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Electric dipole moment vector operator
Electric dipole moment vector operator for collection of charges is

⃗̂𝜇 =
N∑

k=1
qk
⃗̂r

Single charged quantum particle bound in some potential well, e.g., a negatively charged
electron bound to a positively charged nucleus, would be

⃗̂𝜇 = −qe
⃗̂r = −qe

[
x̂e⃗x + ŷe⃗y + ẑe⃗z

]
Expectation value for electric dipole moment vector in Ψ(r⃗, t) state is

⟨𝜇(t)⟩ = ∫V
Ψ∗(r⃗, t) ⃗̂𝜇Ψ(r⃗, t)d𝜏 = ∫V

Ψ∗(r⃗, t)
(
−qe

⃗̂r
)
Ψ(r⃗, t)d𝜏

Here, d𝜏 = dx dy dz
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Time dependence of electric dipole moment
Energy Eigenstate
Starting with ⟨𝜇(t)⟩ = ∫V

Ψ∗(r⃗, t)
(
−qe

⃗̂r
)
Ψ(r⃗, t)d𝜏

For a system in eigenstate of Hamiltonian, where wave function has the form,
Ψn(r⃗, t) = 𝜓n(r⃗)e−iEnt∕ℏ

Electric dipole moment expectation value is

⟨𝜇(t)⟩ = ∫V
𝜓∗

n (r⃗)e
iEnt∕ℏ

(
−qe

⃗̂r
)
𝜓n(r⃗)e−iEnt∕ℏd𝜏

Time dependent exponential terms cancel out leaving us with

⟨𝜇(t)⟩ = ∫V
𝜓∗

n (r⃗)
(
−qe

⃗̂r
)
𝜓n(r⃗)d𝜏 No time dependence!!

No bound charged quantum particle in energy eigenstate can radiate away energy as light
or at least it appears that way – Good news for Rutherford’s atomic model.
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But then how does a bound charged quantum particle in an
excited energy eigenstate radiate light and fall to lower energy eigenstate?
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Time dependence of electric dipole moment - A Transition

During transition wave function must change from Ψm to Ψn

During transition wave function must be linear combination of Ψm and Ψn

Ψ(r⃗, t) = am(t)Ψm(r⃗, t) + an(t)Ψn(r⃗, t)

Before transition we have am(0) = 1 and an(0) = 0

After transition am(∞) = 0 and an(∞) = 1
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Time dependence of electric dipole moment - A Transition
To maintain normalization during transition we require

|am(t)|2 + |an(t)|2 = 1.

Electric dipole moment expectation value for Ψ(r⃗, t) is

⟨𝜇(t)⟩ = ∫V
Ψ∗(r⃗, t) ⃗̂𝜇Ψ(r⃗, t)d𝜏

= ∫V

[
a∗m(t)Ψ

∗
m(r⃗, t) + a∗n(t)Ψ

∗
n(r⃗, t)

] ⃗̂𝜇 [am(t)Ψm(r⃗, t) + an(t)Ψn(r⃗, t)
]

d𝜏

⟨𝜇(t)⟩ = a∗m(t)am(t)∫V
Ψ∗

m(r⃗, t) ⃗̂𝜇Ψm(r⃗, t)d𝜏 + a∗m(t)an(t)∫V
Ψ∗

m(r⃗, t) ⃗̂𝜇Ψn(r⃗, t)d𝜏

+ a∗n(t)am(t)∫V
Ψ∗

n(r⃗, t) ⃗̂𝜇Ψm(r⃗, t)d𝜏 + a∗n(t)an(t)∫V
Ψ∗

n(r⃗, t) ⃗̂𝜇Ψn(r⃗, t)d𝜏
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Time dependence of electric dipole moment - A Transition

⟨𝜇(t)⟩ = a∗m(t)am(t)∫V
Ψ∗

m(r⃗, t) ⃗̂𝜇Ψm(r⃗, t)d𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Time Independent

+ a∗m(t)an(t)∫V
Ψ∗

m(r⃗, t) ⃗̂𝜇Ψn(r⃗, t)d𝜏

+ a∗n(t)am(t)∫V
Ψ∗

n(r⃗, t) ⃗̂𝜇Ψm(r⃗, t)d𝜏 + a∗n(t)an(t)∫V
Ψ∗

n(r⃗, t) ⃗̂𝜇Ψn(r⃗, t)d𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Time Independent

1st and 4th terms still have slower time dependence due to an(t) and am(t) but this electric dipole
variation will not lead to appreciable energy radiation.
Drop these terms and focus on faster oscillating 2nd and 3rd terms

