For more accurate results 

(seldom justified), the times on the required date and 
the adjacent date (the following date in W longitude 
and the preceding date in E longitude) should be deter-
mined, and an interpolation made for longitude, as in 
any latitude, since the intervals given are for the Green-
wich meridian. 

Sunlight, twilight and Moonlight graphs are not 
given for south latitudes. Beyond latitude 65°S, the 
northern hemisphere graphs can be used for determin-
ing the semiduration or duration, by using the vertical 
dateline for a day when the declination has the same nu-
merical value but opposite sign. The time of meridian 
transit and the phase of the Moon are determined as ex-
plained above, using the correct date. Between latitudes 
60°S and 65°S, the solution is made by interpolation 
between the tables and the graphs.

Semiduration or duration can be determined graph-
ically using a diagram on the plane of the celestial 
meridian, or by computation. When computation is 
used, solution is made for the meridian angle at which 
the required negative altitude occurs. The meridian an-
gle expressed in time units is the semiduration in the 
case of sunrise, sunset, moonrise, and moonset; and the 
semiduration of the combined Sunlight and twilight, or 
the time from meridian transit at which morning twi-
light begins or evening twilight ends. For sunrise and 
sunset the altitude used is (-)50'. Allowance for height 
of eye can be made by algebraically subtracting (nu-
merically adding) the dip correction from this altitude. 
The altitude used for twilight is (-)6°, (-)12°, or (-)18°

for civil, nautical, or astronomical twilight, respective-
ly. The altitude used for moonrise and moonset is -34' - 
SD + HP, where SD is semidiameter and HP is horizon-
tal parallax, from the daily pages of the Nautical 
Almanac.

Other methods of solution of these phenomena are 
available. If an internet connection is available, the US 
Naval Observatory website provides calculators 
(aa.usno.navy.mil/data/). Sunrise and sunset for latitudes 
from 76°N to 60°S can be derived using Table 4 of 
NOAA’s Tide Tables publications.

1712. Rising, Setting, and Twilight on a Moving Craft

Instructions to this point relate to a fixed position 
on the Earth. Aboard a moving craft the problem is 
complicated somewhat by the fact that time of 
occurrence depends upon the position of the craft, 
which itself depends on the time. The US military can 
use STELLA, which calculates phenomena from a 
moving platform (see Section 1900), for others, at ship 
speeds, it is generally sufficiently accurate to make an 
approximate mental solution and use the position of the 
vessel at this time to make a more accurate solution. If 

Figure 1711b. Moon’s meridian passage on 19 January 2016.
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greater accuracy is required, the position at the time 
indicated in the second solution can be used for a third 
solution. If desired, this process can be repeated until 
the same answer is obtained from two consecutive 
solutions. However, it is generally sufficient to alter the 
first solution by 1m for each 15' of longitude that the 

position of the craft differs from that used in the solution, 
adding if west of the estimated position, and subtracting if 
east of it. In applying this rule, use both longitudes to the 
nearest 15'. The first solution is the first estimate; the 
second solution is the second estimate.
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CHAPTER 18 

SIGHT PLANNING

NEED FOR SIGHT PLANNING

1800. The Need for Sight Planning

One of the challenges of celestial navigation is sight 
planning. Good sight planning is essential to acquiring a 
good fix. 

A single sight produces a line of position (LOP). A 
fix, the determination of the observer's most likely position, 
requires at minimum two LOPs. The fix is the intersection 
of the LOPs. If the sights were perfectly accurate, then no 
further work would be required. However, no observation 
is perfectly accurate. A navigator experienced in taking 
sights with a sextant can, under ideal conditions, take sights 
accurate to a few tenths of an arc minute. Under typical 
shipboard conditions sights are expected to be accurate to 
about an arc minute. A navigator not experienced at taking 
sights can expect an accuracy of a few arc minutes. Sight 
planning is one tool for reducing errors in producing a fix. 
Good sight planning will reduce the effect of the errors 
from both taking the sights and on the derived fix.

There are several considerations that go into sight plan-
ning. Among them are:

• When should sights be taken?
• What bodies will be visible?
• What distribution of celestial bodies will produce the 

best fix?
• What is the best order in which to take the sights?

The process of sight planning can be broken down into 
three broad categories: general sight planning, daytime 
sight planning, and twilight sight planning.

1801. General Principles

Experienced navigators through history have come to 
understand that under normal conditions only about 70% of 
the visible sky is ideal for taking celestial observations. 
When it comes to sight planning it is important to appreci-
ate that celestial body pre-selection will yield the best 
chance for achieving an accurate celestial fix of position 
when they come from bodies observed within certain alti-
tude ranges and at certain times. For example, it is useful to 
understand that when selecting celestial bodies for observa-
tion. it can be difficult to accurately determine the true 
altitude of bodies lying low near the horizon due to refrac-
tion, while it can be equally daunting to accurately 

determine a celestial LOP from a body near zenith because 
the assumption that a straight line of position approximates 
the body’s circle of equal attitude begins to breakdown.

Except for sights of the Sun, Moon, and sometimes Ve-
nus and Jupiter, all other bodies used in celestial navigation 
sights can be measured only during nautical twilight, the 
period during which the center of the Sun is between 6º and 
12º below the horizon. During this period the sky is dark 
enough to make out the celestial bodies used for sights, but 
bright enough that the horizon is well enough defined to 
take an accurate sight.

The process of taking sights is weather dependent. An 
accurate sight requires that both the body and the horizon 
below it be visible at the time the sight is taken. If either the 
body or the horizon is obscured, but still visible, a reduced 
accuracy sight may still be taken. Such a sight should be 
taken if it is the only option. A better option is to have an 
extended list of possible bodies to observe. The navigator 
can then select those bodies that are clearly visible with a 
well defined horizon below them.

The process of sight planning can be broken down into 
three broad categories: general sight planning, daytime 
sight planning, and twilight sight planning.

1802. Distribution of Bodies in Azimuth

The Nautical Almanac contains data for reducing sights 
of 179 bodies: the Sun, Moon, four planets, 57 navigational 
stars, and 116 supplemental stars (pp. 268-273). On average, 
there is one body for every 230 square degrees of sky, and 
these bodies are unevenly distributed on the sky. An accu-
rate fix requires the observed bodies to be well distributed in 
azimuth. 

 Figure 1802a shows two LOPs for two objects whose 
azimuths are separated by 15º. The LOPs also intersect with 
an acute angle of 15º. The result is: it is difficult to deter-
mine where the two LOPs cross along the axis bisected by 
the acute angle. That is, there is a large uncertainty in the fix 
position in that direction. The uncertainty in the fix along 
the axis bisected by the oblique angle is approximately the 
same as it would be if the LOPs met at right angles. 

 Figure 1802b the two LOPs are perpendicular to each 
other. The result is that the uncertainty in the fix is the same 
in all directions. The closer the separation of the azimuths 
of two sights comes to perpendicularity the better the 
chance a fix will have minimum uncertainty. Finding two 
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Figure 1802a. The change of error ellipse with angle of intersection.

Figure 1802b. Effects of the azimuthal distribution of bodies and a systematic error on the most likely positions.
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bodies with azimuths separated by exactly 90º is unlikely, 
so an acute angle of at least 30º is recommended to reduce 
the uncertainty along the axis that bisects the acute angle of 
two LOPs. 

Sights well distributed in azimuth also act to cancel out 
systematic errors in determining Ho such as an incorrect in-
dex correction (IC) or error in dip. For example, Figure 
1802a shows three LOPs made from bodies separated by 
120º in azimuth. A systematic error in determining Ho will 
move the LOPs in a direction perpendicular to the LOPs 
themselves, indicated by the arrows. A systematic error will 
move all of the LOPs the same amount in directions distrib-
uted 120º in azimuth. The result is the most likely position 
for the fix remains at the center of the “cocked hat”. In Fig-
ure 1802b, the three LOPs were plotted from bodies 
distributed by 60º in azimuth. The resulting “cocked hat” 
looks identical to the one in Figure 1802a. A systematic er-
ror, however, will move all of the LOPs the same amount in 
directions distributed in azimuth by 60º on either side of the 
center of the distribution. The result is that the most likely 
position for the fix is no longer at the center of the “cocked 
hat”. The most likely position may even lie outside of the 
“cocked hat” altogether if the systematic error is more than 
a few tenths of an arc minute. 

1803. Altitude of Bodies 

Bodies at high altitudes are difficult to observe. They 
can be a challenge to acquire, to “bring to the horizon” with 
a sextant, and to determine their approximate azimuth to 
measure an accurate Hs. As the body gets closer to the ze-
nith the assumption that the circle of equal distances can be 
approximated by an LOP breaks down. Sights of a body 
taken at high altitudes may also require the use of more 
complicated procedures, such as the use of second differ-
ences when calculating Hc. Taking sights of body at high 
altitudes, greater than 75º, should be avoided for these 
reasons.

Refraction affects all observations. Refraction forms 
part of the corrections for both dip and apparent altitude. 
Refraction is larger and the correction becomes more uncer-
tain for bodies near the horizon. The correction for non-
standard air temperature and pressure can be more than 1' 
for a sight made within 5º of the horizon and can still be 
several tenths of an arc minute for a sight made within 10º 
of the horizon.

The amount of atmosphere the light has to pass through 
for a body observed near the horizon is greater than for a 
body observed at a greater altitude. A body viewed near the 
horizon will appear dimmer and redder because the light is 
absorbed or scattered by the atmosphere. Taking sights of 
bodies at low altitudes, less than approximately 15º, should 
be avoided for these reasons.

Correcting for non-standard air pressure and tempera-
ture does not guarantee that a sight will have no refraction 
error. The apparent position of the horizon itself is subject 

to phenomena such as temperature inversions. There are 
three things a navigator can do to reduce any systematic er-
rors caused by uncorrected refraction:

1. Make sure the observations are well distributed in 
azimuth. At sea, it is usually the case that the fac-
tors that contribute to refraction are similar in all 
directions. Taking sights well distributed in azi-
muth will cause the systematic errors to cancel out.

2. Take the sights from a place close to the sea sur-
face, if possible. Almost all of the abnormal 
refraction encountered is caused by that part of the 
atmosphere between the observer's eye and the sur-
face of the sea. Reducing the observer's height 
decreases the distance to the horizon. An observer 
close to the sea surface will have a nearby horizon, 
which is more likely to have similar refraction con-
ditions in all directions.

3. Observe celestial bodies with similar altitudes, all 
greater than 15°. Bodies at the same altitude have 
the same total values for refraction. So, the system-
atic effect of errors in computed refraction will tend 
to cancel out if the bodies are well distributed in az-
imuth. The change in refraction angle is small, 
except near the horizon, so relative altitude is a mi-
nor consideration when choosing which bodies to 
use.

1804. Brightness of Bodies

One source of systematic error is the personal equa-
tion, that is how the individual judges the position of an 
object that does not appear to be a perfect point. This judg-
ment of position varies from individual to individual. One 
person might tend to favor an “upper edge”, while another 
favors a “lower edge”, etc. 

