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13. Plasticity

The topic of the present chapter is elastic-plastic materials, and some comments on Finite
element analysis taking elastic-plastic effects into account. The focus is on the nonlinear effect
in the material law, the effects of large deformations and large strains are neglected.

As an introduction we introduce some topics related to nonlinear materials and nonlinear
analysis.

In the textbook [Cook et al., 2002][2] a discussion of plasticity is in Chapter 17.3-17.6. The
book [Lemaitre and Chaboche, 1990][4] is good source for material models. A good exposition
of Finite Element methods for nonlinear structures are [Belytschko et al., 2000][1]. Nonlin-
ear solid mechanics is also discussed in [Holzapfel, 2000][3], ([Simo and Hughes, 1998][6] and
[Malvern, 1969][5]).

[2] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications of Finite Element
Analysis. Number ISBN: 0-471-35605-0. John Wiley & Sons, Inc., 4th edition, October 2002.

[4] J. Lemaitre and J.-L. Chaboche. Mechanics of solid materials. Cambridge university press, 1990.

[1] Ted Belytschko, Wing Kam Liu, and Brian Moran. Nonlinear Finite Elements for Continua and Structures.
John Wiley & Sons, Ltd., 2000.

[3] Herhard A. Holzapfel. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. John Wiley &
Sons, 1st edition, March 2000.

[6] J.C. Simo and T.J.R. Hughes. Computational Inelasticity. Springer-Verlag, New York, 1998.

[5] L. E. Malvern. Introduction to the Mechanics of Continuous Medium. Prentice-Hall, Englewood Cliffs, New
Jersey, 1969.
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13.1. Introduction

A material is nonlinear when the relation between stress, σ, and strains, ε, is expressed using
a strain dependent matrix, C(ε).

In a mathematical model of a material the constitutive relations model the stress as a function
of the deformation history. This is a material specific part of the model, and different materials
have different constitutive relations.

I one dimensional solid mechanics the constitutive equation is the stress-strain model for the
material.

A stress-strain relation approximate the observed physical behavior to a material, subject
to certain assumptions. A phenomenological approach is used. The observed macroscopic
behavior is a result of microscopic interactions in the material. These interactions on the
atomic or molecular level is not modeled, the effect on the macroscopic level is modeled by
fitting macroscopic functions to experimental data.

In the sequel we concentrate on one dimensional models and briefly mention the extension to
three dimensions.
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The choice of the material model is crucial in an analysis, but the choice may not be obvious.
It is up to the user to:

• choose a suitable material law, or

• develop/implement a suitable law (many commercial products allow the user to imple-
ment a user defied material law).

It is important to understand:

• the material model,

• the assumptions used in its derivation,

• is it suitable for the material in the construction,

• is it suitable for the loads and deformations,

• numerical aspects.

The Finite Element program use a set of stresses and strains. If the material data use a
different par of stress and strain the material data must be converted, this is briefly discussed
in subsection 13.2.
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The numerical aspects of the material law are related to

• algorithms for stress updates,

• algorithms for the tangent stiffness matrix. (An exact Jacobi matrix is required to obtain
second oder rate of convergence in Newton’s method.)

13.2. Stress-strain curves

Stress-strain curves for one dimensional stress can be obtain from a tensile test. Constitutive
relations are derived partially based on these curves.
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P

δ

L0 L

δ

P

P

A0 A

In the tensile test the force, P , and the elongation, δ is measured, and the force is plotted as a
function of the elongation. In order to extract meaningful information from the plot, the effect
of the geometry, i.e. (A,L), of the specimen must be removed. How? We have to make some
choices. Use the initial length L0 and area A0, or the current L and A? I.e. which stress and
strain measure to use?

If the change in area and length is small, the tensor for small strains used in linearized elasticity
is used. Otherwise, models incorporating large strains must be used.

In any case, it is important to know the definitions of the stress and strains used in the model.
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One alternative is to define the strech as

λx =
L

L0
=
L0 + δ

L0

where L = L0 + δ. The nominal, or engineering, stress is given by:

τ =
P

A0

where A0 is the initial cross section area. The engineering strains are:

ε = λx − 1 =
δ

L0

Using this we can define the relation between nominal stress and engineering strains.

Example: Assume that the load-displacement relation is modeled using:

P (δ) = 1− (δ − 1)2
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If the deformation is volume preserving, i.e.

