Chapter 13: Rotation of a Rigid Body

The rigid body model:

Practitioners of other sciences often poke fun at physicists who stereotypically start off a class by asking you to "Consider a spherical cow..." In fact, this is the "particle model", which has actually served us quite well...until now.

In the particle model, the structure (distribution of matter) makes no difference to the analysis. However, for rotating objects, the distribution of matter is key.
This chapter introduces the "rigid body model", in which all parts of an object rotate with the same angular velocity (a.k.a. angular frequency), ω.

Chapter 13: Rotation of a Rigid Body

In rigid body dynamics we have two types of motion: translational and rotational, plus a third which is a combination of the two.

Translational motion:
The object as a whole moves along a trajectory but does not rotate.

Rotational motion:
The object rotates about a fixed point. Every point on the object moves in a circle.

Combination motion:
An object rotates as it moves along a trajectory.

So far, we have only considered translational motion. This chapter shows us how to include rotation into the dynamics.

Chapter 13: Rotation of a Rigid Body

Rotational kinematics; a reminder:

In Chapter 7, we introduced the rotational analogues of displacement $(x: \theta)$, velocity $(v: \omega)$, and acceleration ($a: \alpha)$

TABLE 13.1 Rotational and linear kinematics for constant acceleration

Rotational kinematics

$$
\begin{aligned}
& \omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\alpha \Delta \mathrm{t} \\
& \theta_{\mathrm{f}}=\theta_{\mathrm{i}}+\omega \Delta t+\frac{1}{2} \alpha(\Delta t)^{2} \\
& \omega_{\mathrm{f}}^{2}=\omega_{1}^{2}+2 \alpha \Delta \theta
\end{aligned}
$$

$$
\begin{aligned}
& v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t \\
& x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{i}} \Delta t-\frac{1}{2} a(\Delta t)^{2} \\
& v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a \Delta x
\end{aligned}
$$

$v=\omega r, a_{\mathrm{r}}=\omega^{2} r$, and $a_{\mathrm{t}}=\alpha r$, where r is the instantaneous radius of curvature (= radius of circle for circular motion).

Chapter 13: Rotation of a Rigid Body

Clicker question 13.1

Two ladybugs sit on a rotating disc without slipping. Ladybug 1 is half way between the rotation axis and ladybug 2. The angular speed, ω, of ladybug 1 is:
a) half that of ladybug 2 ;

b) the same as ladybug 2;
c) twice that of ladybug 2 ;
d) impossible to determine from the information given.

Chapter 13: Rotation of a Rigid Body

Clicker question 13.1

Two ladybugs sit on a rotating disc without slipping. Ladybug 1 is half way between the rotation axis and ladybug 2. The angular speed, ω, of ladybug 1 is:
a) half that of ladybug 2;
b) the same as ladybug 2;
c) twice that of ladybug 2;
d) impossible to determine from the

Rigid body rotation speed,

Chapter 13: Rotation of a Rigid Body

Clicker question 13.2

Two ladybugs sit on a rotating disc without slipping. Ladybug 1 is half way between the rotation axis and ladybug 2. The linear speed, v, of ladybug 1 is:
a) half that of ladybug 2 ;

b) the same as ladybug 2;
c) twice that of ladybug 2 ;
d) impossible to determine from the information given.

Chapter 13: Rotation of a Rigid Body

Clicker question 13.2

Two ladybugs sit on a rotating disc without slipping. Ladybug 1 is half way between the rotation axis and ladybug 2. The linear speed, v, of ladybug 1 is:
a) half that of ladybug 2 ;

b) the same as ladybug 2;
c) twice that of ladybug 2;
d) impossible to determine from the information given.

Chapter 13: Rotation of a Rigid Body

Sign convention for rotational kinematical quantities:

counterclockwise (ccw): + clockwise (cw): α has same sign as ω if ω is increasing
α has opposite sign as ω if ω is decreasing.

Slowing down cw

Chapter 13: Rotation of a Rigid Body

Example: a review problem

A small dot is painted on the edge of a magnetic computer disk with radius 4.0 cm . Starting from rest, the disk accelerates at $600 \mathrm{rad} \mathrm{s}^{-2}$ for 0.5 s , then coasts at a steady angular velocity for another 0.5 s .
a) What is the speed of the dot at $t=1.0 \mathrm{~s}$?

$$
\begin{aligned}
& \omega=\omega_{0}+\alpha t \text { until } t=0.5, \text { then } \omega \text { stays constant. } \\
& \Rightarrow \omega=0+600(0.5)=300 \mathrm{rad} \mathrm{~s}^{-1} \\
& \quad v=\omega r=(300)(0.040)=12 \mathrm{~ms}^{-1}
\end{aligned}
$$

b) Through how many revolutions does the dot turn?

For the first $0.5 \mathrm{~s}: \Delta \theta_{1}=\omega_{0} t+1 / 2 \alpha t^{2}=(600)(0.5)^{2} / 2=75 \mathrm{rad}$
For the next $0.5 \mathrm{~s}: \Delta \theta_{2}=\omega t=(300)(0.5)=150 \mathrm{rad}$
Total angular displacement: $\Delta \theta=\Delta \theta_{1}+\Delta \theta_{2}=225 \mathrm{rad}=35.6$ revolutions

Chapter 13: Rotation of a Rigid Body

Definition (HRW*): The centre of mass of an object or of a system of objects is that point which moves as though all mass were concentrated there and all forces were applied there.
e.g., As a hammer tossed through the air spins handle over head, only the centre of mass follows the parabolic trajectory (red path) that a particle of the same mass would follow under the same forces (in this case gravity). The trajectory of the handle (blue path) is rather more complicated.

Chapter 13: Rotation of a Rigid Body

Knight's (less precise) definition: An unconstrained object (i.e., one not on an axle or a pivot) on which there is no net force rotates about a point called the centre of mass.

this point, which is the center of mass.

Locating the centre of mass for discrete particles...
$\left.x_{\mathrm{cm}}=\frac{1}{M} \sum_{i} m_{i} x_{i}\right)=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\cdots}{m_{1}+m_{2}+m_{3}+\cdots}$
$y_{\mathrm{cm}}=\frac{1}{M} \sum_{i} m_{i} y_{i}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+\cdots}{m_{1}+m_{2}+m_{3}+\cdots}$
and a similar expression for a z-component.

Chapter 13: Rotation of a Rigid Body

Example: Find the centre of mass for the system of the 5 objects shown.

The centre of mass is the position vector: $\overrightarrow{\boldsymbol{r}}_{\mathrm{cm}}=\left(\boldsymbol{x}_{\mathrm{cm}}, \boldsymbol{y}_{\mathrm{cm}}\right)$, where

$$
\begin{aligned}
& x_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{N} x_{i} m_{i} ; \quad y_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{N} y_{i} m_{i} \\
& M=m_{1}+m_{2}+m_{3}+m_{4}+m_{5}=10 \mathrm{~kg} \\
& \sum_{i=1}^{5} x_{i} m_{i}=(-3)(1)+(1)(3)+(3)(3)+(1)(1)+(-2)(2)=6 \\
& \sum_{i=1}^{5} y_{i} m_{i}=(2)(1)+(1)(3)+(-3)(3)+(-4)(1)+(-2)(2)=-12 \\
& \Rightarrow r_{\mathrm{cm}}=(0.6,-1.2)
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

Clicker question 13.3

Where is the centre of mass for the system of three masses shown?

$$
\text { centre of mass formula: } x_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{N} x_{i} \boldsymbol{m}_{\boldsymbol{i}}
$$

a) $x_{\mathrm{cm}}=-1 \mathrm{~m}$
b) $x_{\mathrm{cm}}=0 \mathrm{~m}$
c) $x_{\mathrm{cm}}=1 \mathrm{~m}$
d) $x_{\mathrm{cm}}=2 \mathrm{~m}$
e) $\boldsymbol{x}_{\mathrm{cm}}=3 \mathrm{~m}$
f) $x_{\mathrm{cm}}=3.5 \mathrm{~m}$

Chapter 13: Rotation of a Rigid Body

Clicker question 13.3

Where is the centre of mass for the system of three masses shown?

$$
x_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{3} x_{i} m_{i}=\frac{1}{6}((-1)(1)+(0)(3)+(3.5)(2))=1 \mathrm{~m}
$$

$$
\begin{array}{lll}
\begin{array}{ll}
\text { a) } x_{\mathrm{cm}}=-1 \mathrm{~m} & \text { b) } x_{\mathrm{cm}}=0 \mathrm{~m} \\
\text { d) } x_{\mathrm{cm}}=2 \mathrm{~m} & \text { e) } x_{\mathrm{cm}}=1 \mathrm{~m} \\
\hline
\end{array} & \text { f) } x_{\mathrm{cm}}=3.5 \mathrm{~m}
\end{array}
$$

Chapter 13: Rotation of a Rigid Body

Locating the centre of mass for an "extended object"...

