
Chapter 14

Introduction to Randomized
Algorithms: Quick Sort and Quick
Selection

CS 473: Fundamental Algorithms, Spring 2011
March 10, 2011

14.1 Introduction to Randomized Algorithms

14.2 Introduction

14.2.0.1 Randomized Algorithms

14.2.0.2 Example: Randomized QuickSort

QuickSort [?]
(A) Pick a pivot element from array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the

pivot itself.
(C) Recursively sort the subarrays, and concatenate them.

Randomized QuickSort
(A) Pick a pivot element uniformly at random from the array

Input x Output y
Deterministic Algorithm

1

Input x Output yr
Randomized Algorithm

random bits r

(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the
pivot itself.

(C) Recursively sort the subarrays, and concatenate them.

14.2.0.3 Example: Randomized Quicksort

Recall: QuickSort can take Ω(n2) time to sort array of size n.

Theorem 14.2.1 Randomized QuickSort sorts a given array of length n in O(n log n)
expected time.

Note: On every input randomized QuickSort takes O(n log n) time in expectation. On
every input it may take Ω(n2) time with some small probability.

14.2.0.4 Example: Verifying Matrix Multiplication

Problem
Given three n× n matrices A,B,C is AB = C?

Deterministic algorithm:
(A) Multiply A and B and check if equal to C.
(B) Running time? O(n3) by straight forward approach. O(n2.37) with fast matrix multi-

plication (complicated and impractical).

14.2.0.5 Example: Verifying Matrix Multiplication

Problem
Given three n× n matrices A,B,C is AB = C?

Randomized algorithm:
(A) Pick a random n× 1 vector r.
(B) Return the answer of the equality ABr = Cr.
(C) Running time? O(n2)!

Theorem 14.2.2 If AB = C then the algorithm will always say YES. If AB 6= C then the
algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times
independently to reduce the probability of a false positive to 1/2100.

2

14.2.0.6 Why randomized algorithms?

(A) Many many applications in algorithms, data structures and computer science!
(B) In some cases only known algorithms are randomized or randomness is provably neces-

sary.
(C) Often randomized algorithms are (much) simpler and/or more efficient.
(D) Several deep connections to mathematics, physics etc.
(E) . . .
(F) Lots of fun!

14.2.0.7 Where do I get random bits?

Question: Are true random bits available in practice?
(A) Buy them!
(B) CPUs use physical phenomena to generate random bits.
(C) Can use pseudo-random bits or semi-random bits from nature. Several fundamental

unresolved questions in complexity theory on this topic. Beyond the scope of this
course.

(D) In practice pseudo-random generators work quite well in many applications.
(E) The model is interesting to think in the abstract and is very useful even as a theo-

retical construct. One can derandomize randomized algorithms to obtain deterministic
algorithms.

14.2.0.8 Average case analysis vs Randomized algorithms

Average case analysis:
(A) Fix a deterministic algorithm.
(B) Assume inputs comes from a probability distribution.
(C) Analyze the algorithm’s average performance over the distribution over inputs.

Randomized algorithms:
(A) Algorithm uses random bits in addition to input.
(B) Analyze algorithms average performance over the given input where the average is over

the random bits that the algorithm uses.
(C) On each input behaviour of algorithm is random. Analyze worst-case over all inputs of

the (average) performance.

14.3 Basics of Discrete Probability

14.3.0.9 Discrete Probability

We restrict attention to finite probability spaces.

Definition 14.3.1 A discrete probability space is a pair (Ω,Pr) consists of finite set Ω of
elementary events and function p : Ω → [0, 1] which assigns a probability Pr[ω] for each

3

ω ∈ Ω such that
∑

ω∈Ω Pr[ω] = 1.

Example 14.3.2 An unbiased coin. Ω = {H,T} and Pr[H] = Pr[T] = 1/2.

Example 14.3.3 A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤ i ≤ 6.

14.3.1 Discrete Probability

14.3.1.1 And more examples

Example 14.3.4 A biased coin. Ω = {H,T} and Pr[H] = 2/3,Pr[T] = 1/3.

Example 14.3.5 Two independent unbiased coins. Ω = {HH,TT,HT, TH} and Pr[HH] =
Pr[TT] = Pr[HT] = Pr[TH] = 1/4.