AL = A0L0,

the relations between stress and strain measures are summarized in the table below:

Strain Stress

Engineering strain, ε = λx − 1 Nominal stress, σ = P
A0

Logarithmic strain, ε = ln(λx) Cauchy (true) stress, σ = λxP
A0

Green strains, ε = 1
2(λ2

x − 1) 2. Piola-Kirchhoff stress, σ = P
λxA0
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The material law for different stress and strain measures are indicated below:

0.1 0.2 0.3 0.4
ε

0.2

0.4

0.6

0.8

1

1.2

σ Nominell spenning/ingeniortoyning

Cauchy spenning/logaritmisk toyning

2. Piola/Kirchhoff spenning/Green toyning

Note that the material coefficients are different for the different stress-strain relations.
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13.3. One dimensional elasticity

A fundamental property of an elastic material is that the stress level only depend on the current
value. A consequence of this is that loading and unloading follow the same curve and that the
construction returns to its initial configuration after deformation.

Elastic materials has a one-to-one relation between stress and strains.

13.4. One dimensional plasticity

Materials that exhibit permanent deformation after a complete unloading is called plastics
materials. Many materials show a linearly elastic behavior up to a level called the yield limit :

• metals (steel),

• concrete,

• earth

If the material is loaded above the yield limit plastic behavior result, plastic strains.
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Elastic-plastic materials can be divided into two sub groups:

• materials independent of the velocity, or strain rates, and

• materials dependent of the velocity.

A stress-strain curve for a typical elastic-plastic material is shown in the figure below.

σ

σ0

ε

1

E

1

Etan

1

E

Figure 13.1: Stress-strain curve for a typical elastic-plastic material.
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The main steps in developing a model of plasticity are:

1. A decomposition of each increment of strains into an elastic, reversible part, dεe, and an
irreversible plastic part dεp:

dε = dεe + dεp

2. A yield function, f(σ, q), modeling the plastic deformation. q is a set of internal variables.

3. A flow rule governing the plastic flow, i.e. determines the plastic strain increments, dεp.

4. Evolution equations for internal variables, including a stain-hardening model governing
the evolution of the yield function.

Elastic-plastic materials are path-Dependant and dissipative. A major part of the work used to
deform a plastic material is irreversible, i.e. transformed to other forms of energy, in particular
heat. The stress depend on the deformation history and can not be written as a function of
the strain. It is specified as a relation between rates of stresses and strains.

Figure 13.1 show a typical stress-strain curve for elastic-plastic materials, e.g. a metal under
one dimensional stress. Initially the material is (linearly) elastic until the initial yield stress,
denoted σ0, is attained. Then, the elastic deformation is followed by an elastic-plastic de-
formation where permanent, irreversible plastic deformations are induced by further loading.
Reducing the stress is called unloading, and here it is assumed that the response is governed
by the elastic law.
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Above we introduced the decomposition

dε = dεe + dεp

of the strain increments. Division of both sides with respect to a time increment dt, the rate
relation becomes:

ε̇ = ε̇e + ε̇p

The stress increment (rate) is related by the elastic modulus to the increment (rate) of the
elastic strain:

dσ = Edεe, or σ̇ = Eε̇e

In the elastic-plastic, nonlinear, regime the relations are

dσ = Edεe = Etandε, or σ̇ = Eε̇e = Etanε̇

where Etan is the elastic-plastic tangent module, the slope of the stress-strain curve, see Fig-
ure 13.1.

The relations are homogeneous in strains and strain rates, i.e. if time is scaled by an arbitrary
factor, the constitutive relations remains unchanged. Thus the material response are rate
independent. In the sequel the rate form is used.

The plastic strain rate is given by a flow rule, often specified using a flow potential denoted Ψ:

ε̇p = λ̇
∂Ψ
∂σ

where λ̇ is the plastic rate parameter. An example of a potential is:

Ψ = |σ| = σ̄ = σ sign(σ),
∂Ψ
∂σ

= sign(σ)
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σ̄ is the effective stress.

Isotropic flow law: The yield condition is

f = σ̄ − σY (ε̄) (13.1)

where σY is the yield strength in one dimensional tension and ε̄ is the effective plastic strain.
Note that the yield strength depend on the effective plastic strain, this is called hardening.

The history of the plastic deformation is characterized by the effective plastic strain, given by

ε̄ =
∫

˙̄ε dt, ˙̄ε =
√
ε̇pε̇p

ε̄ is an example of an internal variable used to characterize the inelastic deformation.

The yield behavior Equation 13.1 is called isotropic hardening: the yield strength in tension
and compression is equal and given by σY . A typical hardening curve is shown below:
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H

1

σY (ε̄)

ε̄

The slope of the curve is the plastic module, H = dσY
dε̄ .

For this model we have the relation

ε̇p = ˙̄ε sign(σ) = ˙̄ε
∂f

∂σ

Since ˙̄ε = λ̇
∂f

∂σ
=
∂Ψ
∂σ
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This is called an associative plastic model, the plastic flow is in the direction normal to the
yield surface. We do not go into details here, but this is important in multiaxial plasticity.