Imagine the extended object of mass \boldsymbol{M} broken up into \boldsymbol{N} smaller pieces each of mass Δm, and apply the sum formulae of the previous slide:

$$
x_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{N} x_{i} \Delta m ; \quad y_{\mathrm{cm}}=\frac{1}{M} \sum_{i=1}^{N} y_{i} \Delta m
$$

Then, take $\boldsymbol{N} \rightarrow \infty$, and the sums become integrals:

$$
x_{\mathrm{cm}}=\frac{1}{M} \int x d m \quad \text { and } y_{\mathrm{cm}}=\frac{1}{M} \int y d m
$$

To evaluate these integrals, one must know how the mass is distributed in space, i.e., $m(x, y, z)$.
SMU PHYS 1100, fall 2008, Prof. Clarke

Chapter 13: Rotation of a Rigid Body

However, for our purposes, we almost never have to do these integrals!
For uniform symmetric objects (e.g., sphere, cylinder, cube, rod, etc.), the centre of mass is at the object's geometric centre.

Centre of gravity: If you could balance an object by its centre of gravity, it would remain in place without any other means of support. For objects with uniform density, the centres of mass and gravity are the same point. For a non-uniform object, these two points are, in fact, different.

Chapter 13: Rotation of a Rigid Body

example: Find the centre of mass of the system below consisting of two uniform boxes.

Using box dimensions as x, y, z coordinates:
Strategy: Replace each symmetric object with a point mass at its centre of mass.

$$
\begin{aligned}
& \vec{r}_{\mathrm{cm}, 1}=(30,20,15) ; \vec{r}_{\mathrm{cm}, 2}=(75,12,10) \\
\Rightarrow & \vec{r}_{\mathrm{cm}}=\frac{m_{1} \vec{r}_{\mathrm{cm}, 1}+m_{2} \vec{r}_{\mathrm{cm}, 2}}{m_{1}+m_{2}}=\frac{1}{8}(5(30,20,15)+3(75,12,10))=(46.9,17,13.1)
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

13.3 Torques In addition to translational acceleration, a

 force can cause angular acceleration. The ability of a force to cause something to rotate is called a torque (τ).Torque is a vector quantity that depends upon:

1. the magnitude of the applied force, \vec{F}
2. The distance, r, connecting the point about which the object rotates (the "pivot point") and where \vec{F} is applied, and
3. The angle between \vec{r} and \vec{F}.

> The ability of a force to open a door (and thus to rotate) depends not only on the magnitude of the force, but also where and in what direction the force is applied.

Chapter 13: Rotation of a Rigid Body

Provisional mathematical definition of torque:

$$
\tau=r F \sin \phi
$$

Units of τ : Nm. Formally, this is a Joule (J). However, since torque has nothing to do with energy, we always use Nm as the units for torque, never J.

Why provisional? We'll "upgrade" to the "proper" definition of a torque (involving "cross products") by the end of the chapter.

Sign convention:

$\tau>0$ when F tends to rotate object counter-clockwise (ccw) about pivot. $\tau<0$ when F tends to rotate object clockwise (cw) about pivot.
Note: Torques depend very much on the location of the pivot!

Chapter 13: Rotation of a Rigid Body

Clicker question 13.4

Six forces, $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}, \vec{C}, \overrightarrow{\boldsymbol{D}}, \overrightarrow{\boldsymbol{E}}$, and $\overrightarrow{\boldsymbol{F}}$, each with equal magnitude, are applied to a rigid body confined to rotate about the pivot point shown. Which forces produce the torques with the greatest magnitude?
a) All torques have the same magnitude because all forces have the same magnitude.
b) \vec{A} and \vec{D}
c) \vec{C} and \vec{E}
d) \vec{B} and \vec{F}

Chapter 13: Rotation of a Rigid Body

Clicker question 13.4

Six forces, $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}, \vec{C}, \overrightarrow{\boldsymbol{D}}, \overrightarrow{\boldsymbol{E}}$, and $\overrightarrow{\boldsymbol{F}}$, each with equal magnitude, are applied to a rigid body confined to rotate about the pivot point shown. Which forces produce the torques with the greatest magnitude?
a) All torques have the same magnitude because all forces have the same magnitude.
b) \vec{A} and \widehat{V}
c) \vec{C} and \vec{E}
d) \vec{B} and \vec{F}

Chapter 13: Rotation of a Rigid Body

Clicker question 13.5

Six forces, $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}, \vec{C}, \overrightarrow{\boldsymbol{D}}, \overrightarrow{\boldsymbol{E}}$, and $\overrightarrow{\boldsymbol{F}}$, each with equal magnitude, are applied to a rigid body confined to rotate about the pivot point shown. Which forces produce no torque?
a) All forces produce torque since all forces have a nonzero magnitude.
b) \vec{A} and \vec{D}
c) \vec{C} and \vec{E}
d) \vec{B} and \vec{F}

Chapter 13: Rotation of a Rigid Body

Clicker question 13.5

Six forces, $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}, \vec{C}, \overrightarrow{\boldsymbol{D}}, \overrightarrow{\boldsymbol{E}}$, and $\overrightarrow{\boldsymbol{F}}$, each with equal magnitude, are applied to a rigid body confined to rotate about the pivot point shown. Which forces produce no torque?
a) All forces produce torque since all forces have a nonzero magnitude.
b) \vec{A} and \vec{D}
c) \vec{C} and \vec{E}
d) \vec{B} and \vec{f}

Chapter 13: Rotation of a Rigid Body

Clicker question 13.6

Six forces, $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}, \vec{C}, \overrightarrow{\boldsymbol{D}}, \overrightarrow{\boldsymbol{E}}$, and $\overrightarrow{\boldsymbol{F}}$, each with equal magnitude, are applied to a rigid body confined to rotate about the pivot point shown. For which forces is $\tau>0$?
a) $\vec{B}, \vec{C}, \vec{E}$, and \vec{F}.
b) \vec{B} and \vec{C}
c) $\overrightarrow{\boldsymbol{E}}$ and $\overrightarrow{\boldsymbol{F}}$
d) $\vec{A}, \vec{B}, \vec{C}$, and \vec{D}
e) $\overrightarrow{\boldsymbol{B}}$ only

Chapter 13: Rotation of a Rigid Body

Clicker question 13.6

Six forces, $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}, \vec{C}, \overrightarrow{\boldsymbol{D}}, \overrightarrow{\boldsymbol{E}}$, and $\overrightarrow{\boldsymbol{F}}$, each with equal magnitude, are applied to a rigid body confined to rotate about the pivot point shown. For which forces is $\tau>0$?

a) $\vec{B}, \vec{C}, \vec{E}$, and $\overrightarrow{\boldsymbol{F}}$.

b) \vec{B} and \vec{C}
c) \vec{E} and \vec{F}
d) $\vec{A}, \vec{B}, \vec{C}$, and \vec{D}
e) \vec{B} only

Chapter 13: Rotation of a Rigid Body

Two ways to think about torque...

$$
\text { 1. } \tau=r(F \sin \phi)=r F_{\mathrm{t}}
$$

$\boldsymbol{F}_{\mathrm{t}}$ is the tangential component of the force. Only the tangential component is responsible for torque; the radial component does not cause rotation.
2. $\tau=F(r \sin \phi)=F d$
$\boldsymbol{d}=\boldsymbol{r} \sin \boldsymbol{\phi}$ is the moment arm (lever arm). \boldsymbol{d} is the shortest distance from the pivot point to the "line of force".

Chapter 13: Rotation of a Rigid Body

The role of an axle: So long as it doesn't break, an axle will exert just the right force so that the net force on the object is zero, and the object doesn't accelerate away from the axle.

But what torque does the axle force generate?