Example 14.3.6 A pair of (highly) correlated dice.
Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
Pr[i, i] = 1/6 for 1 ≤ i ≤ 6 and Pr[i, j] = 0 if i 6= j.

14.3.1.2 Events

Definition 14.3.7 Given a probability space (Ω,Pr) an event is a subset of Ω. In other
words an event is a collection of elementary events. The probability of an event A, denoted
by Pr[A], is

∑
ω∈A Pr[ω]. The complement of an event A ⊆ Ω is the event Ω \ A frequently

denoted by Ā.

14.3.2 Events

14.3.2.1 Examples

Example 14.3.8 A pair of independent dice. Ω = {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
(A) Let A be the event that the sum of the two numbers on the dice is even. Then A =

{(i, j) ∈ Ω | (i + j) is even}. Pr[A] = |A|/36 = 1/2.

(B) Let B be the event that the first die has 1. Then B =
{

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
}

.

Pr[B] = 6/36 = 1/6.

14.3.2.2 Independent Events

Definition 14.3.9 Given a probability space (Ω,Pr) and two events A,B are independent
if and only if Pr[A ∩B] = Pr[A] Pr[B]. Otherwise they are dependent. In other words A,B
independent implies one does not affect the other.

Example 14.3.10 Two coins. Ω = {HH,TT,HT, TH} and Pr[HH] = Pr[TT] = Pr[HT] =
Pr[TH] = 1/4.

4

(A) A is the event that the first coin is heads and B is the event that second coin is tails.
A,B are independent.

(B) A is the event that the two coins are different. B is the event that the second coin is
heads. A,B independent.

14.3.3 Independent Events

14.3.3.1 Examples

Example 14.3.11 A is the event that both are not tails and B is event that second coin is
heads. A,B are dependent.

14.3.3.2 Random Variables

Definition 14.3.12 Given a probability space (Ω,Pr) a (real-valued) random variable X
over Ω is a function that maps each elementary event to a real number. In other words
X : Ω→ R.

Example 14.3.13 A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤ i ≤
6.
(A) X : Ω→ R where X(i) = i mod 2.
(B) Y : Ω→ R where Y (i) = i2.

Definition 14.3.14 A binary random variable is one that takes on values in {0, 1}.

14.3.3.3 Indicator Random Variables

Special type of random variables that are quite useful.

Definition 14.3.15 Given a probability space (Ω,Pr) and an event A ⊆ Ω the indicator
random variable XA is a binary random variable where XA(ω) = 1 if ω ∈ A and XA(ω) = 0
if ω 6∈ A.

Example 14.3.16 A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤ i ≤
6. Let A be the even that i is divisible by 3. Then XA(i) = 1 if i = 3, 6 and 0 otherwise.

14.3.3.4 Expectation

Definition 14.3.17 For a random variable X over a probability space (Ω,Pr) the expec-
tation of X is defined as

∑
ω∈Ω Pr[ω]X(ω). In other words, the expectation is the average

value of X according to the probabilities given by Pr[·].

Example 14.3.18 A 6-sided unbiased die. Ω = {1, 2, 3, 4, 5, 6} and Pr[i] = 1/6 for 1 ≤ i ≤
6.
(A) X : Ω→ R where X(i) = i mod 2. Then E[X] = 1/2.
(B) Y : Ω→ R where Y (i) = i2. Then E[Y] =

∑6
i=1

1
6
· i2 = 91/6.

5

14.3.3.5 Expectation

Proposition 14.3.19 For an indicator variable XA, E[XA] = Pr[A].

Proof :

E[XA] =
∑
y∈Ω

XA(y) Pr[y]

=
∑
y∈A

1 ·Pr[y] +
∑

y∈Ω\A

0 ·Pr[y]

=
∑
y∈A

Pr[y]

= Pr[A] .

14.3.3.6 Linearity of Expectation

Lemma 14.3.20 Let X, Y be two random variables over a probability space (Ω,Pr). Then

E[X + Y] = E[X] + E[Y].

Proof :

E[X + Y] =
∑
ω∈Ω

Pr[ω] (X(ω) + Y (ω))

=
∑
ω∈Ω

Pr[ω]X(ω) +
∑
ω∈Ω

Pr[ω]Y (ω) = E[X] + E[Y] .