Plastic deformations occur only when the yield condition f = 0 is met. During plastic loading,
the stress must remain on the yield surface ḟ = 0. Enforcement of this leads to the consistency
condition:

ḟ = ˙̄σ − σ̇Y (ε̄) = 0

which gives

˙̄σ =
dσY (ε̄)
dε̄

˙̄ε = H ˙̄ε, where H =
dσY
dε̄

is the plastic modulus. The relations between stress and strain rates can be found:

σ̇ = Eε̇e = Etanε̇ = Hε̇p

1
Etan

=
1
E

+
1
H

or Etan = E

(
1− E

E +H

)
where we have used that

ε̇e =
σ̇

E
, ε̇ =

σ̇

Etan
, ε̇p =

σ̇

H
and ε̇ = ε̇e + ε̇p.

The loading-unloading conditions can also be written

λ̇ ≥ 0, f ≤ 0, λ̇f = 0

The first states that the plastic rate parameter is non-negative, the second that the stress must
lie on or below the yield surface. The last condition states that the stress is on the yield surface
during plastic loading, λ̇ > 0 and that the rate parameter is zero when the loading is elastic.
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Kinematic and isotropic flow model: In cyclic loading the isotropic flow law is a poor
model for many materials. The figure below show a phenomenon observed in cyclic plasticity
known as the Bauschinger effect.

σ

ε

σy

σ0

2σy

π-rom

σ0

σy
α

Figure 13.2: Combined isotropic-kinematic hardening. The Bauschinger effect is shown to the
left, the translation and expansion of the flow surface is to the right (multiaxial stress).

Note that the yield strength in compression is reduced compared to tension and that the center
of the yield surface is moved in the direction of the plastic flow. The figure Figure 13.2 show
a multiaxial stress state; the expansion of the circular yield surface is related to isotropic
hardening, while the translation is related to kinematic hardening.
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In order to model kinematic hardening a new variable α is introduced, it is called the backstress,
it is introduced both in the yield condition and the plastic flow relation. The plastic flow law
for this model is

ε̇p = λ̇
∂Ψ
∂σ

, Ψ = |σ − α|

and the yield criteria is
f = |σ − α| − σY (ε̄)

Note that
∂Ψ
∂σ

=
∂f

∂σ
= sign(σ − α) and ˙̄ε = λ̇

In addition an equations modeling the evolution of α is required. A simple model is

α̇ = κε̇p

Differentiating the yield criteria:

ḟ = (σ̇ − α̇) sign(σ − α)−H ˙̄ε = 0 thus ˙̄ε =
1
H

(σ̇ − α̇) sign(σ − α)

Furthermore
σ̇ = Eεe = E(ε̇− ε̇p) = E(ε̇− ˙̄ε sign(σ − α))

Subtracting the backstress we obtain

σ̇ − α̇ =
Eε̇

1 + E
H + κ

H
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giving the following formulas for the plastic strain

˙̄ε =
Eε̇ sign(σ − α)
H + E + κ

and the tangent operator

σ̇ = Etanε̇ = E

(
1− E

H + E + κ

)
ε̇

Summary, one dimensional plasticity:

• Strain rate:
ε̇ = ε̇e + ε̇p

• Stress rate:
σ̇ = Eεe = E(ε̇− ε̇p)

• Plastic flow rule:

ε̇p = λ̇
∂Ψ
∂σ

, ˙̄ε = λ̇, σ′ = σ − α, Ψ = |σ′|

• Evolution equation for backstress:
α̇ = κε̇p
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Summary, one dimensional plasticity:

• Yield condition:
f = |σ − α| − σy(ε̄) = 0

• Loading-unloading conditions:

λ̇ ≥ 0, f ≤ 0, λ̇f = 0

• Consistency condition:

ḟ = 0, =⇒ ˙̄ε = λ̇ =
Eε̇ signσ′

E +H + κ

• Tangent modulus:

σ̇ = Etanε̇, Etan = E − β E2

E + (H + κ)

(β = 1 for plastic loading, β = 0 elastic loading or unloading.)

13.5. Multiaxial plasticity, von Mises yield surface

In multiaxial plasticity the one dimensional model is extended. One model is a formulation
called von Mises yield surface, or J2 plasticity (second invariant of the deviatoric stress tensor)
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The main assumption of the model is that the plastic flow of the material is unaffected by
pressure. This was shown experimentally by Bridgman in 1949. The yield condition and and
the plastic flow direction is based on the deviatoriske part of the stress tensor

σdev = σ − 1
3

trace(σ)I

The yield condition is taken to be

f(Σ, q) = σ̄ − σy(ε̄) = 0, Σ = σ −α, Σdev = σdev −α, σ̄ =

√
3
2
Σdev : Σdev
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13.6. Plastisk ledd i en rektangulær bjelke

Figuren under viser en bjelke utsatt for rent moment. Materialkurven viser et materiale som
er elasto-plastisk.
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Material egenskaper Geometri egenskaper Last

E = 30× 106 b = 1 M = 1.0Myp to 1.5Myp

ν = 0.4 h = 2 Myp = 2400

σyp = 36000 Iz = bh3

12 = 0.6667



Department of Mathematics

University of Oslo

Subdomain interior nodes

Subdomain boundary nodes Subdomain boundaries

Mek 4560

Torgeir Rusten

Contents

// ..

