Chapter 13 Organometallic Chemistry

13-1 Historical Background

13-2 Organic Ligands and Nomenclature

13-3 The 18-Electron Rule

13-4 Ligands in Organometallic Chemistry

13-5 Bonding Between Metal Atoms and Organic π Systems

13-6 Complexes Containing M-C, M=C, and M \equiv C Bonds

13-7 Spectral Analysis and Characterization of Organometallic Complexes

"Inorganic Chemistry" Third Ed. Gary L. Miessler, Donald A. Tarr, 2004, Pearson Prentice Ha http://en.wikipedia.org/wiki/Expedia

13-1 Historical Background

Sandwich compounds

Other examples of organometallic compounds

그림 13-3 유기금속 화합물의 다른 예.

Organometallic Compound

Organometallic chemistry is the study of chemical compounds containing **bonds between carbon and a metal**.

Organometallic chemistry combines aspects of inorganic chemistry and organic chemistry.

Organometallic compounds find practical use in <u>stoichiometric</u> and <u>catalytically</u> active compounds.

Electron counting is key in understanding organometallic chemistry. The <u>18-electron rule</u> is helpful in predicting the stabilities of organometallic compounds. Organometallic compounds which have 18 electrons (filled s, p, and d orbitals) are relatively stable. This suggests the compound is isolable, but it can result in the compound being inert.

Staggered rings Eclipsed rings Skew rings

13-2 Organic Ligands and Nomenclature

Write hydrocarbon ligands before the metal.

η superscript

Bridging ligand - μ Subscript indicating the number of metal atoms bridged.

Ligand	Name	Ligand	Name
СО	Carbonyl	$\hat{\bigcirc}$	Demons
=c	Carbene (alkylidene)		Benzene
≡c−	Carbyne (alkylidyne)		1,5-cyclooctadiene (1,5-COD) (1,3-cyclooctadiene complexes are also known)
$\langle 0 \rangle$	Cyclopropenyl (cyclo-C ₃ H ₃)	$H_2C = CH_2$	Ethylene
\sim		HC≡CH	Acetylene
\land			π -Allyl (C ₃ H ₅)
$\langle \bigcirc \rangle$	Cyclobutadiene ($cyclo$ - C_4H_4)	$-CR_3$	Alkyl
Ŏ	Cyclopentadienyl (cyclo-C ₅ H ₅)(Cp)		Acyl

FIGURE 13-7 Common Organic Ligands.

13-2 Organic Ligands and Nomenclature

Number of Bonding Positions	Formula	Name	
1	η^1 -C ₅ H ₅	monohaptocyclopentadienyl	м
3	$\eta^3\text{-}C_5H_5$	trihaptocyclopentadienyl	м
5	η^5 -C ₅ H ₅	pentahaptocyclopentadienyl	м

Number of Atoms Bridged	Formula	
None (terminal)	CO	
2	μ_2 -CO	
3	μ3 - CO	

13-3 The 18-Electron Rule

; counting electrons

In main group chemistry, the octet rule

(η⁵-C₅H₅)Fe(CO)₂Cl

Donor Pair method

Fe(II)		6 electrons
η ⁵ -C ₅ H ₅ ⁻		6 electrons
2 (CO)		4 electrons
Cl		2 electrons
	Total =	18 electrons

Neutral Ligand method

Fe atom		8 electrons
η^5 -C ₅ H ₅		5 electrons
2 (CO)		4 electrons
Cl		1 electron
	Total =	= 18 electrons

13-3 The 18-Electron Rule

; counting electrons

M-M single bond counts as one electron per metal

TABLE 13-1 Electron Counting Schemes for Common Ligands			
Ligand	Method A	Method B	
Н	2 (H ⁻)	1	
Cl, Br, I	2 (X ⁻)	1	
OII, OR	2 (OH ⁻ , OR ⁻)	1	
CN	2 (CN ⁻)	1	
CH ₃ , CR ₃	2 (CH ₃ ⁻ , CR ₃ ⁻)	1	
NO (bent M-N-O)	2 (NO ⁻)	1	
NO (linear M-N-O)	2 (NO ⁺)	3	
CO, PR3	2	2	
NH ₃ , H ₂ O	2	2	
=CRR' (carbene)	2	2	
$H_2C = CH_2$ (ethylene)	2	2	
CNR	2	2	
=0, =S	$4 (O^{2-}, S^{2-})$	2	
η^3 -C ₃ H ₅ (π -allyl)	$2(C_3H_5^+)$	3	
=CR (carbyne)	3	3	
≡N	6 (N ³⁻)	3	
Ethylenediamine (en)	4 (2 per nitrogen)	4	
Bipyridine (bipy)	4 (2 per nitrogen)	4	
Butadiene	4	4	
η ⁵ -C ₅ H ₅ (cyclopentadienyl)	$6(C_5H_5)$	5	
η^6 -C ₆ H ₆ (benzene)	6	6	
η^7 -C ₇ H ₇ (cycloheptatrienyl)	6 (C ₇ H ₇ ⁺)	7	