None! It's moment arm is zero!
Thus, only the applied forces generate torque.
The net torque need not be zero even if the net force is.

$$
\tau_{\text {net }}=\tau_{1}+\tau_{2}+\tau_{3}+\ldots=\sum_{i=1}^{N} \tau_{i}
$$

Chapter 13: Rotation of a Rigid Body

Torque caused by gravity

Consider a rigid body to be a collection of N tiny particles (all joined together), each with mass $m_{i} i=1, N$ (N very big).

Moment arm of each torque is x_{i}, x direction perpendicular to the force).

Thus, the net gravitational torque is:

$$
\tau_{\mathrm{grav}}=\sum_{i=1}^{N} \tau_{i}=\sum_{i=1}^{N}\left(-m_{i} g x_{i}\right)
$$

Chapter 13: Rotation of a Rigid Body

Torque caused by gravity

Consider a rigid body to be a collection of N tiny particles (all joined together), each with mass $m_{i} i=1, N(N$ very big).

Moment arm of each torque is x_{i}, x direction perpendicular to the force). Thus, the net gravitational torque is:

$$
\begin{aligned}
& \tau_{\mathrm{grav}}=\sum_{i=1}^{N} \tau_{i}=\sum_{i=1}^{N}\left(-m_{i} g x_{i}\right)=-\operatorname{Ag} \underbrace{\frac{1}{M} \sum_{i=1}^{\infty} m_{i} x_{i}}_{x_{\mathrm{cm}}} \\
& \Rightarrow \tau_{\mathrm{grav}}=-M g x_{\mathrm{cm}}
\end{aligned}
$$

Gravity exert a negative torque on particle?

The net torque due to gravity acts as if all the mass is concentrated at the center of mass.

Chapter 13: Rotation of a Rigid Body

Newton's $2^{\text {nd }}$ Law for rotation

A rocket of mass \boldsymbol{m} (point particle) is attached to a rod on a pivot.
Tension in the rod counteracts the radial component of the thrust, leaving only the tangential component to cause an acceleration. In Chapter 7, we saw that a tangential force gives rise to an angular acceleration:

$$
\begin{gathered}
F_{\mathrm{t}}=m a_{\mathrm{t}}=m r \alpha \\
\Rightarrow r F_{\mathrm{t}}=\tau=m r^{2} \alpha
\end{gathered}
$$

Thus, for a point mass, torque causes angular acceleration, just as force causes linear acceleration.

We now extend this idea to extended (rigid) bodies...

Chapter 13: Rotation of a Rigid Body

Newton's $2^{\text {nd }}$ Law for rotation, continued

For an "extended" object, we do as before: Suppose the object is made up of N (very large) point masses of mass $m_{i}, i=1, N$, and add up all the particle torques to get the net object torque:

$$
\tau_{\text {net }}=\sum_{i=1}^{N} \tau_{i}=\sum_{i=1}^{N}\left(m_{i} r_{i}^{2} \alpha\right)=\underbrace{\left(\sum_{i=1}^{N} m_{i} r_{i}^{2}\right)}_{I} \alpha
$$

$I=$ moment of inertia about the rotation axis.
Thus, for rigid bodies, we have Newton's $2^{\text {nd }}$ Law for rotation:

Why a "rigid body"? We need α to be the same at all points! Without a rigid body, α couldn't have been "factored out" above, and the form of Newton's $2^{\text {nd }}$ Law would have been much more complicated.

Chapter 13: Rotation of a Rigid Body

The moment of inertia is to angular acceleration what mass (inertia) is to linear acceleration. Mass is the property of an object that resists linear acceleration from a force. The moment if inertia is the property of an object that resists angular acceleration from a torque.

Unlike $\boldsymbol{m}, \boldsymbol{I}$ isn't unique for each object: It depends on:

- the mass of the object
- distribution of mass
- location of rotation axis
moment of inertia (black tubes) demo

Chapter 13: Rotation of a Rigid Body

Calculating moment of inertia:
For a single point mass: $\boldsymbol{I}=\boldsymbol{m} \boldsymbol{r}^{\mathbf{2}} \quad$ (units: $\mathrm{kg} \mathrm{m}^{2}$)
For N point masses: $\quad I=\sum_{i=1}^{N} m_{i} r_{i}{ }^{2}$
For an extended object: $\quad I=\lim _{\Delta m_{i} \rightarrow 0} \sum_{i=1}^{N} \Delta m_{i} r_{i}{ }^{2}=\int r^{2} d m$

Chapter 13: Rotation of a Rigid Body

Clicker question 13.7

You swing a rock of mass 0.25 kg on the end of a rope of length 2.0 m about your head at angular speed $3 \mathrm{rad} \mathrm{s}^{-1}$. What is moment of inertia of the rock?
a) $0.75 \mathrm{~kg} \mathrm{~m}^{2}$
b) $1.00 \mathrm{~kg} \mathrm{~m}^{2}$
c) $1.50 \mathrm{~kg} \mathrm{~m}^{2}$
d) $6.00 \mathrm{~kg} \mathrm{~m}^{2}$

Chapter 13: Rotation of a Rigid Body

Clicker question 13.7

You swing a rock of mass 0.25 kg on the end of a rope of length 2.0 m about your head at angular speed $3 \mathrm{rad} \mathrm{s}^{-1}$. What is moment of inertia of the rock?
a) $0.75 \mathrm{~kg} \mathrm{~m}^{2}$
b) $1.00 \mathrm{~kg} \mathrm{~m}^{2}$
c) $1.50 \mathrm{~kg} \mathrm{~m}^{2}$
d) $6.00 \mathrm{~kg} \mathrm{~m}^{2}$

$$
\boldsymbol{I}=\boldsymbol{m} \boldsymbol{r}^{2}=(0.25)(2.0)^{2}=1.00 \mathrm{~kg} \mathrm{~m}^{2}
$$

Note that the angular speed was completely irrelevant.

Chapter 13: Rotation of a Rigid Body

Clicker question 13.8

The mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$, and its distance from the sun is $1.5 \times 10^{11} \mathrm{~m}$. What is the moment of inertia of the earth as it orbits about the sun?
a) $9.0 \times 10^{35} \mathrm{~kg} \mathrm{~m}^{2}$
b) $9.0 \times 10^{47} \mathrm{~kg} \mathrm{~m}^{2}$
c) $1.35 \times 10^{35} \mathrm{~kg} \mathrm{~m}^{2}$
d) $1.35 \times 10^{47} \mathrm{~kg} \mathrm{~m}^{2}$

Chapter 13: Rotation of a Rigid Body

Clicker question 13.8

The mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$, and its distance from the sun is $1.5 \times 10^{11} \mathrm{~m}$. What is the moment of inertia of the earth as it orbits about the sun?
a) $9.0 \times 10^{35} \mathrm{~kg} \mathrm{~m}{ }^{2}$
b) $9.0 \times 10^{47} \mathrm{~kg} \mathrm{~m}{ }^{2}$
C) $1.35 \times 10^{35} \mathrm{~kg} \mathrm{~m}{ }^{2}$
d) $1.35 \times 10^{47} \mathrm{~kg} \mathrm{~m}^{2}$

$$
I=m r^{2}
$$

Dealing with big numbers in your head:
Deal with the mantissas first: You know 1.5^{2} is about 2 , and $2 \times 6=12 \Rightarrow$ a) and b) are eliminated.

Next add the exponents: 24 from m, 11 twice from $r \Rightarrow 24+11+11=46$
$12 \times 10^{46} \sim 1.2 \times 10^{47} \Rightarrow$ d)

Chapter 13: Rotation of a Rigid Body

example: compute I for a thin rod spinning about one end.

$$
I=\int_{0}^{L} x^{2} d m
$$

We cannot proceed until we know either \boldsymbol{x} in terms of \boldsymbol{m}, or \boldsymbol{m} in terms of \boldsymbol{x}.

Problems like this typically go as follows:
The mass per unit length of the entire rod is: $\frac{m}{L}$
The mass per unit length of the mass increment is: $\frac{d m}{d x}$
For a uniform rod, these must be the same! Thus, $d m=\frac{m}{L} d x$, and we get:

$$
I=\frac{m}{L} \int_{0}^{L} x^{2} d x=\left.\frac{m}{L} \frac{x^{3}}{3}\right|_{0} ^{L}=\frac{m}{L}\left(\frac{L^{3}}{3}-0\right)=\frac{m L^{2}}{3} \text { check units! } \mathrm{kg} \mathrm{~m}{ }^{2}
$$

Chapter 13: Rotation of a Rigid Body

Table 13, 3 Moments of inertia of objects with uniform density
Object,
and axis
Thin rod,

Chapter 13: Rotation of a Rigid Body

The parallel axis theorem (see page 386 for a "sorta proof"):

Let $\boldsymbol{I}_{\mathrm{cm}}$ be the moment of inertia of a mass \boldsymbol{M} about an axis that passes through the centre of mass.