A bright object always appears somewhat larger than a 
dim one with a similar apparent size, seen against the same 
background. This property is called irradiation, and is a re-
sult of the way the brain interprets what it sees. Irradiation 
depends more on the difference in brightness between ob-
ject and background than on the apparent size of the body. 
So, it is particularly striking for point sources such as stars. 
If possible, select bodies that are approximately the same 
brightness, to minimize the effect of personal error arising 
from irradiation. This effect is usually small, so it is of less 
importance than other considerations in the selection of 
bodies for sights.

1805. Number of Sights and Number of Bodies

One method to reduce the random error in determining 
an LOP is to take a number of observations of the same 
body over a short period of time. Averaging these observa-
tions together into a single sight, taking into account the 
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change in Hs with time, reduces random error with the 
square root of the number of observations. Averaging four 
observations into a sight reduces the random error to one-
half that of a single observation sight and averaging nine 
observations into a sight reduces the random error to one-
third that of a single observation. The incremental reduction 
in the random error quickly diminishes with the number of 
sights. Averaging together four or five observations into a 
single sight is about optimum.

The common method of averaging sights is the fit-
slope method, e.g. Burch, D. 2015, Celestial Navigation, 
Second Edition (Seattle, Starpath Pub.) pp. 176-177. The 
fit-slope method is a graphical approximation of a linear 
least-squares method, e.g. Bevington, P.R. and Robinson, 
D.K. 1992, Data Reduction and Error Analysis for the 
Physical Sciences, (Boston, McGraw-Hill), Chapter 6. 
These methods assume that the rate of change of Hs is con-
stant. Usually, this is a good assumption over a single sight 
session. But if the body is near transit, Zn = 0º or Zn = 180º, 
the rate of change of Hs may be changing quickly. In this 
case these linear methods will fail. But if the observed body 
does transit during the sighting session, the vessel's position 
can be determined using the same method to determine 
LAN (Sections 1910 and 1911).

Another way to perform this task is to reduce all the ob-
servations made of the same object at an observing session 
as individual sights, and then average together the resulting 
values for a and Zn. This second method consumes more 
time in the reduction of the individual observations, but it 
removes the difficulty of accounting for the change in Hs
with time required for averaging together the observations.

It is preferable to take observations in a round-robin 
fashion when taking sights of more than one body at a ses-
sion. Taking consecutive observations of different bodies 
helps assure that all the bodies are observed at least once 
should a sudden change in weather put an end to the obser-
vation of one or more bodies. Taking non-consecutive 
observations of a body helps to remove systematic errors in 
its observations by adding a randomizing factor to the sight 
taking.

Taking sights of more than two bodies can significant-
ly reduce the random error of a fix just as taking more than 
a single observation can reduce the random error in an LOP. 

There are two parameters to be determined, latitude and 
longitude, involved in a fix. So the random error of a fix is 
reduced by the square root of the number of sights minus 
two. Determining a fix from five or six sights is about opti-
mum to reduce the random error in a fix

By averaging a number of observations into a single 
sight and then combining it with other sights into a single 
fix, the navigator can significantly reduce the uncertainty of 
the vessel’s position.

The difference of a course of advance and the track 
made good for a running fix results in a less accurate fix 
than one made from taking sights of two bodies at a single 
observing session. The best method for reducing error in a 
running fix is to average together multiple observations, 
particularly those of the latter observing session, to improve 
the accuracy of the LOP.

1806. Precomputation

Precomputation is the practice of determining the pre-
dicted values of phenomena using estimated values for the 
time and position and data from the almanac. Precomputed 
values usually include times of rise and set of the Sun and 
Moon, the time of local apparent noon, the times and dura-
tion of twilight, and the Hc’s and Zn’s of those bodies being 
considered for sight observations.

Precomputing the Hc and Zn of a body for a sight 
serves two purposes: 

1. It determines if the selected bodies provide a good 
distribution in azimuths. For a running fix using a 
single body, it determines how much time must 
elapse between sights to get an acceptable mini-
mum change in azimuth of the body.

2. It eases the process of identification. Set the sextant 
to the precomputed Hc and face the precomputed 
Zn. The chosen object will usually stand out in the 
reflection of the index mirror when the horizon is 
viewed through the horizon glass. This practice is 
particularly helpful in a crowded star field at twi-
light or when trying to pick out Venus, or 
occasionally Jupiter, against the bright daytime 
background.

DAYLIGHT SIGHT PLANNING

1807. Sun Sights 

The principal activity of daylight celestial navigation is 
sighting the Sun to determine a vessel's position from run-
ning fixes and latitude from Ho at local apparent noon. 
Precomputing the Sun's expected Hc and Zn at various 
times throughout the day makes it possible to determine the 
optimum times to take sights for both of these activities. 

For example, in the Torrid Zone (tropics) the Sun's az-
imuth changes slowly for most of the morning and most of 

the afternoon switching rapidly from east to west around lo-
cal apparent noon. To achieve a good running fix, sights 
need to be obtained before, near-to, and after local apparent 
noon. Near the equator, the change in azimuth is within 30º 
of 180º from February through April and August through 
October. During these periods a sight near local apparent 
noon (when the Sun's azimuth is near 0º or 180º) is essential 
for a good running fix. At high latitudes (north or south), on 
the other hand, the motion of the Sun is mostly in azimuth, 
at approximately 15º/hr. So, a good running fix from the 
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Sun can be made from two sights as long as at least two and 
fewer than ten hours have elapsed between sights and the 
Sun is high enough above the horizon to take an accurate 
sight.

Occasionally, it is necessary to take a Sun sight when 
it is near the horizon, to make a compass check for example. 
Precomputing the time and Zn of sunrise or sunset are use-
ful to provide an approximate time and azimuth for making 
such an observation. If the Sun is more than one or two de-
grees above the horizon, an accurate sight for Hs as well as 
Zn can be determined as long as corrections are made for 
the change in refraction from non-standard temperature and 
air pressure. The upper limb of the Sun can be observed to 
further reduce possible complications from non-standard 
refraction.

1808. Moon Sights 

When the Moon is more than a few days from New 
Moon it is bright enough to be easily visible during the day-
time. It is also well separated from the Sun. It is best 
situated for daytime sights around the times of First Quarter 
(age 6 to 8 days) and Last Quarter (age 21 to 23 days). Near 
Full Moon the Sun and Moon are opposite each other in the 

sky, so the resulting LOPs may be nearly parallel and the re-
sulting fix would be poor. Instead, sights of the Full Moon 
should be combined with sights of celestial bodies other 
than the Sun. 

It is more difficult to observe and make accurate mea-
surements of the dark side of the Moon than of its bright 
side. Select the lighted limb when taking sights, and avoid 
taking sights when the “horns” of either the lighted or un-
lighted side point parallel to the horizon as in Figure 1808.

The local times of moonrise and moonset at 0º longi-
tude are tabulated as a function of latitude for each day in 
the daily pages of the Nautical Almanac. The tabulation in-
terval is 10º from the equator to latitude 30º, 5º from 
latitude 30º to latitude 50º, and 2º from latitude 50º to the 
limit for each hemisphere. Times of moonrise and moonset 
at high northern latitudes, 65º N to the North Pole, can be 
estimated using the semiduration of moonlight graph on 
pages 323 through 325 of the Nautical Almanac. Interpola-
tion in both latitude and change in time of the phenomenon 
with longitude need to be performed to determine the LMT 

of moonrise or moonset. The Moon's phase and age at 12h

UT for each day are also tabulated on the daily pages.

1809. Planet Sights 

Venus can be observed during the daytime when it is 
well separated from the Sun, particularly when its alti-
tude is greater than the Sun's. Jupiter can also 
occasionally be observed during the daytime. Both plan-
ets can be observed immediately after sunset or before 
sunrise rather than waiting for nautical twilight. The best 
way to find Venus against the bright daytime sky is to 
precompute its Hc and Zn, set the sextant for the expect-

ed altitude, and then use a compass to view along the 
expected azimuth. 

The navigational planets move against the backdrop of 
the “fixed” stars from night to night, but their motions are 
small enough that they can be found in the same general 
area of the sky for several weeks. Also, they are bright 
enough to be easily identifiable. One way to take advantage 
of these properties when using an aid such as a star finder is 
to mark the planets positions at the expected middle of a 
voyage.

Figure 1808. Where to sight Moon with phase.
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TWILIGHT SIGHT PLANNING

1810. Determining the Period of Twilight 

Good sight planning is essential to make good use of 
the short period of nautical twilight for taking sights and 
minimize errors. Sight planning for twilight observations 
consists of three tasks: 

1. Determine the period of nautical twilight.
2. Select the celestial bodies to be observed.
3. Determine the order in which to observe the bodies.

The length of the period of nautical twilight is a func-
tion of latitude and time of year. For most practical celestial 
navigation work, it lasts between 24 minutes in the tropics 
to an hour or more at high latitudes (near the poles, twilight 
can last days or weeks). Local weather conditions such as 
clouds and fog may significantly modify the period during 
which sights may be taken. During the period of nautical 
twilight only the brightest celestial bodies are visible.

The daily pages of the Nautical Almanac tabulate the 
LMT of beginning of morning nautical and civil twilight 
and the ending of evening civil and nautical twilights, to the 
nearest minute, for the middle of each three-day period 
from N 72º to S 60º. The tabulation interval is 10º from the 
equator to latitude 30º, 5º from latitude 30º to latitude 50º, 
and 2º from latitude 50º to the limit for each hemisphere. 
Times of twilight at high northern latitudes, 65º N to the 
North Pole, can be estimated using the semiduration of sun-
light graph on page 322 of the Nautical Almanac. These 
intervals are adequate to interpolate the LMT twilight times 
to the DR latitude. It is advisable to also interpolate the 
times of twilight between the values on the current page and 
either the preceding or subsequent page if:

1. the latitude is greater than 20º,

2. the time of the phenomenon is more than 18 hours 
from the UT of the middle of the three-day interval, 
and

3. the date is within two months of either the vernal 
equinox (March 21) or the autumnal equinox (Sep-
tember 23).

1811. Twilight Moon Sights 

When the Moon is between about 5 and 24 days old it 
is bright enough that it visibly lights the sea surface near the 
Moon's azimuth. Confusion between the horizon and the 
glint of moonlight off of the sea surface closer to the ob-
server may occur at these times. A sight taken where the 
lighted sea is mistaken for the horizon will result in a value 
of Hs that is too high. To reduce this problem, twilight 
sights of the Moon or other bodies with a similar azimuth 
should be taken, if possible, shortly after sunset or before 
sunrise when the horizon is easily distinguishable and the 

glare of moonlight is minimal. If a sight must be taken when 
there is significant glare:

• Observe from a position near the sea surface. A sight 
taken near the sea surface has a closer horizon, so the 
effect of the glare off the sea surface is minimized.

• Check the horizon under the Moon with a powerful 
pair of binoculars to determine if the glare extends to 
the apparent horizon.

1812. Selection of the Celestial Bodies for Sights 

The most important consideration in selecting bodies 
for a fix is to ensure that the bodies are well distributed in 
azimuth. A fix from twilight observations alone requires 
sights of a minimum of two celestial bodies. Separating the 
bodies by at least 30º degrees in azimuth is desired to im-
prove the acute angle of the intersection between LOPs. A 
fix made from at least three bodies that are well distributed 
in azimuth minimizes systematic errors in determining Ho. 
Observing four to six bodies significantly reduces the un-
certainty of a fix. Precomputing the approximate altitudes 
and azimuths for eight to ten bodies will provide a sufficient 
buffer for weather and other obstructions to observing. 