13-3 The 18-Electron Rule <mark>; w</mark>hy 18 electrons?

 $[Zn(en)_3]^{2+}$; ?? Electron species good σ -donor not as strong as CO e_g orbitals are not sufficiently antibonding

TiF₆²⁻; ?? Electron species σ -donor π -donor What happen?

<u>Ligand field theory;</u> <u>Pi-Bonding</u>

C O

O

그림 13-12 CO와 N₂에 대한 분자 궤도함수의 일부분.

그림 13-13 CO와 금속 원자 간 의 σ및 π상호 작용.

Experimental evidence

Free CO vs M-CO

Infrared spectroscopy and X-ray crystallography

Free CO has a C-O stretch at 2143 cm⁻¹ $Cr(CO)_6$ has a C-O stretch at 2000 cm⁻¹

C-O distance 112.8 pm Metal complexes 115 pm

In general, the more negative the charge on the organometallic species, <u>the greater the tendency</u> of the metal to donate electrons to the π^* orbitals of CO and the lower the energy of the C-O stretching vibrations.

Complex	ν (CO), cm^{-1}
[Ti(CO) ₆] ²⁻	1748
[V(CO) ₆]	1859
$Cr(CO)_6$	2000
$[Mn(CO)_6]^+$	2100
[Fe(CO) ₆] ²⁺	2204
$\delta + \delta -$	$\delta + \delta -$
C = 0	$M^{n+} \leftarrow C \equiv 0$

The consequence is that the electrons in the positively charged complex are more equally shared by the carbon and the oxygen, giving rise to a stronger bond and a higher energy C - O stretch.

13-4 Ligands in Organometallic Chemistry ; bridging modes of CO

NOTE: ^a Asymmetrically bridging μ_2 - and μ_3 -CO are also known.

13-4 Ligands in Organometallic Chemistry ; bridging modes of CO

Terminal and bridging carbonyl ligands can be considered 2-electron donors.

Re		$7 e^{-}$
$\eta^{5}-C_{5}H_{5}$		$5 e^{-}$
2 CO (terminal)		$4 e^{-}$
$\frac{1}{2}(\mu_2-CO)$		1 e ⁻
M-M bond		$1 e^{-}$
	Total =	18 e ⁻

13-4 Ligands in Organometallic Chemistry ; bridging modes of CO

 $[(\eta^{5}-C_{5}H_{5})Mo(CO)_{3}]_{2} \rightleftharpoons^{\Delta} [(\eta^{5}-C_{5}H_{5})Mo(CO)_{2}]_{2} + 2CO$ 1960, 1915 cm⁻¹
1889, 1859 cm⁻¹

13-4 Ligands in Organometallic Chemistry

; binary carbonyl complexes

Synthesis of binary carbonyl complexes

1. Direct reaction of a transition metal and CO; high T & P

 $Ni + 4 CO \longrightarrow Ni(CO)_4$

2. Reductive carbonylations

 $CrCl_3 + 6 CO + Al \longrightarrow Cr(CO)_6 + AlCl_3$

 $\operatorname{Re}_2\operatorname{O}_7 + 17 \operatorname{CO} \longrightarrow \operatorname{Re}_2(\operatorname{CO})_{10} + 7 \operatorname{CO}_2$

3. Thermal or photochemical reaction

$$2 \operatorname{Fe}(\operatorname{CO})_5 \xrightarrow{h\nu} \operatorname{Fe}_2(\operatorname{CO})_9 + \operatorname{CO}$$

$$3 \operatorname{Fe}(\operatorname{CO})_5 \xrightarrow{\Delta} \operatorname{Fe}_3(\operatorname{CO})_{12} + 3 \operatorname{CO}$$

$$\operatorname{Cr}(\operatorname{CO})_6 + \operatorname{PPh}_3 \xrightarrow{\Delta} \operatorname{Cr}(\operatorname{CO})_5(\operatorname{PPh}_3) + \operatorname{CO}$$

$$\operatorname{Re}(\operatorname{CO})_6 \operatorname{Br} + \operatorname{en} \xrightarrow{\Delta} \operatorname{fac-Re}(\operatorname{CO})_3(\operatorname{en})\operatorname{Br} + 2 \operatorname{CO}$$