Let I be the moment of inertia about an axis parallel to and at a distance d away from the first axis.
\Rightarrow the two moments are related by:

$$
I=I_{\mathrm{cm}}+M d^{2}
$$

This is the parallel axis theorem.
For it to apply, the "reference"

moment of inertia must be about
the centre of mass, and the two axes must be parallel!!

Chapter 13: Rotation of a Rigid Body

example: Compute the moment of inertia of a thin rod of mass \boldsymbol{M} and length \boldsymbol{L} about an axis through its centre of mass, using the fact that the moment of inertia about its end is:

$$
I=\frac{1}{3} M L^{2}
$$

$$
\Rightarrow I_{\mathrm{cm}}=I-M\left(\frac{L}{2}\right)^{2}=\frac{M L^{2}}{3}-\frac{M L^{2}}{4}=\frac{M L^{2}}{12}
$$

Here, $\boldsymbol{d}=\boldsymbol{L} / 2$.

$$
\begin{aligned}
& \text { exercise: Try } \\
& \text { computing } I_{\mathrm{cm}} \\
& \text { directly from } \\
& \qquad I=\int_{0}^{L} x^{2} d m \\
& \hline
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

example: A " T " is made up of two identical thin rods, as shown, each of mass \boldsymbol{M} and length \boldsymbol{L}. What is the moment of inertia of the "T" about an axis at its base parallel to its top?

Break the "T" up into its vertical and horizontal parts:

$$
I=I_{\mathrm{v}}+I_{\mathrm{h}}
$$

We've already done the vertical bit:

$$
I_{v}=\frac{1}{3} M L^{2}
$$

Since each bit of the horizontal rod is the same distance from the rotation axis, we can treat it like a point mass, in which case:

$$
\begin{gathered}
I_{\mathrm{h}}=M L^{2} \\
\Rightarrow I=\frac{1}{3} M L^{2}+M L^{2}=\frac{4}{3} M L^{2}
\end{gathered}
$$

Chapter 13: Rotation of a Rigid Body

Clicker question 13.9

Three objects, each of mass m, rotate about a common axis at the same distance d from the axis. Ignoring the radii of the sphere and rod and the thickness of the hoop, which has the greatest moment of inertia about the axis?

$\begin{array}{lll}\text { a) the sphere } & \text { b) the rod } \\ \text { d) they all have the same moment of inertia }\end{array}$

Chapter 13: Rotation of a Rigid Body

Clicker question 13.9

Three objects, each of mass m, rotate about a common axis at the same distance d from the axis. Ignoring the radii of the sphere and rod and the thickness of the hoop, which has the greatest moment of inertia about the axis?

c) the hoop
a) the sphere b) the rod
d) they all have the same moment of inertia

Chapter 13: Rotation of a Rigid Body

13.5 Rotation about a fixed axis

Problem solving strategy (page 387)

1. Model object as a simple shape
2. Visualise: draw a pictorial representation, FBD, etc.

- set a coordinate system
- identify a rotation axis
- identify forces and their distances from the rotation axis
- identify torques and their signs

3. Solve: mathematical representation ($\tau_{\text {net }}=I \boldsymbol{\alpha}$)

- look up I and/ or use parallel axis theorem
- use rotational kinematics to find ω and / or $\Delta \boldsymbol{\theta}$

Chapter 13: Rotation of a Rigid Body

example: A wheel of mass $M=5.0 \mathrm{~kg}$ and radius $r=0.050 \mathrm{~m}$ has an axis of rotation located $d=r / 2$ from the centre. A vertical tension $T=100 \mathrm{~N}$ is exerted at the rim of the wheel, as shown. A pin holding the wheel in place is removed at $t=0$. Find α the instant after the pin is removed.

Model the wheel as a uniform disc. Gravity exerts a torque because the axis is off-centre.

Visualise: Diagram shows the forces, distances from axis, etc.
Solve: $d=\frac{r}{2}=$ magnitude of both \vec{r}_{T} and \vec{r}_{g}

$$
\Rightarrow \quad \tau_{g}=M g d=\frac{1}{2} M g r \quad \tau_{T}=T d=\frac{1}{2} \operatorname{Tr}
$$

both torques act ccw \Rightarrow both are positive.

$$
\begin{gathered}
I=\frac{1}{2} M r^{2}+M d^{2}=\frac{1}{2} M r^{2}+\frac{1}{4} M r^{2}=\frac{3}{4} M r^{2} \\
\tau_{\text {net }}=\tau_{g}+\tau_{T}=3.725 \mathrm{Nm}_{\mathrm{N}}=I=9.375 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} \\
\Rightarrow \alpha=\frac{\tau_{\text {net }}}{I}=397 \mathrm{rad} \mathrm{~s}
\end{gathered}
$$

Chapter 13: Rotation of a Rigid Body

Ropes, pulleys, and gears...

Consider a rotating object connected to another (possibly rotating) object:

- in direct contact, such as gears;
- via ropes, belts, etc.

So long as touching objects move without slipping, then
gears: Points in contact must have the same tangential speed \& acceleration;
rope on a pulley: Rope's linear speed and acceleration must equal the tangential speed and acceleration at rim of pulley.

Rim speed $=|\omega| R$.
Rim acceleration $=|\alpha| R$.

The motion of the object must match the motion of the rim.

Chapter 13: Rotation of a Rigid Body

example: A mass $m=1.0 \mathrm{~kg}$ hangs on a massless string wrapped around a cylinder of mass $M=2.0 \mathrm{~kg}$, radius $R=2.0 \mathrm{~cm}$. The cylinder rotates without friction on a horizontal axis through its axis of symmetry.

What is the acceleration of \boldsymbol{m} ?
Model: point mass for \boldsymbol{m}, rigid body for \boldsymbol{M}, no-slip condition for rope. Thus, $a=\alpha \boldsymbol{R}$.

Visualise : For \boldsymbol{M}, the normal force exerted by the axle, \boldsymbol{n}, exactly balances $\boldsymbol{M g}+\boldsymbol{T}$, and \boldsymbol{M} has no linear acceleration.

Chapter 13: Rotation of a Rigid Body

example, continued...

$$
\text { from previous slide: } a=\alpha R
$$

Visualise: \boldsymbol{n} and $\boldsymbol{M g}$ act through the pivot, and generate no torque. \boldsymbol{T} acts tangentially to the rim and generates the torque:

$$
\tau=\boldsymbol{R} \boldsymbol{T}\left(\sin 90^{\circ}\right)=\boldsymbol{R} \boldsymbol{T} \quad(\text { ccw } \Rightarrow \text { positive }) .
$$

Solve: Newton's $2^{\text {nd }}$ Law for rotation (\boldsymbol{M}):

$$
\begin{equation*}
\tau=I \alpha \Rightarrow R T=\frac{1}{2} M R^{2} \frac{a}{R} \Rightarrow T=\frac{1}{2} M a \tag{1}
\end{equation*}
$$

Newton's $2^{\text {nd }}$ Law for \boldsymbol{m} :

$$
\begin{equation*}
T-m g=-m a \Rightarrow T=m g-m a \tag{2}
\end{equation*}
$$

Compare (1) and (2) $\Rightarrow \frac{1}{2} M \boldsymbol{a}+\boldsymbol{m a}=\boldsymbol{m} \boldsymbol{g}$

$$
\Rightarrow a=\frac{m g}{\frac{1}{2} M+m}=\frac{g}{2}=4.9 \mathrm{~ms}^{-2}
$$

Chapter 13: Rotation of a Rigid Body

13.6 Rigid-body equilibrium

In engineering design, the concept of equilibrium is critical. For a bridge not to be in equilibrium is to invite disaster!