Another important factor to consider is that bright bod-
ies are much easier to identify during early twilight when 
the horizon is still sharp. Venus and Jupiter, when available, 
are among the brightest objects in the sky, so they should be 
among the first bodies chosen. The Moon is also easy to 
identify, but is not always a good target. It should be used 
when either the upper or lower limb is well defined (the 
Moon's “horns” are not parallel to the horizon) and the glint 
of moonlight on the sea surface is not bright enough to 
cause a problem in determining the location of the horizon.

A third consideration is to select bodies with an altitude 
greater than 15º to minimize systematic errors in refraction, 
and with an altitude less than 75º to prevent errors arising 
from the break down in the approximation that an LOP is 
equivalent to a circle of equal altitude. Select bodies that are 
at a similar altitude and of a similar brightness to further 
minimize systematic errors in taking sights

1813. Order of Observation 

Take sights in a round-robin fashion, when possible. A 
number of individual observations of each body is desirable, 
but taking consecutive observations of different bodies helps 
assure that at least one observation is made of each body in 
case there is a sudden change in the weather or the horizon be-
comes obscured. Taking non-consecutive sights of a body 
adds an element of randomness preventing systematic errors 
from creeping into the observations. 

Brighter bodies are visible earlier during evening twilight 
and later during morning twilight. The Moon, Venus, and Ju-
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piter can be observed before sunset or after sunrise, and the 
brightest stars can be observed during civil twilight. Sights of 
these objects made during these periods are more likely to have 
a well defined horizon, and allows more time for taking sights 
of dimmer stars and navigational planets during nautical twi-
light. Making observations of the brighter bodies during civil 
twilight can be particularly helpful in the Torrid Zone (tropics) 
where the length of nautical twilight is less than half an hour.

During twilight, the horizon remains well defined near the 

azimuth of sunset or sunrise for a longer period of time than it 

does 180º away from that azimuth. Plan to take sights closer to 

that azimuth later during evening twilight and earlier during 

morning twilight. Precomputing the approximate azimuth of 

sunrise or sunset from the data in daily pages of the Nautical Al-

manac can aid in planning.

AIDS TO SIGHT PLANNING

1814. Aids to Sight Planning 

There are a number of aids to help the navigator in 
sight planning: 

The Nautical Almanac contains a planet location dia-
gram on pp. 8 and 9, and star charts on pp. 266 and 267. 

The Air Almanac contains a set of sky diagrams on pp. 
A26-A121. These diagrams show the altitudes and bearings 
of the Sun, Moon, navigational planets and stars at selected 
hours of the day, throughout the year, and for various lati-
tudes. Each set includes diagrams for the North Pole and 
latitudes from 75º N to 50º S at an interval of 25º. A com-
plete explanation of the sky diagrams is found on pages 
A24 and A25. The Air Almanac also includes a moonlight 
interference diagram on page A125 and star recognition di-
agrams for 40 (22 in the northern hemisphere and 18 in the 
southern hemisphere) of the 57 navigational stars on pp. 
A126-A129. Both sets of diagrams include instructions for 
their use.

STELLA (System To Estimate Latitude and Longi-
tude Astronomically) is a software application for 
Windows computers that automates the sight reduction pro-
cess. It includes a sight planning utility. STELLA also 
automatically logs all data entered for future reference. It is 
an allowance list requirement for U.S. Navy ships, and is 
also utilized by the U.S. Coast Guard. It is available for 
Navy or DoD components from the U.S. Naval 
Observatory.

MICA (Multiyear Interactive Computer Almanac) 
can, for a given location and time, compute the apparent al-
titude and azimuth of celestial bodies. It can compute the 
times and azimuths of rise and set and time and altitude of 
transit for a given location and date. For circumpolar bodies 
it computes the times and altitudes of both upper and lower 
transit. It can also compute the times of civil and nautical 
twilight. A catalog of the 57 navigational stars is included 
with MICA, and other catalogs can be added. MICA is pro-
duced by the Astronomical Applications Department of the 
U.S. Naval Observatory (USNO). It is available from Will-
mann-Bell, http://www.willbell.com, for the general 
public, and from the USNO for Department of Defense 
Components.

The Data Services section of the USNO - Astronomi-
cal Applications Department website includes several 
calculators for use in sight planning (see Figure 1814a for 
the link):

1. The Complete Sun and Moon Data for One Day
page computes the times and azimuths of rise, set 
for the Sun and Moon, and the times and altitudes 
of the transits and times of civil twilight. 

2. The Rise/Set/Transit Times for Major Solar Sys-
tem Bodies and Bright Stars page computes the 
times and azimuths of rise, set and the times and al-
titudes of the transits for the Sun, Moon, planets 
and 22 of the navigational stars. 

3. The Celestial Navigation Data for Assumed Posi-
tion and Time page computes the Hc, Zn, GHA, 
and Dec of the Sun, Moon, planets and navigational 
stars. It also calculates the standard correction for 
refraction for all bodies and the corrections for the 
semi-diameter and parallax for the Sun, Moon, and 
planets. This service determines which bodies are 
available at a given time and place and color-codes 
the results for ease of use. See the Notes on the Data 
Services web page for details.

Figure 1814a. USNO Data Services 
http://aa.usno.navy.mil/data/index.php



308 SIGHT PLANNING

UK Rapid Sight Reduction Tables for Navigation NP 
303 / AP/3270 (formerly Pub. 249 Vol. 1, Sight Reduction 
Tables for Air Navigation Vol I (Selected Stars)) provides 
a list of the seven navigational stars by LAT (latitude) and 
LHA. It also marks the three stars most appropriate for 
making a fix from stars well distributed on the sky. This 
publication has the advantage that it can be used in situa-
tions where electric power is not available and values of Hc
and Zn can be determined swiftly near the epoch of the edi-
tion. Its main disadvantage is that values of Hc and Zn are 
sensitive to precession and can change by up to 0.'8 per 
year. So, Hc and Zn must be interpolated for precession for 
dates more than one or two years from the epoch of the edi-
tion used. (See the Correction for Precession and Nutation 
table in Pub. NP 303/AP3270 for instructions on its use.) 
The correction table is designed only for observations made 

within an eight-year span (four years of the epoch of a par-
ticular edition), so a new edition of this volume is published 
every five years.

The RUDE 2102-D star finder is device designed to es-
timate the approximate Hc and Zn of the 57 navigational 
stars given the observer's Lat and LHA of Aries. It can be 
used to find the positions of the planets and Moon as well 
with some additional effort. See Cutler, T.J. 2004, Dutton's 
Nautical Navigation, Fifteenth Edition (Annapolis, MD: 
Naval Institute Press) articles 2101-2105 for details of its 
description and use. The advantage of the star finder is that 
it can be used in situations where electric power is not avail-
able. Its principle disadvantage is it can take a while to use 
and interpret its data for a navigator not practiced in its use.
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CHAPTER 19 

SIGHT REDUCTION

BASIC PROCEDURES

1900. Computer Sight Reduction

The purely mathematical process of sight reduction is 
an ideal candidate for computerization, and a number of 
different hand-held calculators, apps, and computer 
programs have been developed to relieve the tedium of 
working out sights by tabular or mathematical methods. 
The civilian navigator can choose from a wide variety of 
hand-held calculators and computer programs that require 
only the entry of the DR position, measured altitude of the 
body, and the time of observation. Even knowing the name 
of the body is unnecessary because the computer can 
identify it based on the entered data. Calculators, apps, and 
computers can provide more accurate solutions than tabular 
and mathematical methods because they can be based on 
precise analytical computations rather than rounded values 
inherent in tabular data. 

U.S. Navy and Coast Guard navigators have access to 
a U.S. Government program called STELLA (System To 
Estimate Latitude and Longitude Astronomically; do 
not confuse with a similarly named commercial astronomy 
program). The Astronomical Applications Department of 
the U.S. Naval Observatory developed STELLA in re-
sponse to a Navy requirement. The algorithms used in 
STELLA provide an accuracy of one arc-second on the 
Earth's surface, a distance of about 30 meters. While this ac-
curacy is far better than can be obtained using a sextant, it 
does support possible naval needs for automated navigation 
systems based on celestial objects. These algorithms take 
into account the oblateness of the Earth, movement of the 
vessel during sight-taking, and other factors not fully ad-
dressed by traditional methods. 

STELLA can perform almanac functions, position up-
dating/DR estimations, celestial body rise/set/transit 
calculations, compass error calculations, sight planning, 
and sight reduction; on-line help and a user's guide are in-
cluded. STELLA is now automatically distributed to each 
naval ship; other Navy users may obtain a copy by 
contacting: 

Superintendent 
U.S. Naval Observatory 
Code: AA/STELLA 
3450 Massachusetts Ave. NW 
Washington, DC, 20392-5420 

1901. Tabular Sight Reduction

The process of deriving from celestial observations the 
information needed for establishing a line of position, 
LOP, is called sight reduction. The observation itself con-
sists of measuring the altitude of the celestial body above 
the visible horizon and noting the time.

This chapter concentrates on sight reduction using the 
Nautical Almanac and Pub. No. 229: Sight Reduction Ta-
bles for Marine Navigation. Pub 229 is available on the 
NGA website. The method described here is one of many 
methods of reducing a sight. Use of the Nautical Almanac
and Pub. 229 provide the most precise sight reduction prac-
tical, 0.'1 (or about 180 meters).

The Nautical Almanac contains a set of concise sight 
reduction tables and instruction on their use. It also contains 
methods and formulae for direct computation that may be 
used with a calculator or programmable computer.

The Air Almanac and NGA's Pub. 249, Sight Reduc-
tion Tables for Air Navigation, may also be used to reduce 
sights. Use of the Nautical Almanac's concise reduction ta-
bles, the Air Almanac, and Pub. 249 may all be used to 
reduce sights to a precision of 1'. The Nautical Almanac's 
concise reduction tables allow sight reduction by providing 
all celestial data in a single publication.

Reducing a celestial sight to obtain a line of position 
consists of six steps:

1. Correct the sextant altitude, Hs, to obtain ob-
served altitude, Ho, (sometimes called true 
altitude).

2. Determine the body’s Greenwich Hour Angle, 
GHA and declination, Dec.

3. Select an assumed position, AP and find its Local 
Hour Angle, LHA.

4. Compute altitude, Hc and azimuth, Zn, for the 
AP.

5. Compare the Hc and Ho.
6. Plot the line of position, LOP.

The introduction to each volume of Pub. 229 contains 
information discussing: 

1. The use of the publication for a variety of special 
celestial navigation techniques;

2. Interpolation:
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a. Explaining the second difference interpolation 
required in some sight reductions; 

b. Providing tables to facilitate the interpolation 
process; and,

3. The publication's use in solving problems of great 
circle sailings. 

Prior to using Pub. 229, carefully read this introductory 
material.