13-4 Ligands in Organometallic Chemistry ; oxygen-bonded cabonyls

13-4 Ligands in Organometallic Chemistry ; ligands similar to CO

```
CS, CSe
Similar to CO in their bonding modes
In terminal or bridging
CS usually functions as a stronger \sigma donor and \pi acceptor
than CO
isoelectronic; CN<sup>-</sup> and N<sub>2</sub>
CN<sup>-</sup> is a stronger \sigma donor and a somewhat \pi weaker
acceptor than CO
CN<sup>-</sup> bonds readily to metals having higher oxidation states
```

N₂ is a weaker donor and acceptor than CO Nitrogen fixation

13-4 Ligands in Organometallic Chemistry ; ligands similar to CO; NO complexes

13-4 Ligands in Organometallic Chemistry ; hydride and dihydrogen complexes

Hydride complexes

Organic synthesis, catalytic reaction

 $Co_2(CO)_8 + H_2 \longrightarrow 2 HCo(CO)_4$

trans-Ir(CO)Cl(PEt₃)₂ + H₂ \longrightarrow Ir(CO)Cl(H)₂(PEt₃)₂

 $Co_2(CO)_8 + 2 Na \longrightarrow 2 Na^+[Co(CO)_4]^ [Co(CO)_4]^- + H^+ \longrightarrow HCo(CO)_4$

13-4 Ligands in Organometallic Chemistry ; hydride and dihydrogen complexes

Dihydrogen complexes

Organic synthesis, catalytic reaction

 σ donation

 π acceptance

Distance of H-H the metal is electron rich and donate strongly to the π^* of H₂ \rightarrow ??? with CO and NO \rightarrow ???

 π bonding within the ligands themselves-linear systems

 π bonding within the ligands themselves-cyclic systems

 π bonding within the ligands themselves-cyclic systems

away from the metal

 π -bonding electron pair the empty π^* -orbital

Free ethylene133.7 pm, 1623 cm⁻¹Coordinated ethylene137.5 pm, 1516 cm⁻¹

13-4 Bonding between Metal Atoms and Organic π Systems; linear π systems π-allyl complexes Conversion between n^1 and n^3 Catalytic reaction Δ or hv $(\eta^3\text{-}C_3\text{H}_5)\text{Mn(CO)}_4$ $(\eta^1 - C_3 H_5) Mn(CO)_5$ $[Mn(CO)_5]^-$ C₃H₅Cl + CO H₂C ≠ $Mn(CO)_4$ -Mn(CO)5 Other linear π systems CH_3 H₃(Η (CH₃ H_3C Mo (CO)H₃C

Most stable conformation

Molecular orbital energy levels of Ferrocene

toms and Organic π

FIGURE 13-29 Molecular Orbitals of Ferrocene Having Greatest *d* Character.

Other metallocenes # of electron \rightarrow stability \rightarrow reactivity

TABLE 13-3 Comparative Data for Selected Metallocenes

Complex	Electron Count	M-C Distance (pm)	ΔH for M ²⁺ -C ₅ H ₅ ⁻ Dissociation (kJ/mol)
(n ⁵ -C ₅ H ₅) ₂ Fe	18	206.4	1470
(η ⁵ -C ₅ H ₅) ₂ Co	19	211.9	1400
$(\eta^{5}-C_{5}H_{5})_{2}Ni$	20	219.6	1320

$$2 (\eta^{5} - C_{5}H_{5})_{2}Co + I_{2} \longrightarrow 2 [(\eta^{5} - C_{5}H_{5})_{2}Co]^{+} + 2 I^{-}$$

$$19 e^{-}$$

$$18 e^{-}$$

$$cobalticinium ion$$

 $(\eta^5 - C_5 H_5)_2 Ni + 4 PF_3 \longrightarrow Ni(PF_3)_4 + organic products$ 20 e⁻ 18 e⁻

FIGURE 13-32 Complexes Containing C₅H₅ and CO.