A rigid body is in equilibrium (i.e., won't move!) if

$$
\vec{F}_{\text {net }}=0 \text { and } \vec{\tau}_{\text {net }}<0 \quad \begin{aligned}
& \text { regardless of which } \\
& \text { axis you choose! }
\end{aligned}
$$

These are vector equations, each with three components, \Rightarrow six equations in all! ©

We shall limit ourselves to problems in which all forces lie in the $x-y$ plane, and all torques are about axes perpendicular to the $x-y$ plane (i.e., in the z-direction).
\Rightarrow three equations, one each for $\boldsymbol{F}_{x} \boldsymbol{F}_{y}$ and $\tau \odot$

Chapter 13: Rotation of a Rigid Body

Problem-solving strategy for equilibrium problems (page 390):
Model object as a simple shape.
Visualize: Draw pictorial representation and FBD.

- Pick any point you want as a pivot point. The algebra is much easier if you pick a point through which most of the unknown forces act!
- Determine the moment arms of all forces about your pivot point.
- Determine the sign of each torque about your pivot point.
- If the direction of an unknown force is also unknown, represent it as two perpendicular forces: F_{x} and F_{y} acting at the same point.

Solve: No net forces and no net torque about any pivot point.

- $\tau_{\text {net }}=0, F_{\text {net } x}=0$, and $F_{\text {net }, y}=0$
- Solve these three equations for any unknown forces, distances, etc.

Assess: Is the answer reasonable; does it answer the question?

Chapter 13: Rotation of a Rigid Body

example: Will the ladder slip? (page 391) A ladder rests against a frictionless wall at an angle $\theta=60^{\circ}$. What is the

Choose P as the pivot point. It has the most number of forces acting through it, which will reduce the number of torques we have to identify (zero moment arms!)

Since we seek the minimum μ_{s}, we can set $f_{\mathrm{s}}=\mu_{\mathrm{s}} n_{1}$.

Chapter 13: Rotation of a Rigid Body

$$
\begin{align*}
& \Sigma F_{x}=n_{2}-f_{s}=0 \Rightarrow n_{2}=\mu_{s} n_{1} \tag{1}\\
& \Sigma F_{y}=n_{1}-w=0 \Rightarrow w=n_{1} \tag{2}
\end{align*}
$$

Only \boldsymbol{n}_{2} and \boldsymbol{w} generate torques about P : moment arm of \boldsymbol{n}_{2} is: $\boldsymbol{d}_{2}=L \sin \theta$ moment arm of w is: $d_{1}=\frac{1}{2} L \cos \theta$

$$
\begin{align*}
& \sum \tau=\frac{1}{2} w \mathrm{X} \cos \theta-n_{2} \mathrm{X} \sin \theta=0 \tag{3}\\
& \text { (torque caused by } w \text { ccw, } n_{2} \mathrm{cw} \text {) }
\end{align*}
$$

$$
\begin{aligned}
& \text { Substitute (1) and (2) into (3) } \Rightarrow \\
& \qquad \begin{array}{l}
\frac{1}{2} x_{\mathrm{r}} \cos \theta-\mu_{\mathrm{s}} x_{1} \sin \theta=0 \\
\Rightarrow \mu_{\mathrm{s}}=\frac{\cot \theta}{2}=0.29 .
\end{array}
\end{aligned}
$$

SMU PHYS1100, fall 2008, Prof. Clarke

Chapter 13: Rotation of a Rigid Body

Example: The Tower of Lyre, or the "great pub bet"

At the pub you bet your friend the next round that you can stack four blocks (they can be coasters) over the edge of the table such that the top block is fully over the edge of the table $(D>L)$. After he tries for a few minutes in futility, you, the keen physics student, just "stack 'em up"! How?

$$
\text { Let } m_{1}=m_{2}=m_{3}=m_{4}=m
$$

1. Key: All masses are on the verge of tipping. Thus, the normal force m_{i} exerts on m_{i+1} right below it is applied right at the edge of m_{i+1}.

So to start, we can deduce that m_{1} can balance as much as $d_{1}=L / 2$ over the edge of m_{2}.
2. FBD for m_{1} :
$n_{2 \mathrm{on} 1^{-}} m_{1} g=0 \Rightarrow n_{2 \mathrm{on} 1}=m g$

Chapter 13: Rotation of a Rigid Body

3. FBD for $m_{2}: \sum F_{y}=n_{\text {3on } 2}-n_{1 \text { on } 2}-m_{2} g=0$
$\boldsymbol{n}_{1 \text { on } 2}$ and $\boldsymbol{n}_{2 \text { on } 1}$ form an action-reaction pair.

$$
\Rightarrow n_{1 \mathrm{on} 2}=n_{2 \mathrm{on} 1}=m \mathrm{gg} \Rightarrow n_{\mathrm{ion} 2}=2 m \mathrm{~g}
$$

No surprise. Next, examine the torques.

Choose point P as our pivot (any point will do).
Relative to P, only $m_{2} g$ and $n_{3 \text { on } 2}$ generate torques:
$m_{2} g$ generates a ccw torque about P; its moment arm is $L / 2$
$n_{3 \text { on2 } 2}$ generates a cw torque about P; its moment arm is d_{2}

$$
\sum \tau=\frac{L}{2} m_{2} g-d_{2} n_{3 m n}=0 \Rightarrow 2 m g d_{2}=\frac{L}{2} m g \Rightarrow d_{2}=L / 4
$$

4. Repeat (try it!) for $m_{3}\left(d_{3}=L / 6\right)$ and $m_{4}\left(d_{4}=L / 8\right.$; see the pattern?)

$$
\Rightarrow D=d_{1}+d_{2}+d_{3}+d_{4}=L\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)=\frac{25}{24} L>L
$$

Chapter 13: Rotation of a Rigid Body

Two last points on the tower of Lyre...

1. If you plan to try this as a pub bet, best to do it with five "bricks". With five, $\boldsymbol{D}=137 \mathrm{~L} / 120$, giving you $17 \mathrm{~L} / 120$ or 14% of L to play with. With just four bricks, you only have $1 / 24$ ($<5 \%$) to play with, and this may require more accuracy than one might have after a couple of pints...
2. You may know that the series $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\ldots$ does not converge! This means that with enough bricks, you could build a bridge from the table all the way across the country, with only one support!

Although even with 1 billion bricks (stack height $\sim 13 \%$ of the way to the moon!), you are still under $11 L$ beyond the edge of the table, so you better get a lot of bricks!
SMU PHYS1100, fall 2008, Prof. Clarke
ended here, 25/11/08

Chapter 13: Rotation of a Rigid Body

13.7 Rotational Kinetic Energy

Every point in a rotating solid body rotates with the same angular speed, ω, but with a different linear speed, v. So how do we compute the kinetic energy?
As we've done before, break the object into \boldsymbol{N} small masses, \boldsymbol{m}_{i}, each rotating about the axle with speed $\boldsymbol{v}_{\boldsymbol{i}}=\boldsymbol{r}_{i} \omega$. Thus, $\boldsymbol{K}_{\mathrm{rot}}$ is given by:

$$
\begin{aligned}
K_{\mathrm{rot}} & =\sum_{i=1}^{N} \frac{1}{2} m_{i} v_{i}^{2}=\sum_{i=1}^{N} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2} \\
& =\frac{1}{2} \underbrace{\left(\sum_{i=1}^{N} m_{i} r_{i}^{2}\right)}_{I} \omega^{2}=\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

Rotational Kinetic energy, continued...

With the analogy between translational and rotational variables we have built up so far, including $m \leftrightarrow I$ and $v \leftrightarrow \omega$, we might have guessed that:

$$
\frac{1}{2} m v^{2} \leftrightarrow \frac{1}{2} I \omega^{2}
$$

Chapter 13: Rotation of a Rigid Body

13.8 Rolling motion (combination of translation and rotation)

To "roll" means not to slip. After one revolution, centre of mass moves forward by one circumference:

$$
\Delta x_{\mathrm{cm}}=v_{\mathrm{cm}} T=2 \pi R \Rightarrow v_{\mathrm{cm}}=\frac{2 \pi}{T} R=\omega R
$$

$v_{\mathrm{cm}}=\omega R$ is the rolling constraint. It links translational motion $\left(v_{\mathrm{cm}}\right)$ with rotation (ω), and is analogous to the no-slip condition for ropes/pulleys.

Chapter 13: Rotation of a Rigid Body

Did you know...

...the point where the tire touches the road (not skidding!) is momentarily at rest relative to the road no matter how fast the car is going?