The goal of celestial navigation is to determine the nav-
igator's position from the intersection of two or more LOPs 
from observations of the altitudes of one or more celestial 
bodies and their geographic positions, GP, at the time of 
observation. The GP is the point on the Earth's surface that 
intersects the line from a celestial body to the Earth's center. 
In other words, at the GP, the celestial body is directly over-
head. The locus of points on the Earth's surface where a 
body appears at a constant altitude forms a circle centered 
on the GP. So, when navigators observe the altitude of a 
body, they are determining the circle of constant altitude on 
which they are located. Except when a body's Ho approach-
es 90º, the portion of the circle of constant altitude plotted 
on a chart can be approximated by a line called the LOP. 
Assuming the AP is within 30' of the true position, the max-
imum error accrued from estimating the circle of constant 
altitude with an LOP is 3/8 mile for an Ho of 70º and ¾ mile 
for an Ho of 80º. 

In sight reduction, navigators choose an assumed posi-
tion, AP, near, but usually not coincident with, their DR
position. The AP's latitude and longitude are chosen to cor-
respond with the Local Hour Angle, LHA, and latitude 
which are entering arguments of the sight reduction tables 
in Pub. 229. From Pub. 229, the navigator determines the 
body's Hc, its computed altitude, and its true azimuth, Zn, 
at the AP at the time of observation. The difference between 
Hc and Ho is the altitude intercept, a. The value of a, in 
minutes of arc, is equal to the distance, in nautical miles, be-
tween the circle of equal altitude on which the AP is located 
and the one from which the body was observed.

The values of a and Zn are used to plot an LOP. First, 
the AP is plotted on the chart or plotting sheet. A line is 
drawn through AP at the angle Zn with respect to true 
North. The LOP is drawn perpendicular to this line. If Ho is 
greater than Hc, then the LOP is plotted in nautical miles 
from the AP in the direction of Zn. If Ho is less than Hc, 
then the LOP is plotted in nautical miles from the AP in the 
direction away from Zn. 

1902. Selection of the Assumed Position (AP)

As mentioned above, the AP is chosen so the navigator 
can use the tabular values of a publication minimizing the 
need to interpolate. Thus, the AP is typically not your DR, 
and it is different for each object observed, even if the ship 
is stationary. The AP latitude is chosen to be the nearest 
whole degree in latitude to the DR latitude. The AP 

longitude is that nearest the DR longitude resulting in a 
whole degree of LHA for the observed body. The tabular 
interval in the sight reduction tables of Pub. 229 for both 
latitude and LHA is one degree. Selecting the AP in this 
manner eliminates interpolation in LHA and latitude. 

1903. Comparison of Computed and Observed 
Altitudes

The altitude intercept (sometimes just called 
intercept), a, is the difference between the radii of the 
circles of equal altitude passing through the AP and the 
observer's true position. The position with the greater 
altitude is on the circle of smaller radius and closer to the 
observed body's GP. In Figure 1904, the AP is shown on the 
inner circle. Therefore, Hc is greater than Ho. One minute 
of arc is equal to one nautical mile. Therefore, a is 
expressed in nautical miles toward, T, or away, A, from the 
GP, as measured from the AP. If Ho is greater than Hc, the 
LOP intersects at right angles the line drawn from the AP
Towards the GP at a distance of a miles. If Hc is greater 
than Ho, the line of position intersects at right angles the 
line drawn from the AP Away from the GP at a distance of 
a miles. Useful mnemonics for remembering the relation 
between Ho, Hc, and a are: HoMoTo for Ho More
Towards, and C-G-A or Coast Guard Academy for 
Computed Greater Away. 

1904. Plotting a Line of Position (LOP) and Fixing the 
Position

Plotting an LOP is done in four steps:

1. Plot the AP.
2. Draw a light dashed line at true azimuth Zn through 

the AP.
3. Measure a along this line.
4. Draw a line perpendicular to the azimuth line 

through this point.

This line is the LOP, which represents that segment of 
the circle of equal altitude passing through the navigator's 
true position. See Figure 1904. The navigator's true position 
is somewhere along this line, but with only one sight per-
formed, we do not know where.

A celestial navigation fix is the place where two or more 
LOPs intersect. When three or more LOPs are used to make a 
fix, they will usually not all intersect at the same point due to 
limitations in the precision of the observations. Instead, they will 
form a ‘cocked hat.’ A fix may be obtained from plotting the 
LOPs of multiple objects observed at approximately the same 
epoch (time) or from plotting the LOPs of observations of one or 
more objects made at multiple epochs.

The position of the vessel will have changed significantly 
between the first and last observations for a fix from observa-
tions made at multiple epochs. This type of fix is referred to as a 
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running fix. To determine the ship’s position at a particular ep-
och, LOPs from earlier epochs must be advanced along the DR
track and LOPs from later epochs must be retarded along the DR
track. To advance or retard an LOP:

1. Draw a light line segment from the AP at the epoch 
of observation so that it intersects the LOP at right 
angles.

2. Measure this line segment's Zn and length.
3. At the AP of the common epoch, draw a light line 

segment of the same length and at the same Zn.
4. At the non-AP end of this second line segment, 

draw a line perpendicular to it.

This new line is the advanced or retired LOP. A run-
ning fix is not as accurate as a fix made from observations 
made at about the same epoch due to accumulated errors 
from sources such as steering errors and currents. 

If a running fix is made from multiple observations of the 
same body, then enough time between the observations should 
be allowed to elapse so that the Zn of the body has precessed by 
at least 30º. A change in Zn is required to determine where two 
LOPs cross. A difference of 90º is ideal, but a variance of 30º is 
adequate to provide a good fix.

1905. Sight Reduction Procedures

It is important to develop a practical procedure to 
reduce celestial sights consistently and accurately. Sight 
reduction involves several steps. An accurate sight 

reduction requires that each step be concisely and 
accurately performed. Sight reduction tables reduce the 
mathematics involved as much as possible to addition and 
subtraction. Careless errors, however, can render the LOP
deduced from even the most skillfully measured sights 
inaccurate. The navigator must work methodically to avoid 
errors.

Naval navigators will most likely use OPNAV 3530/1, 
U.S. Navy Navigation Workbook, which contains “strip forms” 
to aid in the reduction of sights using either NGA Pub. 229 or 
Pub.249 with either the Nautical Almanac or the Air Almanac. 
OPNAV 3530/1 also contains strip forms to aid in determining 
ship’s latitude by Polaris and the local times of sunrise, sunset, 
moonrise, and moonset using data from either the Nautical 
Almanac or the Air Almanac. The Nautical Almanac includes 
a strip form designed specifically for use with its concise sight 
reduction tables. Use of other strip forms is authorized with the 
proviso that they become an official part of the record for the 
workbook being used.

Figure 1905 is a reproduction of the OPNAV 3530/1 strip 
form for sight reduction using the Nautical Almanac and Pub. 
229. Working from top to bottom the entries are: 

Date: The UT date of the sight. 
Body: The name of the body whose altitude was 

measured. Indicate whether the upper or lower limb was 
measured if the body was the Sun or the Moon.

GMT (Greenwich Mean Time): The UT (GMT is an 
outdated name for UT) of the observation. The UT is the 
Watch Time of the observations adjusted for the Watch 

Figure 1904. The basis for the line of position from a celestial observation. 
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Correction and Zone Description (see Chapter 20).
IC (Index Correction): The instrumental correction 

for the sextant used. Chapter 18 discusses determining its 
magnitude and sign.

D (Dip): Dip correction is a function of the height of 
eye of the observer and atmospheric refraction. Its 
magnitude is determined from the Dip Table on the inside 
front cover of the Nautical Almanac.

Sum: The sum of IC and D.
Hs (Sextant Altitude): The altitude of the body 

measured by the sextant.
Ha (Apparent Altitude): The sum of Hs and the IC and 

D corrections.
Alt. (Altitude) Correction: Every observation requires an 

altitude correction. This correction is a function of the apparent 
altitude of the body. The Nautical Almanac contains tables for 
determining these corrections. The tables for the Sun, planets, 
and stars are located on the inside front cover and facing page, 
pages A2 and A3. The tables for the Moon are located on the 
back inside cover and preceding page, pages xxxiv and xxxv.

These tables are based on observations taken under 
“standard” weather conditions; that is, temperatures near 
50º F and air pressures near 1010mb. If observations are 
taken in conditions that deviate much from this, an addi-
tional altitude correction is needed; see the Nautical 
Almanac table on page A4.

Note that the correction found on A4 is to be applied in 
addition to the corrections found on pages A2, A3, xxxiv or 
xxxv.

Add’l Corr/Moon HP Corr.: An additional correction is 
required for sights of Mars, Venus and the Moon. It adjusts for 
the phase and parallax of these bodies. The correction is a func-
tion of the body observed, the epoch of observation, and Ha. The 
corrections for Venus and Mars are listed inside front cover of the 
Nautical Almanac. These corrections change from year to year. 
The correction for the Moon is a function of the Moon's Ha, its 
HP, and whether the upper, U, or lower, L, limb was observed. 
The tables for this correction are located inside the back cover 
and on the preceding page. Enter the table at the appropriate val-
ues for Ha and HP, and then choose the value associated with the 
L or U column as appropriate. If the upper limb was observed 
subtract 30', as well.

Ho (Observed Altitude): Add together Ha, the Altitude 
Correction, and the Additional Correction or Moon HP Cor-
rection, as appropriate. The result is the observed altitude, 
Ho. 

GHA (Tabulated GHA): The tabulated value for the whole 
hour immediately preceding the time of the sight observation. 
For the Sun, the Moon, or a planet, extract the tabulated value for 
the Greenwich Hour Angle, GHA, of that body from the daily 
pages of the Nautical Almanac. For example, if the sight was 
obtained at 13h50m45s UT, extract the GHA value for 13h. For a 
star sight reduction, extract the tabulated value of the GHA of 
Aries .

Incre: The GHA increment is an interpolation factor, 
correcting for the time that the sight differed from the whole hour. 

Figure 1905. Sight reduction strip form for use with the 
Nautical Almanac and Pub 229.
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For example, if the sight was obtained at 13h50m45s UT, this 
increment correction accounts for the 50 minutes and 45 seconds 

after 13h. The increment value is tabulated in the Increments and 
Corrections tables on pages ii through xxxi in the Nautical 
Almanac. The entering arguments are the minutes and seconds 
after the hour. Select the correction from the appropriate column. 
Use the column labeled Aries for sights of stars.

v / v Corr. / SHA: The true rate of motion in hour angle 
for the Moon and planets usually varies from the mean 
motion used to determine the increments. The parameter v 
is the difference between the mean and true motion in arc 
minutes per hour. The change in hour angle arising from v 
of the body at the time of the sight observation is accounted 
for with the v correction. The value of v for a planet sight is 
found at the bottom of the planet's column in the daily pages 
of the Nautical Almanac. The value of v for the Moon is 
located directly beside the tabulated hourly GHA values in 
the daily pages of the Nautical Almanac. A body's v is 
positive unless it is listed with a negative sign. Enter the 
value for v on the left-hand side of the strip form. The v 
correction is found using the Increments and Correction 
tables on pages ii through xxxi in the back of the Nautical 
Almanac. Enter the table using the minutes of the time of 
observation. Find the value in the “v or d” columns 
corresponding to the value of v for the time of observation. 
Enter the corresponding correction on the right-hand side of 
the strip form with the same sign as v.