13-5 Fullerene Complexes

Types of fullerene complexes

- 1. Adducts to the oxygens
- 2. As a lignd
- 3. Encapsulated metals
- 4. Intercalation compounds of alkali metals

Adducts to the oxygens

FIGURE 13-34 Structure of C₆₀(OsO₄)(4-*t*-butylpyridine)₂.

그림 13-36 [(Et₃P)₂Pt]₆C₆₀의 구조(G. O. Spessard and G. L. Miessler, *Organometallic Chemistry*, Prentice Hall, Upper Saddle River, NJ, 1997, p. 511. Fig. 13-13에서 허락하에 게재).

13-5 Fullerene Complexes

그림 13-37 (η²-C₇₀)Ir(CO)Cl(PPh₃)₂의 입체도 (A. L. Balch, V. J. Catalano, J. W. Lee, M. M. Olmstead, and S. R. Parkin, *J. Am. Chem. Soc.*, 1991, 113, 8953, ⓒ 1991 American Chemical Society에서 허락하에 게 재함).

₽0103

0201 Rul 0102

0203

(a)

0303 4

0301 Ru3

0302

그림 13-38 (a) Ru₃(CO)₉(µ³-η², η², η²-C₆₀). (b) 및 (c) Fe(η⁵-C₅H₅)(η⁵-C₇₀(CH₃)₃)의 ORTEP 및 공간채 우기 모형 (H. -F. Hsu and J. R. Shapley, *J. Am. Chem. Soc.*, **1996**, *118*, 9192, and from M. Sawamura, Y. Kuninobu, M. Toganoh, Y. Matsuo, M. Yamanaka, and E. Nakamura, *J. Am. Chem. Soc.*, **2002**, *124*, 9354. ⓒ 1996 American Chemical Society.에서 허락하에 게재).

(b)

13-5 Fullerene Complexes

Encapsulated metals

By laser-induced vapor phase reactions between carbon and the metal

U@C₆₀ contains U surrounded by C₆₀

 $Sc_3@C_{82}$ contains three atoms of Sc surrounded by C_{82}^{53}

La@C₈₂; La³⁺, C₈₂³⁻

그림 13-39 Sc₃N@C₈₀. 저온에 서 연구된 X-선 구조 결정에 의하 면, Sc₃N은 130.3°, 113.8° 및 115.9° 의 결합각을 지닌 평면형이며, 각 각의 Sc은 두 개의 6-원소 고리를 이루는 C—C 결합 부분과 약하게 결합되어 있다. 그러나, 높은 온도 에서는 Sc₃N 뭉치 화합물이 바구 니 안에서 자유로이 움직인다.

13-6 Complexes Containing M-C, M=C and M≡C Bond

Ligand	Formula	Example
Alkyl	-CR3	W(CH ₃) ₆ OCH ₂
Carbene (alkylidene)	$=CR_2$	$(OC)_5Cr = C$
Carbyne (alkylidyne)	= CR	$ \begin{array}{c} O_{C} \\ C \\$
Cumulene	$=C(=C)_n RR'$	$CI - Ir = C = C = C = C < C_6H_5$

13-6 Complexes Containing M-C, M=C and M≡C Bond ; alkyl and related complexes

M
$$\leftarrow$$
 CR_3 (R=H, alkyl, aryl)
 sp^3 orbital

 Reaction of a transition metal halide with organolithium, organomagnesium, or organoaluminum reagent.

Example: $ZrCl_4 + 4 PhCH_2MgCl \longrightarrow Zr(CH_2Ph)_4$ (Ph = phenyl)

2. Reaction of a metal carbonyl anion with alkyl halide. **Example:** $Na[Mn(CO)_5]^- + CH_3I \longrightarrow CH_3Mn(CO)_5 + NaI$

Synthetic route

Relatively rare: kinetically unstable and difficult to isolate Enhancing the stability; By blocking pathways to decomposition

Proposed as intermediates in a variety catalytic processes

13-6 Complexes Containing M-C, M=C and M≡C Bond ; alkyl and related complexes

13-6 Complexes Containing M-C, M=C and M≡C Bond ; carbene complexes

TABLE 13-6 Fischer- and Schrock	k-type Carbene Complexes	
Characteristic	Fischer-type Carbene Complex	Schrock-type Carbene Complex
Typical metal [oxidation state]	Middle to late transition metal [Fe(0), Mo(0), Cr(0)]	Early transition metal [Ti(IV), Ta(V)]
Substituents attached to Ccarbene	At least one highly electronegative heteroatom (such as O, N, or S)	H or alkyl
Typical other ligands in complex	Good π acceptors	Good σ or π donors
Electron count	18	10-18

그림 13-40 카벤 착물과 알켄의 결합 비교.

d orbital p orbital

13-6 Complexes Containing M-C, M=C and M≡C Bond

; carbene complexes

2-electron donor

Highly electronegative atom can participate in the π bonding \rightarrow stabilize

FIGURE 13-41 Delocalized π Bonding in Carbene Complexes. E designates a highly electronegative heteroatom such as O, N, or S.