Corollary 14.3.21 E[a1X1 + a2X2 + . . . + anXn] =
∑n

i=1 ai E[Xi].

14.4 Analyzing Randomized Algorithms

14.4.0.7 Types of Randomized Algorithms

Typically one encounters the following types:
(A) Las Vegas randomized algorithms: for a given input x output of algorithm is

always correct but the running time is a random variable. In this case we are interested
in analyzing the expected running time.

(B) Monte Carlo randomized algorithms: for a given input x the running time is
deterministic but the output is random; correct with some probability. In this case we
are interested in analyzing the probability of the correct output (and also the running
time).

(C) Algorithms whose running time and output may both be random.

6

14.4.0.8 Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π:
(A) Let Q(x) be the time for Q to run on input x of length |x|.
(B) Worst-case analysis: run time on worst input for a given size n.

Twc(n) = max
x:|x|=n

Q(x).

Randomized algorithm R for a problem Π:
(A) Let R(x) be the time for Q to run on input x of length |x|.
(B) R(x) is a random variable: depends on random bits used by R.
(C) E[R(x)] is the expected running time for R on x
(D) Worst-case analysis: expected time on worst input of size n

Trand−wc(n) = max
x:|x|=n

E[Q(x)] .

14.4.0.9 Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem Π:
(A) Let M(x) be the time for M to run on input x of length |x|. For Monte Carlo, assumption

is that run time is deterministic.
(B) Let Pr[x] be the probability that M is correct on x.
(C) Pr[x] is a random variable: depends on random bits used by M .
(D) Worst-case analysis: success probability on worst input

Prand−wc(n) = min
x:|x|=n

Pr[x] .

14.5 Randomized Quick Sort and Selection

14.6 Randomized Quick Sort

14.6.0.10 Randomized QuickSort

Randomized QuickSort

(A) Pick a pivot element uniformly at random from the array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the

pivot itself.
(C) Recursively sort the subarrays, and concatenate them.

14.6.0.11 Example

(A) array: 16, 12, 14, 20, 5, 3, 18, 19, 1

7

14.6.0.12 Analysis via Recurrence

(A) Given array A of size n let Q(A) be number of comparisons of randomized QuickSort
on A.

(B) Note that Q(A) is a random variable
(C) Let Ai

left and Ai
right be the left and right arrays obtained if:

pivot is of rank i in A.

Q(A) = n +
n∑

i=1

Pr[pivot has rank i]
(
Q(Ai

left) + Q(Ai
right)

)
Since each element of A has probability exactly of 1/n of being chosen:

Q(A) = n +
n∑

i=1

1

n

(
Q(Ai

left) + Q(Ai
right)

)
14.6.0.13 Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected running time of randomized
QuickSort on arrays of size n.

We have, for any A:

Q(A) = n +
n∑

i=1

Pr[pivot has rank i]
(
Q(Ai

left) + Q(Ai
right)

)
Therefore, by linearity of expectation:

E
[
Q(A)

]
= n +

n∑
i=1

Pr[pivot of rank i]
(
E
[
Q(Ai

left)
]

+ E
[
Q(Ai

right)
])

.

⇒ E
[
Q(A)

]
≤ n +

n∑
i=1

1

n
(T (i− 1) + T (n− i)) .

14.6.0.14 Analysis via Recurrence

Let T (n) = maxA:|A|=n E[Q(A)] be the worst-case expected running time of randomized
QuickSort on arrays of size n.

We derived:

E[Q(A)] ≤ n +
n∑

i=1

1

n
(T (i− 1) + T (n− i)) .

Note that above holds for any A of size n. Therefore

max
A:|A|=n

E[Q(A)] = T (n) ≤ n +
n∑

i=1

1

n
(T (i− 1) + T (n− i)) .

8

14.6.0.15 Solving the Recurrence

T (n) ≤ n +
n∑

i=1

1

n
(T (i− 1) + T (n− i))

with base case T (1) = 0.

Lemma 14.6.1 T (n) = O(n log n).

Proof : (Guess and) Verify by induction.