The Sidereal Hour Angle (SHA) is the difference be-
tween the GHA of a star and the GHA of Aries. The SHA 
of a star changes slowly. The SHA’s of the 57 navigational 
stars are listed, in alphabetical order of the stars names, in 
the star column of the daily pages of the Nautical Almanac. 
The mean monthly SHA’s of 173 stars, including the 57 
navigational stars, are listed in order of SHA on pages 268 
through 273 of the Nautical Almanac. Enter the SHA in 
place of the v correction in the strip form if reducing a star 
sight.

Total GHA: The total GHA is the sum of the tabulated 
GHA, the GHA increment, and either the v correction or the star's 
SHA.

±360°: Since the LHA will be determined from subtracting 
or adding the assumed longitude to the GHA, adjust the GHA by 
360º if needed to facilitate the addition or subtraction. 

Rule of Thumb:

• In East Longitudes, LHA = GHA + Longitude(-360º 
as necessary)

• In West Longitudes, LHA = GHA - Longitude(+360º 
as necessary)

Example: For a longitude of 90º East and GHA of 300º

LHA = GHA + Longitude - 360º (300º + 90º = 390º - 360º = 
30º).

a  (Assumed Longitude): Choose an assumed longitude, 

a . If the vessel is west of the prime meridian, LHA = GHA - a

, where LHA is the Local Hour Angle. If the vessel is east of 

the prime meridian, LHA = GHA + a . The a  is chosen so 
that it is the longitude closest to that DR longitude where the 
LHA is a whole degree.

LHA (Local Hour Angle): The LHA is the hour angle of 
the observed body at a . The LHA is GHA - a , for west 

longitudes and GHA + a  for east longitudes. Note that this 

should be a whole degree, else you have chosen the a 
incorrectly.

Tab. Dec.: Obtain the tabulated declination for the Sun, 
Moon, stars, or planets from the daily pages of the Nautical 
Almanac. The declination values for the Sun, Moon, and planets 
are listed in hourly increments. Enter the declination value for the 
whole hour immediately preceding the sight for these bodies. For 

example, if the sight is at 12h58m40s, enter the tabulated 

declination for 12h. The declinations of the 57 navigational stars 
are listed, in alphabetical order of the stars names, in the star 
column of the daily pages of the Nautical Almanac. The mean 
monthly declinations of 173 stars, including the 57 navigational 
stars, are listed in order of SHA on pages 268 through 273 of the 
Nautical Almanac.

d / d Corr.: The declinations of the Sun, Moon, and 
planets change with time. The parameter d is the amount of 
change in declination in arc minutes per hour. The change in 
declination of the body at the time of the sight observation is 
accounted for with the d correction. The value of d for a 
planet sight is found at the bottom of the planet's column in 
the daily pages of the Nautical Almanac. The value of d for 
the Moon is located directly beside the tabulated hourly dec-
lination values in the daily pages of the Nautical Almanac. 
Enter the value for d on the left-hand side of the strip form. 
The sign of the d correction is determined by the trend of 
declination value. For example, for a sight taken at 

12h30m00s. Compare the declination values for 12h and 13h

and determine if the declination value has increased or de-
creased. If it has increased, the d correction is positive, and 
if it has decreased, the d correction is negative. The magni-
tude of the d correction is found using the Increments and 
Correction tables on pages ii through xxxi in the Nautical 
Almanac. Enter the table using the minutes of the time of ob-
servation. Find the value in the “v or d” columns 
corresponding to the value of d for the time of observation. 
Enter the corresponding correction on the right-hand side of 
the strip form. The rate of change in declination of the stars 
is so small that their sights do not require a d correction.

True Dec.: The sum of the tabulated declination and the d
correction is the true declination.

aLAT (Assumed Latitude): Choose the whole degree of 
latitude closest to the vessel's DR latitude as the assumed latitude, 
aLAT. If the assumed latitude and declination are both north or 
both south, label the assumed latitude Same. If one is north and 
the other is south, label the assumed latitude Contrary.

λ
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Dec. inc. / d: Two of the three arguments used to enter the 
main table of Pub. 229, LHA and aLAT, are whole degree values. 
The third argument, declination, is interpolated in Pub. 229. The 
method for interpolating declination is described on pages X-
XIV of each volume of Pub. 229. The interpolation tables are lo-
cated on the inside of the front cover and following page and 
inside of the back cover and preceding page of each volume of 
Pub. 229.

Interpolation is done using the declination increment, 
d. (This d is not the same as the d factor in the Nautical Al-
manac.) From the main table of Pub. 229 extract the value of 
d for the tabular declination value preceding the body's dec-
lination. For example, if the body's declination is 30º 35.'1, 
then record the tabular values in the row for Dec. = 30º. If the 
value for d is printed in italics and followed by a dot, then 
second-difference interpolation is required to maintain preci-
sion. In this case record the preceding and following entries 
for the value of d as well. For example, for LHA = 28º, aLat
= 15º Same, Dec. = 16º, the entry for d is +0.' The preced-

ing entry is +2.'  and the following entry is -1.'
Record all three entries, in order.

Tens / DSD: If d is greater than 10', then extract the in-
terpolated value for the tens of d from the interpolation tables 
in Pub. 229. Refer to the description for use of the interpola-
tion tables on pages XI-XII of any volume of Pub. 229 for 
details.

Units / DSD Corr: Extract the interpolated value for the 
units of d from the interpolation tables in Pub. 229. Refer to the 
description for use of the interpolation tables on pages XI-XII 
of any volume of Pub. 229 for details. If a second difference 
correction is required: subtract the value of the following entry 
for d from the preceding value. For example, if the preceding 
entry is +2.'8, and the following entry is -1.'3, then the result is 
2.'8 - (-1.'3) = 4.'1. Use this value to enter in the appropriate 
part of the second difference portion of the interpolation table 
in Pub. 229. Refer to the description for the use of the second 
difference interpolation on page XIV of any volume of Pub. 
229 for details. Add the second difference correction to the 
units correction before entering it in the strip form. Failure to 
include the second difference correction may result in an error 
of as much as 2.'1 in the final value of Hc.

Total Corr.: The sum of the tens and units corrections is the 
total correction.

Hc (Tab.): The tabulated value of Hc from the same 
entry in Pub. 229 from which d was extracted.

Hc (Comp.): The sum of Hc (Tab.) and the total 
corrections is Hc (Comp.).

Ho: The observed altitude calculated above.
a (Altitude Intercept): The absolute value of the 

difference between Hc and Ho is the altitude intercept, a. If 
Ho is greater than Hc, then label a as Toward. If Hc is 
greater than Ho, then label a as Away. Remember, 
“computed greater away.”

Z (Azimuth Angle): The tabulated value of the azimuth 
angle, Z, is extracted from the same entry in Pub. 229 from 
which Hc and d were extracted. Interpolation is not required.

Zn (True Azimuth): The azimuth, Z, is the angular 
distance between the direction towards the observed body 
and the direction towards the elevated pole. The true 
azimuth, Zn, is the angular distance measured eastward 
from the direction towards the North Pole to the direction 
towards the observed body. The value of Zn is a function of 
Z, LHA, and whether the observer is located north or south 
of the equator.

In northern latitudes:

In southern latitudes: 

Fix., Lat., Long., Time: Enter the point of intersection and 
time when two or more LOPs are plotted to determine a fix. The 
time of the fix is not necessarily the time of the sight because 
LOPs may be advanced or retired. The diagram may be used to 
sketch the Zn’s and a’s used to determine the fix.

Sounding: If a sounding is available its value may be 
entered here.

Signature: The sight reduction is a part of the ship's 
official record and must be signed by the navigator.

SIGHT REDUCTION

The section above discussed the basic theory of sight 
reduction and presented a method to be followed when 
reducing sights. This section puts that method into practice 
in reducing sights of a star, the Sun, the Moon, and planets.

1906. Reducing Star Sights to a Fix

In this section, we will reduce three star sights using 
the Nautical Almanac and Pub 229. The first of the three 

sights will be reduced in step-by-step detail; the remaining 
two will not, since the technique is exactly the same. A strip 
form is utilized to aid in the reduction. A completed strip 
form showing the values from the three examples presented 
is shown in Figure 1906a.

On March 09, 2016, at the times indicated, the naviga-
tor takes and records the following sights (see the three 
column table with sextant altitude and zone time for Deneb, 
Antares and Alkaid):

8 .•
8 ,• 3 .•

Zn
Z     LHA>180°

360° Z   LHA<180°–



=

Zn
180° Z   LHA>180°–

180° Z   LHA<180°+



=
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Figure 1906a. Strip form for sight reduction of stars.
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Height of eye is 68 feet and index correction (IC) is 
+0.2'. The DR latitude for all sights is 39° N. The DR lon-
gitude for all sights is 045° 26.0'W. See Figure 1906b.
Reduce the Deneb sight first.

Start by converting the sextant altitudes to the observed 
altitudes.

Determine the sum of the index correction and the dip 
correction. Go to the inside front cover of the Nautical Alma-
nac to the table entitled “DIP.” See Figure 1906c. This table 
lists dip corrections as a function of height of eye measured 
in either feet or meters. The dip table is a “critical table”; that 
is it is evaluated in intervals. To use it, find the interval of 
height of eye and read the corresponding correction. In the 
above problem, the observer's height of eye is 68 feet, which 
lies between the tabulated values of 67.1 to 68.8 feet; the cor-
responding correction for this interval is -8.0'. Add the IC and 
the dip correction, being careful to carry the correct sign. The 
sum of the corrections here is -7.8'. Apply this correction to 
the sextant altitude (hs) to obtain the apparent altitude (ha) of 
50° 26.6'.

Next, apply the altitude correction. Find the altitude 
correction table on the inside front cover of the Nautical 
Almanac next to the dip table. See Figure 1906c. This is also 
a critical table. The altitude correction varies as a function of 
both the type of body sighted (Sun, star, or planet) and the 
body's apparent altitude. For the problem above, enter the 
star altitude correction table; ha in this case was 50° 26.6'. 
This value lies between the tabulated endpoints 48° 45.0' 
and 52° 16.0'. The correction corresponding to this interval 
is -0.8'. Applying this correction to ha yields an observed 
altitude of 50° 25.8'.

Having calculated the observed altitude, determine the 
time and date of the sight in UT1 (Universal Time) or GMT 
(Greenwich Mean Time): Date = 09 March 2016, DR Lat-
itude = 39° N, DR Longitude = 045° 26.0' W, Observation 
Time = 05-58-27, Watch Error = 0, Zone Time = +3, 
GMT = 08-58-27, and GMT Date = 09 March 2016.

Record the observation time and then apply any watch 
error to determine zone time. Then, use the DR longitude at 
the time of the sight to determine time zone description. In 
this case, the DR longitude indicates a zone description of 
+3 hours. Add the zone description to the zone time to ob-
tain UT/GMT. It is important to carry the correct date when 
applying this correction (Note: this step, other than record-
ing the DR, UT/GMT, and UT/GMT date, is not on the 
example strip form (Figure 1906a).