Highly electronegative atom can participate in the π bonding \rightarrow stabilize

13-6 Spectral Analysis and Characterization of Organometallic Complexes; IR spectra

X-ray, Mass spectrometry, elemental analysis, conductivity measurement etc.

of bands

Provide clues to the geometry or symmetry

표 13-7 카보닐 신축 진동띠.

3

4

nd Characterization of es; IR spectra

13-6 Spectral Analysis and Characterization of Organometallic Complexes; IR spectra

positions of bands

Provide clues to the electronic environment on the metal The greater the electronic density on the metal $\rightarrow ???$

In general, the more negative the charge on the organometallic species, <u>the greater the tendency</u> <u>of the metal to donate electrons to the π^* orbitals</u> <u>of CO and the lower the energy of the C-O</u> <u>stretching vibrations.</u>

Complex	ν (CO), cm^{-l}
[Ti(CO) ₆] ²⁻	1748
$[V(CO)_6]^-$	1859
Cr(CO) ₆	2000
$[Mn(CO)_6]^+$	2100
$[Fe(CO)_6]^{2+}$	2204

13-6 Spectral Analysis and Characterization of Organometallic Complexes; IR spectra

terminal CO > doubly bridging CO > triply bridging CO

TABLE 13-8 Examples of Carbonyl Stretching Bands: Molybdenum Complexes				
Complex	ν (CO), cm^{-1}			
fac-Mo(CO) ₃ (PF ₃) ₃	2090, 2055			
fac-Mo(CO) ₃ (PCl ₃) ₃	2040, 1991			
fac-Mo(CO) ₃ (PClPh ₂) ₃	1977, 1885			
fac-Mo(CO) ₃ (PMe ₃) ₃	1945, 1854			

SOURCE: F. A. Cotton, Inorg. Chem., 1964, 3, 702.

What do you get from this data?

Other ligands also have similar correlation. (NO...)

13-6 Spectral Analysis and Characterization of Organometallic Complexes; NMR spectra

¹H, ¹³C, ¹⁹F, ³¹P, metal nuclei etc.

Chemical shifts, splitting patterns, coupling constants

¹³C NMR

TABLE 13-9 ¹³ C Chemical S	hifts for C	organome	etallic Con	npounds			
Ligand		¹³ C Chemical Shift (Range)"					
М-СН3	10 - C	-28.9 to 23.5					
M=C		190 to 400					
M=C-	235 to 401						
м-со	177 to 275						
Neutral binary CO	183 to 223						
$M = (\eta^5 - C_5 H_5)$	-790 to 1430						
$Fe(\eta^5-C_5H_5)_2$	69.2						
$M - (\eta^3 - C_3 H_5)$		$\frac{C_2}{91 \text{ to } 129}$				$\frac{C_1 \text{ and } C_3}{46 \text{ to } 79}$	
$M\!-\!C_6H_5$	M-C		ortho		meta		para
	130 to 193		132 to 141		127 to 130		121 to 131

NOTE: a Parts per million (ppm) relative to Si(CH3)4.

Chemical shift

13-6 Spectral Analysis and Characterization of Organometallic Complexes; NMR spectra

¹H NMR

TABLE 13-10 Examples of ¹ H Chemical Shifts for Organometallic Compounds				
Complex	¹ H Chemical Shift ^a			
Mn(CO) ₅ H	-7.5			
W(CH ₃) ₆	1.80			
$Ni(\eta^2 - C_2 H_4)_3$	3.06			
$(\eta^5 - C_5 H_5)_2 Fe$	4.04			
$(\eta^6 - C_6 H_6)_2 Cr$	4.12			
$(\eta^{5}-C_{5}H_{5})_{2}Ta(CH_{3})(=CH_{2})$	10.22			

NOTE: ^a Parts per million relative to Si(CH₃)₄.

integration

13-6 Spectral Analysis and Characterization of Organometallic Complexes; NMR spectra

Exercise 13-1~13-12

Problem 1, 2, 4, 6, 13, 20, 33.