14.6.0.16 A Slick Analysis of QuickSort

Let Q(A) be number of comparisons done on input array A:

(A) For 1 ≤ i < j < n let Rij be the event that rank i element is compared with rank j
element.

(B) Xij is the indicator random variable for Rij. That is, Xij = 1 if rank i is compared with
rank j element, otherwise 0.

Q(A) =
∑

1≤i<j≤n

Xij

and hence by linearity of expectation,

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij] =
∑

1≤i<j≤n

Pr[Rij] .

14.6.0.17 A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma 14.6.2 Pr[Rij] = 2
(j−i+1)

.

Proof : Let a1, . . . , ai, . . . , aj, . . . , an be elements of A in sorted order. Let S = {ai, ai+1, . . . , aj}
Observation: If pivot is chosen outside S then all of S either in left array or right array.

Observation: ai and aj separated when a pivot is chosen from S for the first time. Once
separated no comparison.

Observation: ai is compared with aj if and only if either ai or aj is chosen as a pivot
from S at separation...

9

14.6.1 A Slick Analysis of QuickSort

14.6.1.1 Continued...

Lemma 14.6.3 Pr[Rij] = 2
(j−i+1)

.

Proof : Let a1, . . . , ai, . . . , aj, . . . , an be sort of A. Let S = {ai, ai+1, . . . , aj}
Observation: ai is compared with aj if and only if either ai or aj is chosen as a pivot

from S at separation.
Observation: Given that pivot is chosen from S the probability that it is ai or aj is

exactly 2/|S| = 2/(j−i+1) since the pivot is chosen uniformly at random from the array.

14.6.2 A Slick Analysis of QuickSort

14.6.2.1 Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij] =
∑

1≤i<j≤n

Pr[Rij] .

Lemma 14.6.4 Pr[Rij] = 2
(j−i+1)

.

E
[
Q(A)

]
=

∑
1≤i<j≤n

Pr[Rij] =
∑

1≤i<j≤n

2

j − i+ 1

=
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1
= 2

n−1∑
i=1

n∑
i<j

1

j − i+ 1

= 2
n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

≤ 2nHn = O(n log n)

14.7 Randomized Selection

14.7.0.2 Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection
(A) Pick a pivot element uniformly at random from the array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot

itself.
(C) Return pivot if rank of pivot is j
(D) Otherwise recurse on one of the arrays depending on j and their sizes.

10

14.7.0.3 Algorithm for Randomized Selection

Assume for simplicity thatA has distinct elements.

QuickSelect(A, j):
Pick pivot x uniformly at random from A
Partition A into Aless, x, and Agreater using x as pivot

if (|Aless| = j − 1) then
return x

if (|Aless|) ≥ j) then
return QuickSelect(Aless, j)

else
return QuickSelect(Agreater, j − |Aless| − 1)

14.7.0.4 Analysis via Recurrence

(A) Given array A of size n let Q(A) be number of comparisons of randomized selection on A for
selecting rank j element.

(B) Note that Q(A) is a random variable
(C) Let Ai

less and Ai
greater be the left and right arrays obtained if pivot is rank i element of A.

(D) Algorithm recurses on Ai
less if j < i and recurses on Ai

greater if j > i and terminates if j = i.

Q(A) = n+

j−1∑
i=1

Pr[pivot has rank i]Q(Ai
greater)

+
n∑

i=j+1

Pr[pivot has rank i]Q(Ai
less)

14.7.0.5 Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T (n) is the worst-case expected time.

T (n) ≤ n+
1

n
(

j−1∑
i=1

T (n− i) +
n∑

i=j

T (i− 1)).

Theorem 14.7.1 T (n) = O(n).

Proof : (Guess and) Verify by induction (see next slide).

14.7.0.6 Analyzing the recurrence

Theorem 14.7.2 T (n) = O(n).

Prove by induction that T (n) ≤ αn for some constant α ≥ 1 to be fixed later.
Base case: n = 1, we have T (1) = 0 since no comparisons needed and hence T (1) ≤ α.

11

	Introduction to Randomized Algorithms
	Introduction
	Basics of Discrete Probability
	Analyzing Randomized Algorithms

	Randomized Quick Sort and Selection
	Randomized Quick Sort
	Randomized Selection