After calculating both the observed altitude and the 
UT/GMT time, calculate the star's Greenwich Hour Angle 
(GHA) and declination using the daily pages of the Nautical 
Almanac.

First, record the GHA of Aries from the March 09, 
2016 daily page: 287° 26.6'.

Next, determine the incremental addition for the 
minutes and seconds after 0800 from the Increments and 
Corrections table in the back of the Nautical Almanac. The 
increment for 58 minutes and 27 seconds is 14° 39.2'.

Then, calculate the GHA of the star. Remember:

GHA (star) = GHA  + SHA (star) 

The Nautical Almanac lists the SHA of selected stars on 
each daily page. The SHA of Deneb on March 09, 2016: 49° 
30.5'. The Total GHA is 287° 26.6' + 14° 39.2' + 49° 30.5' = 351° 
36.3'. If this were 360° or larger, then subtract 360°.

Initially you must choose an assumed longitude, a , 
rather than using the ship’s actual longitude. This is done 
because on of Pub 229’s entering arguments is in whole 
degrees of LHA of the observed body. In order to get a 
whole degree of LHA, we will have to slightly change our 
DR longitude to a new, assumed longitude, a . The a  is 
chosen so that it is the longitude closest to that DR 
longitude where the LHA is a whole degree. Remember that 
if the vessel is west of the prime meridian, LHA = GHA - 
a , and if the vessel is east of the prime meridian, LHA = 

GHA + a . In this example the vessel is in west longitude, 
so subtract its assumed longitude from the GHA of the body 
to obtain the LHA. The assumed longitude must end in 
36.3', so that when subtracted from the Total GHA, a whole 
degree of LHA will result. Since the DR longitude was 045° 
26.0', the assumed longitude ending in 36.3' closest to the 
DR longitude is 045° 36.3'. Subtracting this assumed 
longitude from the calculated GHA of the star yields an 
LHA of 306°.

The next value of concern is the star’s true declination. 
This value is found on the March 09 daily page next to the 
star’s SHA (see Figure 1906b). Deneb's declination is N 
45° 20.2'. There is no d correction for a star sight, so the 
star's true declination equals its tabulated declination.

The assumed latitude is determined from the whole 
degree of latitude closest to the DR latitude at the time of 
the sight. In this case, the assumed latitude is N 39°. It is 
marked “same” because both DR latitude and star's 
declination are north.

In order to find an object's altitude and azimuth using 
Pub 229, we need the ship's assumed latitude, the object's 
LHA, and its declination. We have this information for our 
example sight of Deneb. To recap, we have: the ship's 
assumed longitude (045° 36.3' W) and assumed latitude 
(39° N same); Deneb's LHA at a  (306°); and Deneb's 
declination (N 45° 20.2'). We are now ready to use Pub 229 
to find Deneb's altitude and azimuth.

Find the page in the Sight Reduction Table (using Pub 
229, for our example) corresponding to an LHA of 306° and 
an assumed latitude of N 39°, with latitude same to declina-
tion. Enter this table with the body's whole degree of 
declination. In this case, the body's whole degree of decli-
nation is 45°. This declination corresponds to a tabulated 
altitude (h c Tab) of 50° 10.5'. This value is for a declination 
of 45°; the true declination is 45° 20.2'. Therefore, we need 
to interpolate to this increment (20.2') to obtain the comput-
ed altitude.

λ
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Figure 1906b. Left hand daily page of the Nautical Almanac for March 7, 8, & 9, 2016.
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Figure 1906c. A2 Altitude Correction Tables 10° - 90° for Sun, Stars, Planets.
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The difference between the tabulated altitudes for 45°
and 46° is given in Pub. 229 as the value d; in this case, d = 
+10.8'. Note it is not in italics and followed by a dot, which 
makes the interpolation easier. There are two ways to do 
this interpolation. First, we could use the Interpolation Ta-
ble on the inside front and back covers of Pub 229. We find 
the value of +3.6'. Alternatively, we can easily compute the 
value. Express as a ratio the declination increment (in this 
case, 20.2') and the total interval between the tabulated dec-
lination values (in this case, 60') to obtain the 'distance' 
between the tabulated declination values represented by the 
declination increment. Next, multiply that by d, paying at-
tention to the sign. In this case: 

.

As expected, the two methods (using the Interpolation 
Table or computation) give the same result. Add 3.6' to the 
tabulated altitude to obtain the final computed altitude: Hc

= 50° 14.1'.

It will be valuable here to review exactly what ho
and hc represent. Recall the methodology of the 
altitude-intercept method. The navigator first measures 
and corrects an altitude for a celestial body. This 
corrected altitude, ho, corresponds to a circle of equal 
altitude passing through the navigator’s actual position 
whose center is the geographic position (GP) of the 
body. The navigator then determines an assumed 
position (AP) near, but not coincident with, his or her 
actual position; they then calculates an altitude for an 
observer at that assumed position (AP). The circle of 
equal altitude passing through this assumed position is 
concentric with the circle of equal altitude passing 
through the navigator’s actual position. The difference 
between the body’s altitude at the assumed position (hc) 
and the body’s observed altitude (ho) is equal to the 
differences in radii length of the two corresponding 
circles of equal altitude. 

In the above problem, therefore, the navigator 
knows that the equal altitude circle passing through his 
or her actual position is understood as: the difference 
between ho and hc is 50° 25.8' - 50° 14.1' = 11.7' (which 
is 11.7 nautical miles) away from the equal altitude cir-
cle passing through his or her actual position. Since ho
is greater than hc, the navigator knows that the radius of 
the equal altitude circle passing through his or her ac-
tual position is less than the radius of the equal altitude 
circle passing through the assumed position. The only 
remaining question is what direction from the assumed 
position is the body's actual GP. Pub. 229 provides this 
final piece of information. This is the value for Z which 
is tabulated with the hc and d values discussed above. 
In this case, enter Pub. 229 as before, with LHA, as-
sumed latitude, and declination. Extract the value Z = 
063.3°. Interpolation is not required. The relation be-
tween Z and Zn, the true azimuth, is as follows:

In northern latitudes:

In southern latitudes:

In this case, LHA > 180° and the vessel is in northern lati-
tude. Therefore, Zn = Z = 063.3°T. The navigator now has 
enough information to plot a line of position.

Using the same technique, reduce the sights of Antares and 
Alkaid. The values for the sight reductions are shown in Figure 
1906a.

1907. Reducing a Sun Sight

The example below points out the similarities between 
reducing a sun sight and reducing a star sight. It also 
demonstrates the additional corrections required for low al-
titude (<10°) sights and sights taken during non-standard 
temperature and pressure conditions.

On March 09, 2016, at 07-00-24 local time, at DR po-
sition L 39 ° 11.0' N l 45° 22.0'W, a navigator takes a sight 
of the Sun's lower limb. The navigator has a height of eye 
of 68 feet, the temperature is 88° F, and the atmospheric 
pressure is 982 mb. The sextant altitude is 6° 37.5'. There is 
an index correction of +0.2'. Determine the observed alti-
tude, computed altitude, and azimuth.

A completed strip form showing the values from this 
example is shown in Figure 1907a.

Apply the index and dip corrections to hs to obtain ha. 
Because ha is less than 10°, use the special altitude correction 
table for sights between 0° and 10° located on the right inside 
front page of the Nautical Almanac.

Enter the table with the apparent altitude, the limb of 
the Sun used for the sight, and the period of the year. Inter-
polation for the apparent altitude is not required. In this 
case, the table yields a correction of +8.4'. The correction’s 
algebraic sign is found at the head of each group of entries 
and at every change of sign.

An additional correction is required because of the 
non-standard temperature and atmospheric pressure under 
which the sight was taken. The correction for these non-
standard conditions is found in the Additional Corrections
table located on page A4 in the front of the Nautical 
Almanac.

First, enter the Additional Corrections table with the 
temperature and pressure to determine the correct zone let-
ter: in this case, zone M. Then, locate the correction in the 
M column corresponding to the apparent altitude of 6°
29.7'. Interpolate between the table arguments of 6° 00.0' 
and 7° 00.0' to determine the additional correction: +0.8'. 

20.2′ 60′⁄( ) +10.8′( )× +3.6′=

LHA 180° then Zn Z=,>
LHA 180° then Zn 360° Z–=,<

LHA 180° then Zn 180° Z–=,>
LHA 180° then Zn 180° Z+=,<
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Figure 1907a. Strip for showing example values for Sun, Moon, and Mars.
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The total correction to the apparent altitude is the sum of the 
altitude and additional corrections: +9.2'. This results in an 
ho of 6° 38.9'.

Next, determine the Sun’s GHA and declination. 
Again, this process is similar to the star sights reduced 
above. See Figure 1907b. Notice, however, that SHA, a 
quantity unique to star sight reduction, is not used in Sun 
sight reduction.

Determining the Sun's GHA is less complicated than 
determining a star's GHA. The Nautical Almanac's daily 
pages list the Sun's GHA in hourly increments. In this case, 
the Sun's GHA at 1000 GMT on March 09, 2016 is 327° 
23.6'. The v correction is not applicable for a Sun sight; 
therefore, applying the increment correction yields the 
Sun's GHA. In this case, the GHA is 327° 29.6'.

Determining the Sun's LHA is similar to determining 
a star's LHA; see Section 1906 if more details are needed. 
In determining the Sun's declination, however, an addi-
tional correction not encountered in the star sight, the d
correction, must be considered. This is because the Sun 
moves in declination over the course of an hour, unlike 
that of the stars; the d value is an interpolation factor for 
the Sun's declination. The bottom of the Sun column on 
the daily pages of the Nautical Almanac lists the d value. 
The sign of the d factor must be determined by noting 
from the Almanac whether the Sun's declination value is 
increasing or decreasing around the time of observation. If 
it is increasing, the factor is positive; if it is decreasing, the 
factor is negative. In the above problem, the Sun's decli-
nation value is decreasing throughout the day. Therefore, 
the d factor is -1.0.

Having obtained the d factor, enter the 00 minute incre-
ment and correction table. Under the column labeled “v or d
corrn,” find the value for d in the left hand column. The corre-
sponding number in the right hand column is the correction. 
Apply the correction to the tabulated declination. In this case, 
the correction corresponding to a d value of -1.0 is 0.0'

The final step will be to determine hc and Zn. Enter Pub. 
229 with an LHA of 282°, a declination of S4° 14.9', and an as-
sumed latitude of 39°N. The remaining values to determine hc
and Zn are shown on the strip form (Figure 1907a).

1908. Reducing a Moon Sight

The Moon is easy to identify and is often visible during the 
day. However, the Moon’s proximity to the Earth requires 

applying additional corrections to ha to obtain ho. This section 
will cover Moon sight reduction.

At 21-01-04 UT, March 22, 2016, under standard 
meteorological conditions, the navigator obtains a sight of the 
Moon's lower limb. hs is 3° 55.0'. Height of eye is 68 feet and 
the index correction is +0.2'. Determine ho, the Moon's GHA, 
and the Moon's declination.

A completed strip form showing the values from this 
example is shown in Figure 1907a. Also see Figure 1908a.