Thus, the friction between the tire and the road is static friction, not kinetic friction!

This is why you have less control of the car when the tires are slipping (skidding): kinetic friction is weaker than static friction.

Chapter 13: Rotation of a Rigid Body

example: "School Fred" Will the spool of thread move to the right or left? What is its acceleration?

Forces: $\boldsymbol{F}-\boldsymbol{f}_{\mathrm{s}}=\boldsymbol{m a} \Rightarrow \boldsymbol{f}_{\mathrm{s}}=\boldsymbol{F}-\boldsymbol{m a}$
Torques about A: $-f_{s} R+F r=-I \alpha$
no slipping $\Rightarrow \alpha=\frac{a}{R}$
Substitute (1) and (3) into (2) \Rightarrow
$R(-F+m a)+F r=-\frac{9}{20} m R^{2} \frac{a}{R}$
$\Rightarrow a\left(m R+\frac{9}{20} m R\right)=F(R-r)$
$a=\frac{F(R-r)}{\frac{29}{20} m R}=0.460 \mathrm{~ms}^{-2}>0$
\Rightarrow our guess was right!
SMU PHYS1100, fall 2008, Prof. Clarke

Chapter 13: Rotation of a Rigid Body

The energy equation, revisited.

Kinetic energy of rolling motion is the sum of the translational kinetic energy of the centre of mass and the rotational kinetic energy about the centre of mass (see page 395 for proof). Thus:

$$
K=K_{\mathrm{cm}}+K_{\mathrm{rot}}=\frac{1}{2} M v_{\mathrm{cm}}^{2}+\frac{1}{2} I_{\mathrm{cm}} \omega^{2}
$$

and the revised energy equation (Chapter 11) reads:

$$
\Delta E_{\mathrm{sys}}=\Delta K_{\mathrm{cm}}+\Delta K_{\mathrm{rot}}+\Delta U+\Delta E_{\mathrm{th}}=W_{\mathrm{ext}}
$$

where $\Delta E_{\text {sys }}$ is the change in the total energy of the system, ΔU is the change in potential energy of the system, $\Delta \boldsymbol{E}_{\mathrm{th}}$ is the change in thermal energy, and $W_{\text {ext }}$ is the work done by all forces external to the system.

Chapter 13: Rotation of a Rigid Body

Example: A solid sphere, a solid cylinder, and a hoop (hollow cylinder) roll down an incline. If each have the same mass and radius, which gets to the bottom first?

For any object: $\Delta K=K_{\mathrm{f}}-K_{\mathrm{i}}=\frac{1}{2} M v_{\mathrm{cm}}^{2}+\frac{1}{2} I_{\mathrm{cm}} \omega^{2} ; \quad \Delta U=-M g h$.
No friction $\Rightarrow \Delta E_{\mathrm{th}}=0$; no external forces $\Rightarrow W_{\mathrm{ext}}=0$.

Let $I=c M R^{2}$. Since $\omega=\frac{v_{\mathrm{cm}}}{R}$ (no slip), $I_{\mathrm{cm}} \omega^{2}=c M v_{\mathrm{cm}}^{2} \Rightarrow \Delta K=\frac{1}{2} M v_{\mathrm{cm}}^{2}(1+\mathrm{c})$
Thus, $\Delta K=-\Delta U \Rightarrow \frac{1}{2} M v_{\mathrm{cm}}^{2}(1+c)=M g h$

$$
\Rightarrow v_{\mathrm{cm}}=\sqrt{\frac{2 g h}{1+\mathrm{c}}}
$$

$\Rightarrow v_{\mathrm{cm}}$ is greatest for smallest c. For a solid sphere, $\mathrm{c}=\frac{2}{5}$, for a solid cylinder, $\mathrm{c}=\frac{1}{2}$, and for a hoop, $\mathrm{c}=1$. Thus the sphere gets down the ramp first.

Chapter 13: Rotation of a Rigid Body

example: The "loop-the-loop" revisited: A solid sphere of radius r rolls without slipping down a ramp and takes a "loop-the-loop" of radius $\boldsymbol{R} \gg r$. At what minimum height, h, must the sphere be released in order for it to still make it to the top of the loop?

This is a GREAT problem. It's one of those pivotal problems in first year physics that, when you can do it, lets you know you've "arrived", at least to the first station on the track to becoming a physicist or an engineer. Expect one like it on the exam!

Chapter 13: Rotation of a Rigid Body

example: The "loop-the-loop" revisited...
Model: We must treat the sphere as a rigid body, since some of the kinetic energy is "used up" in rotation. The fact that $R \gg r$ is not telling us to treat the sphere as a point particle; it's needed later when calculating ΔU.

Visualise: To "barely" make it to the top of the loop does not mean the sphere is at rest there! In fact, we know from Chapter 7 that the sphere has a "critical speed" at the top of the loop, which we'll recompute here.

Barely making it to the top means:

1. the sphere is still traveling in a circular path (as opposed to the parabolic trajectory it would have had it left the track);
2. the normal force exerted on the sphere by the track is zero there.

Chapter 13: Rotation of a Rigid Body

example: The "loop-the-loop" revisited...
Solve: 1 . What is the speed at the top of the loop?
From the FBD, we have $-m g=-m a_{\mathrm{c}}=-m \frac{v^{2}}{\boldsymbol{R}} \Rightarrow v^{2}=g R$

2. Use the energy equation. Let the system be sphere + track + earth. With no dissipation and no external forces, conserve mechanical energy.

$$
\begin{aligned}
& E_{\mathrm{M}, \mathrm{i}}=U_{\mathrm{i}}+K_{\mathrm{i}}=m g h \\
& E_{\mathrm{M}, \mathrm{f}}=U_{\mathrm{f}}+K_{\mathrm{f}}=m g(2 R)+\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& \text { in fact, } U_{\mathrm{f}}=m g(2 R-r), \text { but we're told } R \gg r \\
& I=\frac{2}{5} m r^{2}, \omega=\frac{v}{r} \text { for no slipping } \\
& \Rightarrow \frac{1}{2} I \omega^{2}=\frac{1}{5} m v^{2} \\
& \Rightarrow E_{\mathrm{M}, \mathrm{f}}=2 m g R+\frac{7}{10} m v^{2}+\frac{1}{2}=\frac{7}{20}
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

example: The "loop-the-loop" revisited...

Solve: 1 . What is the speed at the top of the loop?
From the FBD, we have $-m g=-m a_{c}=-m \frac{v^{2}}{R} \Rightarrow v^{2}=g R$

2. Use the energy equation. Let system be sphere + track + earth. With no dissipation and no external forces, conserve mechanical energy.

$$
\begin{aligned}
& E_{\mathrm{M}, \mathrm{i}}=U_{\mathrm{i}}+K_{\mathrm{i}}=m g h \\
& E_{\mathrm{M}, \mathrm{f}}=U_{\mathrm{f}}+K_{\mathrm{f}}=m g(2 R)+\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& \text { in fact, } U_{\mathrm{f}}=m g(2 R-r), \text { but we're told } R \gg r \\
& I=\frac{2}{5} m r^{2}, \omega=\frac{v}{r} \\
& \Rightarrow \frac{1}{2} I \omega^{2}=\frac{1}{5} m v^{2} \\
& \Rightarrow E_{\mathrm{M}, \mathrm{f}}=2 m g R+\frac{7}{10} m v^{2}=2.7 m g R
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

example: The "loop-the-loop" revisited...
We just now need to equate $\boldsymbol{E}_{\mathbf{M}, \boldsymbol{i}}$ to $\boldsymbol{E}_{\mathbf{M}, \mathbf{f}}$, and solve for \boldsymbol{h} :

$$
E_{\mathrm{M}, \mathrm{i}}=E_{\mathrm{M}, \mathrm{f}} \Rightarrow m g h=2.7 m g R \Rightarrow h=2.7 R
$$

Variations on a theme: 1. What is the normal force exerted by the track on the
 sphere at point Q ?
2. If the sphere is released from $h=4 R$, what is the normal force exerted by the track on the sphere at the top of the loop?

Chapter 13: Rotation of a Rigid Body

Angular momentum (\boldsymbol{L}) (a different approach from your text)

Consider a particle on a trajectory with momentum \vec{p} being watched by an observer at O .

As the particle swings by, the observer turns her head in order to keep her eye on it, even if that particle is moving in a straight line.

