Chapter 14 *Glass Evidence*By the end of this chapter you will be able to:

FORENSIC SCIENCE
SCIENCE
Pronomentals & Investigations

Anthony J. Bertino

- Explain how glass is formed
- List some of the characteristics of glass
- Provide examples of different types of glass
- Calculate the density of glass
- Use the refractive index to identify different types of glass
- Describe how glass fractures
- Analyze glass fracture patterns

Introduction and History of Glass

- Egypt circa 2500 B.C.—The earliest known human-made glass objects (beads)
- 1st Century B.C.—glass blowing begins
- 13th Century—specialized glass production was an art, a science, and a state secret in the republic of Venice

Introduction and History of Glass

- 14th Century—glass-making spreads through Europe
- The industrial revolution applies mass production to many types of glass
- Analysis of glass found at a crime scene can yield trace evidence

What Is Glass?

- Materials used to create (soda-lime) glass:
 - Silicon dioxide (SiO₂)
 - Sodium oxide (Na₂0)
 - Calcium oxide (CaO)
- Once cooled, glass can be polished, ground, or cut

What Is Glass?

 Crystalline solids have a regular atomic structure

 Glass is an amorphous solid and so has an irregular atomic structure

Therefore, glass breaks in a variety of fracture patterns

Types of Glass

- Many types of glass
- Adding metal oxides yields different colors
- Different densities
- Refraction indexes
- These characteristics allow comparisons

Density

The formula for calculating density is:

D = m / V

- m = mass, measured by a balance beam device
- V = volume, place the glass fragment into a beaker filled with water and measure the overflow
- D = density, divide the mass (in grams) by the volume (in milliliters)

Density—Common Examples

Type of Glass	Density (g/ml)
Bottle glass	2.50
Window glass	2.53
Lead crystal	2.98-3.01
Pyrex	2.27
Tempered (auto)	2.98
Flint	3.70
Crown	2.50

Refractive Index

- When a beam of light moves from one medium into another:
 - The speed changes
 - The direction bends
- Refractive Index—a tool used to study how light bends as it passes from one substance to another
- Normal line is perpendicular to the glass surface

Refractive Index

When a beam of light moves from less dense medium (air) into a more dense medium (water):

- Its speed slows, and
- Bends light toward the normal line

Refractive Index

When a beam of light moves from a more dense medium (glass) into a less denser medium (air):

- Its speed increases
- And bends light away from the normal line

Application of Refractive Index to Forensics

Submersion method—used when glass fragments found at the crime scene are small

Application of Refractive Index to Forensics

- Place the glass fragment into different liquids of known refractive indexes
- The glass fragment will seem to disappear when placed in a liquid of the same refractive index

Index of refraction increasing -----

Application of Refractive Index to Forensics

- Becke Line—a halo-like effect appearing at the edges of a glass fragment when the reflective index of the glass and liquid are different
 - If the line is *inside* the glass perimeter, the glass index is higher than the index of the liquid
 - If the line is outside the glass perimeter, the glass index is lower

Fracture Patterns in Broken Glass

- Being an amorphous solid, glass will not break into regular pieces with straight line fractures
- Fracture patterns provide clues about the direction, rate, and sequence of the impacts

Why Radial and Concentric Fractures Form

- Impacted glass is compressed on the side it is hit.
- It will stretch on the opposite side of the glass, and the tension there will radiate breaks in the glass outward from the point of impact.
- Then fractures form in the shape of concentric circles on the same side of the impact.

Why Radial and Concentric Fractures Form

Glass after an impact shows radial fractures (red) and concentric circle fractures (blue)

Why Radial and Concentric Fractures Form

Unbroken glass

Bullet Fractures

- As a bullet passes through glass, it pushes a cone shaped piece of glass out of the glass ahead of it
- The exit side of the hole is larger than the entrance side of the hole
- Radiating fracture lines from a subsequent shot will stop at the edge of the fracture lines already present in the glass

Path of a Bullet Passing through Window Glass

- The angles at which bullets enter window glass help locate the position of the shooter
- Bits of the glass can fly backward (backscatter), creating trace evidence

Handling of Crime Scene Glass Samples

- 1. Identify and photograph any glass samples before moving them.
- 2. Collect the largest fragments that can be reasonably collected.
- 3. Identify the outside and inside surface of any glass.
- 4. If multiple panes are involved, make a diagram.
- 5. Note trace evidence such as skin, hair, blood, or fibers.
- Package all materials collected to maintain the chain of custody.

. Summary . . .

- Glass is an amorphous solid
- Glass can be analyzed for its density, refractiveness, and fracture patterns
- Density of glass = Mass (grams) divided by Volume (milliliters)
- Refractive index is a measurement of how light bends, or refracts, as it travels through a material

.. Summary

- Methods for measuring the refractive index include:
 - Snell's law
 - Submersion method
 - Becke line method
- Fracture patterns provide information about such things as the direction, the rate, and the sequence of the impacts