This example demonstrates the extra corrections re-
quired for obtaining ho for a Moon sight. Apply the index 
and dip corrections in the same manner as for star and Sun 
sights. 

The altitude correction for the Moon comes from tables 
located on the inside back covers of the Nautical Almanac. 
See Figure 1908b. In this case, the apparent altitude was 3° 
47.2'. Enter the altitude correction table for the Moon with 
the above apparent altitude. Interpolation is not required. 
The correction is +56.1'. An arrow shows the correct loca-
tion of this correction.

The altitude correction due to horizontal parallax (HP) 
is unique to Moon sights. The table for determining this 
correction is directly under the main altitude correction ta-
ble for the Moon, on the back inside cover of the Nautical 
Almanac (see Figure 1908b). First, go to the daily page for 
March 22 at 21-00-00 UT/GMT (see Figure 1908a). In the 
column for the Moon, find the HP corresponding to 21-00-
00. Its value is 54.3' (no interpolation is required). Take this 
value to the Altitude Correction Tables for the Moon on the 
inside back cover of the Almanac. Notice that the HP cor-
rection columns line up vertically with the apparent altitude 
correction table columns. Find the HP correction column 
directly under the apparent altitude correction table heading 
corresponding to the apparent altitude. Enter that column 
with the HP from the daily pages. The column has two sets 
of figures listed under “L” and “U” for lower and upper 
limb respectively. In this case, trace down the “L” column 
until it intersects with the HP of 54.3'. The altitude correc-
tion due to the Moon's horizontal parallax is +0.7' in our 
example; an arrow shows the location of this correction. In-
terpolation is not required.

An additional correction based on non-standard 
weather condition is not applicable in this case because the 
sight was taken under standard temperature and pressure 
conditions.

The total correction to ha is the sum of all the correc-
tions; in this case, this total correction is +56.8'.

To obtain the Moon’s GHA, enter the daily pages in the 
Moon column and extract the applicable data just as for a 
star or Sun sight. Determining the Moon’s GHA requires an 
additional correction, the v correction. The v correction is 
needed because the Moon's motion is not close to uniform 
throughout the year.

First, record the GHA of the Moon for 21-00-00 on 
March 22, 2016, from the daily pages of the Nautical Alma-
nac. The increment correction is done as in the previous 

Date 09 March 2016
DR Latitude N 39° 11.01'
DR Longitude W 045° 22.0' 
Observation Time 07-00-24
Watch Error 0
Zone Time 07-00-24
Zone Description +3
UT/GMT 10-00-24
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Figure 1907b. Right hand daily page of the Nautical Almanac for March 7, 8, & 9, 2016.
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Figure 1908a. Right hand daily pages for the Nautical Almanac for March 22, 23, & 24, 2016.
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Figure 1908b. Altitude Correction Tables 0° - 35° - Moon (from the Nautical Almanac).
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examples. In this case, it is 15.3' because the sight was taken 
one minute and four seconds after the hour. From the daily 
page, record also the v correction factor, it is +15.0. The v
correction factor for the Moon is always positive. To obtain 
the v correction, go to the tables of increments and correc-
tions. In the 1 minute table in the v or d correction columns 
locate the correction that corresponds to v = 15.0'. The table 
yields a correction of +0.4'. Adding this correction to the 
tabulated GHA and increment gives the final GHA as 319° 
43.9'.

Finding the Moon's declination is similar to finding the 
declination for the Sun or stars. The tabulated declination 
and the d factor come from the Nautical Almanac's daily 
pages. Go to the daily pages for March 22, 2016; extract the 
Moon's declination and d factor.

Record the declination and d correction and go to the 
increment and correction pages to extract the proper 
correction for the given d factor. In this case, go to the 
correction page for 1 minute. The correction corresponding 
to a d factor of -9.4 is -0.2'. It is important to extract the 
correction with the correct algebraic sign. The d correction 
may be positive or negative depending on whether the 
Moon's declination value is increasing or decreasing in the 
interval covered by the d factor. In this case, the Moon's 
declination value at 21-00-00 GMT on 22 March was N 01° 
59.8'; at 22-00-00 on the same date the Moon's declination 
was N 01° 50.4'. Therefore, since the declination value was 
decreasing over this period, the d correction is negative. Do 
not assume to determine the sign of this correction by 
noting the trend in the d factor. For this problem, had the d
factor for 21-00-00 been a value more than 22, it would not 
indicate that the d correction should be positive. Remember 
that the d factor is analogous to an interpolation factor; it 
provides a correction to declination. Therefore, the trend in 
declination values, not the trend in d values, controls the 
sign of the d correction. Combine the tabulated declination 
and the d correction factor to determine the true declination. 
In this case, the Moon's true declination is N 01° 59.6'. 

Having obtained the Moon’s GHA and declination, 
calculate LHA and determine the assumed latitude. Enter the 
Sight Reduction Table with the LHA, assumed latitude, and 
calculated declination. Calculate the intercept and azimuth in 
the same manner used for star and Sun sights. (Note, for this 
example a DR was not provided, so these last steps are not 
shown on the strip form).

1909. Reducing a Planet Sight

There are four navigational planets: Venus, Mars, 
Jupiter, and Saturn. Reducing a planet sight is similar to 
reducing a Sun or star sight, but there are a few important 
differences. This section will cover the procedure for 
determining ho, the GHA and the declination for a planet 
sight.

On March 09, 2016, at 08-58-34 GMT, under standard 
meteorological conditions, the navigator takes a sight of 

Mars. H s is 29° 43.0'. The height of eye is 68 feet, and the 
index correction is +0.2'. Determine h o, GHA, and declina-
tion for Mars. A completed strip form showing the values 
from this example is shown in Figure 1907a.

The values on the filled-in strip form demonstrate the 
similarity between reducing planet sights and reducing 
sights of the Sun and stars. Calculate and apply the index 
and dip corrections exactly as for any other sight. Take the 
resulting apparent altitude and enter the altitude correction 
table for the stars and planets on the inside front cover of the 
Nautical Almanac.

In this case, the altitude correction for 29° 35.2' results in 
a correction of -1.7'. The additional correction for refraction is 
not applicable because the sight was taken at standard tem-
perature and pressure; the horizontal parallax correction is not 
applicable to a planet sight, only for the Moon. All that remains 
is the correction specific to Mars or Venus. The altitude correc-
tion table on the inside front cover of the Nautical Almanac
also contains this correction; once again see Figure 1906c. Its 
magnitude is a function of the body sighted (Mars or Venus), 
the time of year, and the body's apparent altitude. Entering this 
table with the data for this problem yields a correction of +0.1'. 
Applying these corrections to h a results in an h o of 29° 33.6'.

Determine the planet's GHA in the same manner as with 
the Sun. That is, extract the tabular GHA for the hour the sight 
was taken (48° 08.6'). Then determine the incremental addition 
for the minutes and seconds after the hour from the Increments 
and Corrections table in the back of the Nautical Almanac (14° 
38.5'). The only difference between determining the Sun's 
GHA and a planet's GHA lies in applying the v correction. Re-
call that the v correction was also needed for the Moon. As 
mentioned earlier, the v correction is needed because the Moon 
and planets' motion are not close to uniform throughout the 
year. 

Find the v factor at the bottom of the planets' GHA col-
umns on the daily pages of the Nautical Almanac; see 
Figure 1906b. For Mars on March 09, 2016, the v factor is 
1.5. If no algebraic sign precedes the v factor, add the result-
ing correction to the tabulated GHA. Subtract the resulting 
correction only when a negative sign precedes the v factor. 
Entering the v or d correction table corresponding to 58 
minutes yields a correction of 1.5'. Remember, because no 
sign preceded the v factor on the daily pages, add this cor-
rection to the tabulated GHA. The final GHA is 62°48.6'.

Read the tabulated declination directly from the daily 
pages of the Nautical Almanac; in our example it is S 19° 
10.7'. The d correction factor is listed at the bottom of the 
planet column; in this case, the factor is 0.2. Note the trend 
in the declination values for the planet; if they are increasing 
around the time the sight was taken, the correction factor is 
positive. If the planet's declination value is decreasing 
around this time, the correction factor is negative. Next, en-
ter the v or d correction table corresponding to 58 minutes 
and extract the correction for a d factor of 0.2. The correc-
tion in this case is +0.2'. The true declination is S 19° 10.9'. 

From this point, reducing a planet sight is exactly the 
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same as reducing a Sun sight. Having obtained the planet's 
GHA and declination, the navigator can calculate LHA and 
determine the assumed latitude. Enter the Sight Reduction 
Table with the LHA, assumed latitude, and true declination. 

Calculate the intercept and azimuth in the same manner 
used for star and Sun sights. (Note, for this example a DR 
was not provided, so these last steps are not shown on the 
strip form).

MERIDIAN PASSAGE

This section covers determining both latitude and longi-
tude at the meridian passage of the Sun, or Local Apparent 
Noon (LAN). Latitude at LAN is a special case of the navi-
gational triangle where the Sun is on the observer's meridian 
and thus the triangle becomes a straight north/south line. 
Should the navigator wish to plot the resulting LOP, it would 
be a straight east/west line running along the navigator's lat-
itude. However, no complete sight reduction is necessary; 
the navigator need only to combine the Sun's zenith distance 
and its declination according to the rules discussed below. A 
new strip form, different from the one used in a sight reduc-
tion, is usually used (see Figure 1910).

Longitude at LAN is a function of the time elapsed 
since the Sun passed the Greenwich meridian. The navigator 
must determine the time of LAN and calculate the GHA of 
the Sun at that time. The following examples demonstrate 
determining latitude and longitude at LAN.

1910. Latitude at Meridian Passage of the Sun (Local 
Apparent Noon)

At 1208 ZT, March 09, 2016, a vessel's DR position is 
L 39° 49.0'N and l 044° 33.0' W. The ship is on course 
045°T at a speed of ten knots. (1) Calculate the first and sec-
ond estimates of Local Apparent Noon. (2) The navigator 
actually observes LAN at 12-08-04 zone time. The sextant 
altitude at LAN is 45° 54.0'. The index correction is +0.2' 
and the height of eye is 68 feet. Determine the vessel's lati-
tude. A completed strip form showing the values from this 
example is shown in Figure 1910.

First, determine the time of meridian passage from the 
daily pages of the Nautical Almanac. It is found in the lower 
right corner of the right hand daily pages in Figure 1907b. In 
this case, the meridian passage for March 09, 2016, is 1210. 
That is, the Sun crosses the central meridian of the time 
zone at 1210 ZT. Next, determine the vessel's DR longitude 
for the time of meridian passage. In this case, the vessel's 
1208 DR longitude is 044° 33.0' W. Determine the time 
zone in which this DR longitude falls and record the 
longitude of that time zone's central meridian. In this case, 
the central meridian is 45° W. Enter the Conversion of Arc 
to Time table in the Nautical Almanac (page i, near the 
back) with the difference between the DR longitude and the 
central meridian longitude. The conversion for 27' of arc is 

1m 48s, which can be rounded to 2 m of time. Sum these two 
times. If the DR position is east of the central meridian (as 
it is in this case), subtract this time from the time of 
tabulated meridian passage. If the longitude difference is to 
the west of the central meridian, add this time to the 

tabulated meridian passage. In this case, the DR position is 
east of the central meridian. Therefore, subtract 2 minutes 
from 1210, the tabulated time of meridian passage. The 
estimated time of LAN is 12-08-00 ZT.