Thus, one ought to be able to describe the motion with angular variables as well as linear variables.

Provisional mathematical definition of angular momentum:

$$
L=r p \sin \beta=r m v \sin \beta
$$

This is entirely analogous to how torque was defined:

$$
\tau=r F \sin \phi=r m a \sin \phi
$$

Chapter 13: Rotation of a Rigid Body

Like torque, angular momentum depends upon:

1. the magnitude of the linear momentum, \vec{p}, of the particle;
2. The magnitude of the displacement, \vec{r}, between the "origin" (could be a rotation axis but need not be) to the point mass;
3. The angle between \vec{r} and \vec{p}.

Angular momentum of a rigid body about a rotation axis:
$\beta=90^{\circ}$ for each point $\Rightarrow \sin \beta=1$
Every point rotates with the same angular speed, ω. Thus, $v_{i}=r_{i} \omega_{0}$.

$$
L_{\text {tot }}=\sum_{i=1}^{N} r_{i} m_{i} v_{i}=\underbrace{\sum_{i=1}^{N} m_{i} r_{i}^{2}}_{I} \omega=I \omega
$$

Chapter 13: Rotation of a Rigid Body

Link between angular momentum and torque:

1. For solid body rotation:

$$
\frac{d L}{d t}=\frac{d(I \omega)}{d t}=I \frac{d \omega}{d t}=I \alpha=\tau_{\mathrm{net}}
$$

2. For a point particle on a trajectory:

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{d(r p \sin \beta)}{d t}=\frac{d\left(r p_{t}\right)}{d t}=r \frac{d p_{t}}{d t} \\
& =r F_{\mathrm{t}}=r F \cos \phi=\tau_{\text {net }}
\end{aligned}
$$

$$
\text { In general, } \beta \neq \phi!
$$

Chapter 13: Rotation of a Rigid Body

13.9 The vector description of rotational motion

Angular velocity: $\vec{\omega}=(\omega$, direction given by right hand rule) Angular acceleration: $\overrightarrow{\boldsymbol{\alpha}}=(\boldsymbol{\alpha}$, direction given by R H rule $)$

Rotation confined to the $x-y$ plane: ccw rotation $\Rightarrow+z$ direction cw rotation $\Rightarrow-z$ direction

Why should ω and α point in the z-direction if the motion is in the $x-y$ plane?

What direction in the $x-y$ plane would one choose? The direction of motion keeps changing there!

The z-direction is the only unique direction implicated by rotation in the $x-y$ plane.

Chapter 13: Rotation of a Rigid Body

The vector description of rotational motion, continued...
Angular momentum: $\vec{L}=(\boldsymbol{L}$, direction given by R H rule)
Torque: $\vec{\tau}=(\tau$, direction given by right hand rule)
Mechanics table

links	linear mechanics	angular mechanics
$v_{\mathrm{t}}=\omega r ; a_{\mathrm{t}}=\alpha r$	$\Delta x=v_{0} \Delta t+\frac{1}{2} a \Delta t^{2}$	$\Delta \theta=\omega_{0} \Delta t+\frac{1}{2} \alpha \Delta t^{2}$
$\tau=r F \sin \phi$	$\vec{F}_{\text {net }}=\frac{d \vec{p}}{d t}=m \vec{a}$	$\vec{\tau}_{\text {net }}=\frac{d \vec{L}}{d t}=I \vec{\alpha}$
$I=\sum_{i=1}^{N} m_{i} r_{i}^{2}$	$K_{\text {lin }}=\frac{1}{2} m v^{2}$	$K_{\text {rot }}=\frac{1}{2} I \omega^{2}$
$L=r p \sin \beta$		$\vec{p}=m \vec{v}$

Chapter 13: Rotation of a Rigid Body

Our third conservation law: Conservation of angular momentum.

In a system in which there are no external torques, angular momentum is conserved.

$$
\text { if } \frac{d \vec{L}}{d t}=\vec{\tau}_{\text {net }}=0 \Rightarrow \vec{L}=\text { constant }
$$

A figure skater, $I_{0}=0.80 \mathrm{~kg} \mathrm{~m}^{2}$ about his central axis, spins at 2 rev s ${ }^{-1}$ holding out two masses, m $=5 \mathrm{~kg}$, at $r_{\mathrm{i}}=0.70 \mathrm{~m}$. What is his angular speed when he brings the masses to $r_{f}=0.25 \mathrm{~m}$?

$$
\begin{aligned}
& \text { Conserve } L: L_{\mathrm{f}}=L_{\mathrm{i}} \Rightarrow I_{\mathrm{f}} \omega_{\mathrm{f}}=I_{\mathrm{i}} \omega_{\mathrm{i}} \\
& I_{\mathrm{i}}=I_{0}+2 m r_{\mathrm{i}}{ }^{2}=5.70 \mathrm{~kg} \mathrm{~m}^{2} \\
& \left.I_{\mathrm{f}}=I_{0}+2 m r_{\mathrm{f}}^{2}=1.43 \mathrm{~kg} \mathrm{~m}^{2}\right\} \Rightarrow \omega_{\mathrm{f}}=\frac{I_{\mathrm{i}}}{I_{\mathrm{f}}} \omega_{\mathrm{i}} \\
& =4.0 \omega_{\mathrm{i}}=8 \mathrm{rev} \mathrm{~s}^{-1}
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

example: A pinwheel with moment of inertia about its axis, I_{p}, and radius r is struck by a mass of chewing gum, m, with momentum p at an angle β as shown. If the gum sticks to the pinwheel, what is its angular speed, ω, immediately after collision?

Use conservation of angular momentum.
For such problems, it's critical to use the same reference point for both "before" and "after" states.

Since the pinwheel spins about its axis in the "after" state, we use the axis as the reference point for both states.

Chapter 13: Rotation of a Rigid Body

This is my very favourite problem! (But don't worry, you won't see it

 on the exam!)To put "top English" on a billiard ball, you strike it sharply with a level cue near the top of the ball, as in the diagram. If the ball is struck at height $h=4 r / 5$ above its centre and given an initial speed v_{0}, what is its speed when it stops slipping?

Cue imparts an impulse
First response: Are you kidding me?

$$
J=\Delta p=m v_{0} \text { to the cue ball. }
$$

$$
\begin{align*}
\Rightarrow \Delta L & =-r \Delta p \sin \beta=-\frac{4}{5} m v_{0} r \\
& =I \omega_{0}=\frac{2}{5} m r^{2} \omega_{0} \\
\Rightarrow \omega_{0} & =-\frac{2 v_{0}}{r} \tag{1}
\end{align*}
$$

negative sign because ω_{0} is cw

Chapter 13: Rotation of a Rigid Body

greatest physics problem ever, continued...

$$
\begin{aligned}
& \omega_{0}=-\frac{2 v_{0}}{r} \\
& \Rightarrow \text { ball's surface } \\
& \text { speed is } 2 v_{0} \text { in } \\
& \text { ball's reference }
\end{aligned}
$$ frame...

and bottom of ball moves backwards at $-v_{0}$ just after impact \Rightarrow the kinetic friction points right!
$f_{\mathrm{k}}=\boldsymbol{m a}>0 \Rightarrow$ ball speeds up! Kinematics
$\tau_{\mathrm{k}}=r f_{\mathrm{k}}=I \alpha>0 \Rightarrow$ slows negative angular velocity.

$$
a=\frac{f_{\mathrm{k}}}{m} \quad \alpha=\frac{r f_{\mathrm{k}}}{I}
$$

$$
\begin{aligned}
& v_{\mathrm{f}}=v_{0}+a t=v_{0}+\frac{f_{\mathrm{k}} t}{m} \\
& \Rightarrow f_{\mathrm{k}} t=m\left(v_{\mathrm{f}}-v_{0}\right)
\end{aligned}
$$

$$
\begin{equation*}
\omega_{1}=\omega_{0}+\alpha t=-\frac{2 v_{0}}{r}+\frac{r f_{k} t}{I} \tag{3}
\end{equation*}
$$

Chapter 13: Rotation of a Rigid Body

greatest physics problem ever, continued...