/ .

Page 24 of 31

Go Back

Close

Quit

Problem: Vis at bjelken er elastisk opp til M = Myp = σyp
h2

6 og blir helt plastisk n̊ar
M = Mult = 1.5Myp.

Løsning:

/VERIFY,VM24

/PREP7

/TITLE, VM24, PLASTIC HINGE IN A RECTANGULAR BEAM

C*** STR. OF MATLS., TIMOSHENKO, PART 2, 3RD ED., PG. 349, ART. 64

C*** USING BILINEAR KINEMATIC HARDENING PLASTICITY BEHAVIOR TO DESCRIBE

C*** THE MATERIAL NONLINEARITY

ANTYPE,STATIC

ET,1,BEAM23

R,1,2,(2/3),2 ! AREA = 2, IZZ = 2/3, H = 2

MP,EX,1,30E6

MP,NUXY,1,0.3

TB,BKIN,1,1 ! BILINEAR KINEMATIC HARDENING

TBTEMP,70

TBDATA,1,36000,0 ! YIELD POINT AND ZERO TANGENT MODULUS

N,1 ! DEFINE NODES

N,2,10

E,1,2 ! DEFINE ELEMENT

D,1,ALL ! BOUNDARY CONDITIONS AND LOADS

SAVE ! SAVE DATABASE

FINISH

/SOLU

SOLCONTROL,0

NEQIT,5 ! MAXIMUM 5 EQUILIBRIUM ITERATIONS PER STEP

NCNV,0 ! DO NOT TERMINATE THE ANALYSIS IF THE SOLUTION FAILS

! TO CONVERGE

OUTRES,EPPL,1 ! STORE PLASTIC STRAINS FOR EVERY SUBSTEP

CNVTOL,U ! CONVERGENCE CRITERION BASED UPON DISPLACEMENTS AND

CNVTOL,ROT ! ROTATIONS
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*DO,I,1,4

F,2,MZ,(20000+(I*4000)) ! APPLY MOMENT LOAD

SOLVE

*ENDDO

FINISH

/POST26

NSOL,2,2,U,Y,UY2 ! NODE 2 DISPLACEMENT

ESOL,3,1,,LEPPL,1,EPPLAXL ! AXIAL PLASTIC STRAIN

PRVAR,2,3

FINISH

/CLEAR, NOSTART ! CLEAR PREVIOUS DATABASE BEFORE STARTING PART2

/PREP7

C*** USING BILINEAR ISOTROPIC HARDENING PLASTICITY BEHAVIOR TO DESCRIBE

C*** THE MATERIAL NONLINEARITY

RESUME

TBDELE,BKIN,1 ! DELETE NONLINEAR MATERIAL TABLE BKIN

TB,BISO,1,1 ! BILINEAR ISOTROPIC HARDENING

TBTEMP,70

TBDATA,1,36000,0 ! YIELD POINT AND ZERO TANGENT MODULUS

FINISH

/SOLU

SOLCONTROL,0

NEQIT,5 ! MAXIMUM 5 EQUILIBRIUM ITERATIONS PER STEP

NCNV,0 ! DO NOT TERMINATE THE ANALYSIS IF THE SOLUTION FAILS

! TO CONVERGE

OUTRES,EPPL,1 ! STORE PLASTIC STRAINS FOR EVERY SUBSTEP

CNVTOL,U ! CONVERGENCE CRITERION BASED UPON DISPLACEMENTS AND

CNVTOL,ROT ! ROTATIONS

*DO,I,1,4

F,2,MZ,(20000+(I*4000)) ! APPLY MOMENT LOAD

SOLVE

*ENDDO

FINISH

/POST26

NSOL,2,2,U,Y,UY2 ! NODE 2 DISPLACEMENT

ESOL,3,1,,LEPPL,1,EPPLAXL ! AXIAL PLASTIC STRAIN

PRVAR,2,3
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/OUT,VM24,VRT

/OUT

FINISH

*LIST,VM24,VRT

Svar/kommentarer: Vi ser at bjelken kollapser ved M = 1.5Myp. Den vil ogs̊a gjøre det
for verdier som er litt lavere enn M = 1.5Myp. Det er fordi at spenningene evalueres i diskret
punkter (integrasjonspunkter) over bjelkens tverrsnitt.
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