This first estimate for LAN took into account the ves-
sel's movement. Therefore, it is unnecessary to conduct 
second estimate of LAN.

Solving for latitude requires that the navigator calculate two 
quantities: the Sun's declination and the Sun's zenith distance. 
First, calculate the Sun's true declination at LAN. The problem 
states that LAN is observed at 12-08-04. (Determining the exact 
time of LAN is covered in Section 1911.) Enter the time of ob-
served LAN and add the correct zone description to determine 
GMT. Determine the Sun's declination in the same manner as in 
the sight reduction problem in Section 1906. In this case, the tab-
ulated declination was S 4° 10.0', and d is -1.0'; the d correction 
(from the increments and corrections table) is -0.1'. The true dec-
lination, therefore, is S 4° 09.9'.

Next, calculate zenith distance. Recall from Chapter 17 - 
Navigational Astronomy that zenith distance is simply 90° - 
observed altitude, ho. Therefore, correct hs to obtain ha; then 
correct ha to obtain ho. This is done the same way as was done 
for reducing a Sun sight in Section 1907. Then, subtract ho from 
90° to determine the zenith distance. For our example, after 
applying the appropriate corrects, ho is 46° 01.5', and the zenith 
distance is 43° 58.5'.

Your latitude is determined by applying the Sun's true 
declination to the zenith distance using the following rules: 

• If DR lat and Dec (Sun) are same (e.g., both North or 
both South), then ADD

• If DR lat and Dec (Sun) are contrary (e.g., one North, 
one South), then SUBTRACT

• If DR lat and Dec (Sun) are same, and Dec is greater, 
then SUBTRACT

In this case, the DR latitude is N 39° 49.0' and the Sun's dec-
lination is S 4° 09.9', which are contrary. Therefore, subtract the 
true declination from the zenith distance. The latitude for our ex-
ample is N 39° 48.6'.

1911. Longitude at Meridian Passage

Determining a vessel’s longitude at LAN is straight-
forward. In the western hemisphere, the Sun’s GHA at 
LAN equals the vessel’s longitude. In the eastern 
hemisphere, subtract the Sun’s GHA from 360° to 
determine longitude. The difficult part lies in determining 
the precise moment of meridian passage.
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Determining the time of meridian passage presents a 
problem because the Sun appears to hang for a finite time 
at its local maximum altitude. Therefore, noting the time 
of maximum sextant altitude is not sufficient for 
determining the precise time of LAN. Two methods are 
available to obtain LAN with a precision sufficient for 
determining longitude: (1) the graphical method and (2) 
the calculation method. The graphical method is 
discussed first below.

For about 30 minutes before the estimated time of 
LAN, measure and record several sextant altitudes and their 
corresponding times. See Figure 1911. Continue taking 
sights for about 30 minutes after the Sun has descended 
from the maximum recorded altitude. Increase the sighting 
frequency near the meridian passage. One sight every 20-30 
seconds should yield good results near meridian passage; 
less frequent sights are required before and after.

Plot the resulting data on a graph of sextant altitude 
versus time and draw a fair curve through the plotted 
data. Next, draw a series of horizontal lines across the 
curve formed by the data points. These lines will 
intersect the faired curve at two different points. The x 
coordinates of the points where these lines intersect the 
faired curve represent the two different times when the 
Sun’s altitude was equal (one time when the Sun was 
ascending; the other time when the Sun was descending). 
Draw three such lines, and ensure the lines have 
sufficient vertical separation. For each line, average the 
two times where it intersects the faired curve. Finally, 
average the three resulting times to obtain a final value 
for the time of LAN. From the Nautical Almanac, 
determine the Sun’s GHA at that time; this is your 
longitude in the western hemisphere. In the eastern 
hemisphere, subtract the Sun’s GHA from 360° to 
determine longitude. For a quicker but less exact time, 
simply drop a perpendicular from the apex of the curve 
and read the time along the time scale. 

The second method of determining LAN is similar to 
the first. Estimate the time of LAN as discussed above, 
Measure and record the Sun’s altitude as the Sun 
approaches its maximum altitude. As the Sun begins to 
descend, set the sextant to correspond to the altitude 
recorded just before the Sun’s reaching its maximum 
altitude. Note the time when the Sun is again at that 
altitude. Average the two times. Repeat this procedure 
with two other altitudes recorded before LAN, each time 
presetting the sextant to those altitudes and recording the 
corresponding times that the Sun, now on its descent, 
passes through those altitudes. Average these 
corresponding times. Take a final average among the 
three averaged times; the result will be the time of 
meridian passage. Determine the vessel’s longitude by 
determining the Sun’s GHA at the exact time of LAN.

Figure 1910. Sight reduction strip form for Local 
Apparent Noon (LAN).
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LATITUDE BY POLARIS

1912. Latitude by Polaris

Because Polaris is always within about 1° of the North 
Pole, the altitude of Polaris, with a few minor corrections, 
equals the latitude of the observer. This relationship makes 
Polaris an extremely important navigational star in the 
northern hemisphere.

The corrections are necessary because over the course 
of 24 hours, Polaris appears to move in a small circle 
around the pole. When Polaris is at the exact same altitude 
as the pole, the correction is zero. When on the observer's 
meridian, that is at upper or lower culmination, the 
corrections are maximum. A special table, The Polaris 
Table, in the Nautical Almanac is used to determine the 
correction. The following example illustrates converting a 
Polaris sight to latitude. A new strip form, different from 
the one used in a sight reduction and LAN, is often used 
(see Figure 1912b).

At 23-18-56 GMT, on March 22, 2016, at DR Lat. 40° 
46.0' N, l = 043° 22.0' W, the observed altitude of Polaris 
(ho) is 40° 52.1'. Find the vessel's latitude (see Figure 

2310c).

To solve this problem, use the equation: 

where ho is the sextant altitude (hs) corrected as in any other 

star sight; 1° is a constant; and A0, A1, and A2 are correc-

tion factors from the Polaris tables found on pages 274-276 
of the Nautical Almanac (see Figure 1912c). These three 

Figure 1911. Time of LAN.

Figure 1912a. Polaris time lapse illustration.

Latitude ho 1° A0 A1 A2+ + +–=
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correction factors are always positive. One needs the fol-
lowing information to enter the tables: LHA of Aries, DR 
latitude, and the month of the year. Therefore, LHA of Ar-
ies is determined similarly to the LHA of any other object. 
That is, first determine the GHA, then either add or subtract 
the DR longitude to compute LHA. Determining the GHA 
is done as with any other body. Extract the tabular GHA for 
the hour the sight was taken (165° 52.3'). Then determine 
the incremental addition for the minutes and seconds after 
the hour from the Increments and Corrections table in the 
back of the Nautical Almanac (4° 44.8'). The total GHA of 
Aries is 170° 37.1'. As described above, LHA is GHA - l for 
west longitudes and GHA + l for east longitudes. Because 
our example DR is in the western hemisphere, subtract the 
DR longitude from the GHA to obtain the LHA of Aries, 
127° 15.1'.

Next, enter the Polaris table with the calculated LHA of 
Aries at the time of observation (127° 15.1'). The first correc-
tion, A0, is a function solely of the LHA of Aries. Enter the 
table column indicating the proper range of LHA of Aries; in 
this case, enter the 120°-129° column. The numbers on the 
left hand side of the A0 correction table represent the whole 
degrees of LHA ; interpolate to determine the proper A0
correction. In this case, LHA was 127° 15.1'. The A0
correction for LHA = 127° 54.7' and the A0 correction for 
LHA = 128° is 55.4'. The A0 correction for 127° 15.1' is 
54.9'.

To calculate the A1 correction, enter the A1 correction ta-

ble with the DR latitude, being careful to stay in the 120°-129°
LHA column. There is no need to interpolate here; simply 
choose the latitude that is closest to the vessel’s DR latitude. In 
this case, L is 40°N. The A1 correction corresponding to an 

LHA range of 120°-129° and a latitude of 40°N is + 0.5'.

Finally, to calculate the A2 correction factor, stay in the 
120°-129° LHA column and enter the A2 correction ta-
ble. Follow the column down to the month of the year; in 
this case, it is March. The correction for March is + 0.9'.

Sum the corrections, remembering that all three are al-
ways positive (56.3'). Subtract 1° from the sum to 
determine the total correction (-3.7'), then apply the result-
ing value to the observed altitude of Polaris. The result is 
the vessel’s latitude, N 40° 48.4'.

THE DAY’S WORK IN CELESTIAL NAVIGATION

1913. Celestial Navigation Daily Routine

The navigator need not follow the entire celestial routine if 
celestial navigation is not the primary navigation method. It is ap-
propriate to use only the steps of the celestial day’s work that are 
necessary to provide a meaningful check on the primary fix 

source and maintain competency in celestial techniques. 
The list of procedures below provides a complete daily ce-

lestial routine to follow. This sequence works equally well for all 
sight reduction methods, whether tabular, mathematical, comput-
er program, or celestial navigation calculator. See Figure 1913
for an example of a typical day’s celestial plot.

Figure 1912b. Sight reduction strip form for 
longitude by Polaris.
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Figure 1912c. Excerpt from the Polaris Tables.
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1. Before dawn, compute the time of morning twilight 
and plot the dead reckoning position for that time. (See 
Chapter 21 The Almanacs - Section 2109 Finding 
Times of Sunrise and Sunset.)

2. At morning twilight, take and reduce celestial obser-
vations for a fix. At sunrise take an amplitude of the 
Sun to obtain gyro error. (See Chapter 19 Azimuths 
and Amplitudes.)

3. Mid-morning, compare the chronometer with UT to 
determine chronometer error using a radio time tick. 
(See Chapter 20 Time.)

4. Mid-morning, reduce a Sun sight for a morning Sun 
line. (See section 1907 in this chapter.)

5. Calculate an azimuth of the Sun to obtain gyro error, 
if no amplitude was taken at sunrise.(See Chapter 19 
Azimuths and Amplitudes.)

6. At LAN, obtain a Sun line and advance the morning 
Sun line for the noon fix. Compute a longitude deter-

mined at LAN for an additional LOP. (See Section 
1910 and Section 1911 in this chapter.)

7. Mid-afternoon, again take and reduce a Sun sight. 
This is primarily for use with an advanced noon Sun 
line, or with a Moon or Venus line if the skies are over-
cast during evening twilight.

8. Calculate an azimuth of the Sun to obtain gyro error 
at about the same time as the afternoon Sun observa-
tion. The navigator may replace this azimuth with an 
amplitude observation at sunset. (See Chapter 19 Azi-
muths and Amplitudes.)

9. During evening twilight, reduce celestial observa-
tions for a fix. (See Section 1906 in this chapter.)

10. Be alert at all times for the moon or brighter planets 
which may be visible during daylight hours for addi-
tional LOP’s, and Polaris at twilight for a latitude line. 

Figure 1913. Typical celestial plot at sea.