Condition for when final velocity is reached: when no-slip conditions are established which ceases f_{k}.

$$
\omega_{\mathrm{f}}=-\frac{v_{\mathrm{f}}}{r} \quad(\mathrm{cw} \Rightarrow \text { negative })
$$

set this to (3), and substitute (2) for $f_{\mathrm{k}} t$:

$$
\begin{aligned}
& \omega_{\mathrm{f}}=-\frac{2 v_{0}}{x}+\frac{x \nu\left(v_{\mathrm{f}}-v_{0}\right)}{\frac{2}{5} \nu x^{8}}=-\frac{v_{f}}{x} \\
& \Rightarrow-2 v_{0}+\frac{5}{2} v_{\mathrm{f}}-\frac{5}{2} v_{0}=-v_{\mathrm{f}} \\
& \Rightarrow \frac{7}{2} v_{\mathrm{f}}=\frac{9}{2} v_{0} \Rightarrow v_{\mathrm{f}}=\frac{9}{7} v_{0}
\end{aligned}
$$

and that's all she wrote!

ended here, 27/11/08

Chapter 13: Rotation of a Rigid Body

The remaining slides define angular mechanics in terms of vectors, including the cross product. This material will not be on the final exam, and is included here only for your information.

The only real thing you should know here is that our "provisional" definitions of torque and angular momentum are fine for single particles and uniform rigid bodies of suitable symmetry. The general problem of rotational dynamics requires intimate knowledge of vector and indeed tensor analysis, much of which is beyond the scope of a first year course in physics.

Chapter 13: Rotation of a Rigid Body

The "cross product"

The cross (vector) product multiplies two vectors together and gives another vector. Let \vec{A} and $\overrightarrow{\boldsymbol{B}}$ be two vectors. Then
$\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=(\boldsymbol{A B} \sin \phi$, direction given by the right hand rule $)$ where ϕ is the smaller angle (less than 180°) between $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ positioned with their tails together.

The cross product is perpendicular to the plane.

Chapter 13: Rotation of a Rigid Body

The "cross product", continued...

$$
\text { Length }=A B
$$

The cross product is zero when \vec{A} and \vec{B} are parallel.

As ϕ increases from 0° to 90°, the length of $\vec{A} \times \vec{B}$ increases.

The cross product is maximum when \vec{A} and \vec{B} are perpendicular.

Thus, for the unit vectors, $\hat{\boldsymbol{i}}, \hat{\boldsymbol{j}}$, and $\hat{\boldsymbol{k}}$, we have:

$$
\begin{array}{ll}
\hat{\imath} \times \hat{\boldsymbol{\jmath}}=\hat{\boldsymbol{k}} & \hat{\boldsymbol{\jmath}} \times \hat{\imath}=-\hat{\boldsymbol{k}} \\
\hat{\boldsymbol{\jmath}} \times \hat{\boldsymbol{k}}=\hat{\imath} & \hat{k} \times \hat{\boldsymbol{\jmath}}=-\hat{\boldsymbol{\imath}} \\
\hat{k} \times \hat{\imath}=\hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{\imath}} \times \hat{\boldsymbol{k}}=-\hat{\boldsymbol{\jmath}}
\end{array} \quad \hat{\boldsymbol{i}} \times \hat{\boldsymbol{\imath}}=\hat{\boldsymbol{\jmath}} \times \hat{\boldsymbol{\jmath}}=\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}}=0
$$

Chapter 13: Rotation of a Rigid Body

The "cross product", continued...
Note that $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=-\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}}$ (direct result of the right-hand rule)
Calculating the cross product with components:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k} \quad \vec{B}=B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k} \\
& \Rightarrow \vec{A} \times \vec{B}=\left(A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}\right) \times\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right) \\
&=A_{x} B_{x} \hat{\imath} \times \hat{\imath}+A_{x} B_{y} \hat{\imath} \times \hat{\jmath}+A_{x} B_{z} \hat{\imath} \times \hat{k} \\
&+A_{y} B_{x} \hat{\jmath} \times \hat{\imath}+A_{y} B_{y} \hat{\jmath} \times \hat{\jmath}+A_{y} B_{z} \hat{\jmath} \times \hat{k} \\
&+A_{z} B_{x} \hat{k} \times \hat{\imath}+A_{z} B_{y} \hat{k} \times \hat{\jmath}+A_{z} B_{z} \hat{k} \times \hat{k}
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

The "cross product", continued...
Note that $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=-\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}}$ (direct result of the right-hand rule)
Calculating the cross product with components:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k} \quad \vec{B}=B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k} \\
& \Rightarrow \vec{A} \times \vec{B}=\left(A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}\right) \times\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right) \\
&=A_{x} B_{x} \hat{\imath}(\theta) \hat{\imath}+A_{x} B_{y} \hat{\imath} \times \hat{\jmath}+A_{x} B_{z} \hat{\imath} \times \hat{k} \\
&+A_{y} B_{x} \hat{\jmath} \times \hat{\imath}+A_{y} B_{y} \hat{\jmath}(\theta) \hat{y}+A_{y} B_{z} \hat{\jmath} \times \hat{k} \\
&+A_{z} B_{x} \hat{k} \times \hat{\imath}+A_{z} B_{y} \hat{k} \times \hat{\jmath}+A_{z} B_{z} \hat{k}(\theta) \hat{k}
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

The "cross product", continued...
Note that $\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}=-\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}}$ (direct result of the right-hand rule)
Calculating the cross product with components:

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{A}}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k} \quad \vec{B}=B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k} \\
& \Rightarrow \vec{A} \times \vec{B}=\left(A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}\right) \times\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right) \\
&= A_{x} B_{x} \hat{\imath}(\theta) \hat{\imath}+A_{x} B_{y}(\hat{k})+A_{x} B_{z}((\rightarrow \hat{\jmath} \hat{\hat{l}} \\
&+A_{y} B_{x}(-\hat{k})+A_{y} B_{y}(0)+A_{y} B_{z} j(\hat{\imath}) \\
&+A_{z} B_{x} \hat{k}(\hat{\jmath})+A_{z} B_{y} \hat{l}(\hat{\imath})+A_{z} B_{z} \hat{k}(\theta) \hat{k} \\
& \Rightarrow \vec{A} \times \vec{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\imath}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\jmath}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}
\end{aligned}
$$

Chapter 13: Rotation of a Rigid Body

Differentiation of cross products follows the product rule:

$$
\frac{d}{d t}(\vec{A} \times \vec{B})=\frac{d \vec{A}}{d t} \times \vec{B}+\vec{A} \times \frac{d \vec{B}}{d t}
$$

Chapter 13: Rotation of a Rigid Body

13.9 The vector description of rotational motion

Angular velocity: $\vec{\omega}=(\omega$, direction given by right hand rule) Angular acceleration: $\overrightarrow{\boldsymbol{\alpha}}=(\boldsymbol{\alpha}$, direction given by R H rule $)$

Rotation confined to the $x-y$ plane: ccw rotation $\Rightarrow+z$ direction cw rotation $\Rightarrow-z$ direction

Why should ω and α point in the z-direction if the motion is in the $x-y$ plane?

What direction in the $x-y$ plane would one choose? The direction of motion keeps changing there!

The z-direction is the only unique direction implicated by rotation in the $x-y$ plane.

Chapter 13: Rotation of a Rigid Body

The vector description of Torque

Torque: $\overrightarrow{\boldsymbol{\tau}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}=(\boldsymbol{r} \boldsymbol{F} \sin \phi$, direction given by R H rule $)$
Caution: need to move the tails of the vectors together before using right hand rule!

Chapter 13: Rotation of a Rigid Body

Angular momentum of a particle

$$
\overrightarrow{\boldsymbol{L}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{p}}=(r \boldsymbol{m} v \sin \beta \text {, direction given by R H rule })
$$

The particle is moving along a trajectory.

The vector tails are placed together to determine the cross product.

$$
\begin{aligned}
& \frac{d \vec{L}}{d t}=\frac{d}{d t}(\vec{r} \times \overrightarrow{\boldsymbol{p}})=\frac{d \vec{r}}{d t} \times \overrightarrow{\boldsymbol{p}}+\vec{r} \times \frac{d \vec{p}}{d t}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{p}}^{0}+\vec{r} \times \overrightarrow{\boldsymbol{F}}=\vec{\tau} \\
\Rightarrow & \frac{d \vec{L}}{d t}=\vec{\tau} \quad \text { compare with } \frac{d \vec{p}}{d t}=\overrightarrow{\boldsymbol{F}}
\end{aligned}
$$