⟨𝜇(t)⟩ = a∗m(t)an(t)∫V
Ψ∗

m(r⃗, t) ⃗̂𝜇Ψn(r⃗, t)d𝜏 + a∗n(t)am(t)∫V
Ψ∗

n(r⃗, t) ⃗̂𝜇Ψm(r⃗, t)d𝜏

Two integrals are complex conjugates of each other.
Since ⟨𝜇(t)⟩ must be real we simplify to

⟨𝜇(t)⟩ = ℜ
{

a∗m(t)an(t)∫V
Ψ∗

m(r⃗, t) ⃗̂𝜇Ψn(r⃗, t)d𝜏
}
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Time dependence of electric dipole moment - A Transition

⟨𝜇(t)⟩ = ℜ
{

a∗m(t)an(t)∫V
Ψ∗

m(r⃗, t) ⃗̂𝜇Ψn(r⃗, t)d𝜏
}

Inserting stationary state wave function, Ψn(r⃗, t) = 𝜓n(r⃗)e−iEnt∕ℏ, gives

⟨𝜇(t)⟩ = ℜ
{

a∗m(t)an(t)
[
∫V
𝜓∗

m(r⃗) ⃗̂𝜇𝜓n(r⃗)d𝜏
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⟨𝜇⟩mn

]
ei(Em−En)t∕ℏ

}

𝜔mn = (Em − En)∕ℏ is angular frequency of emitted light and⟨𝜇⟩mn is transition dipole moment—peak magnitude of dipole oscillation

⟨𝜇⟩mn = ∫V
𝜓∗

m(r⃗) ⃗̂𝜇𝜓n(r⃗)d𝜏

Finally, write oscillating electric dipole moment vector as⟨𝜇(t)⟩ = ℜ
{

a∗m(t)an(t) ⟨𝜇⟩mn ei𝜔mnt}
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Transition dipole moment
In summary, the superposition state

Ψ(r⃗, t) = am(t)Ψm(r⃗, t) + an(t)Ψn(r⃗, t)

has oscillating electric dipole moment vector

⟨𝜇(t)⟩ = ℜ
{

a∗m(t)an(t) ⟨𝜇⟩mn ei𝜔mnt}
where

⟨𝜇⟩mn = ∫V
𝜓∗

m(r⃗) ⃗̂𝜇𝜓n(r⃗)d𝜏

𝜔mn = (Em − En)∕ℏ is angular frequency of emitted
light

a∗m(t)an(t) gives time scale of transition.⟨𝜇⟩mn is transition dipole moment–amplitude of
dipole oscillation

Integrals give transition selection rules for various spectroscopies(
𝜇x
)

mn = ∫V
𝜓∗

m�̂�x𝜓nd𝜏,
(
𝜇y
)

mn = ∫V
𝜓∗

m�̂�y𝜓nd𝜏,
(
𝜇z
)

mn = ∫V
𝜓∗

m�̂�z𝜓nd𝜏

where 𝜇2
mn = |||(𝜇x

)
mn
|||2 + |||(𝜇y

)
mn
|||2 + |||(𝜇z

)
mn
|||2
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Okay, so...

Wave function in superposition of energy eigenstates can have oscillating electric dipole
moment which will emit light until system is entirely in lower energy state.

But how does atom in higher energy eigenstate get into this superposition of initial and
final eigenstates in first place?

One way to shine light onto the atom. The interaction of the atom and light leads to
absorption and stimulated emission of light.

Absorption Stimulated
Emission

Spontaneous
Emission
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Rate of Light Absorption and Stimulated Emission

Potential energy of ⃗̂𝜇 of quantum system interacting with a time dependent electric field, ⃗(r⃗, t) is

V̂(t) = − ⃗̂𝜇 ⋅ ⃗(r⃗, t) = − ⃗̂𝜇 ⋅ ⃗0(r⃗) cos𝜔t

and Hamiltonian becomes ̂(t) = ̂0 + V̂(t).

If light wavelength is long compared to system size (atom or molecule) we can ignore r⃗
dependence of ⃗ and assume system is in spatially uniform ⃗(t) oscillating in time. Holds for
atoms and molecules until x-ray wavelengths and shorter.

When time dependent perturbation is present old stationary states of ̂0 (before light was turned
on) are no longer stationary states.
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Rate of Light Absorption and Stimulated Emission
To describe time dependence of electric dipole moment write wave function as linear
combination of stationary state eigenfunction of ̂0, i.e., when V̂(t) is absent.

Ψ(r⃗, t) =
n∑

m=1
am(t)Ψm(r⃗, t)

Need to determine time dependence of am(t) coefficients.
As initial condition take |an(0)|2 = 1 and |am≠n(0)|2 = 0.
Putting ̂(t) = ̂0 + V̂(t) and Ψ(r⃗, t) into time dependent Schrödinger Equation

̂(t)Ψ(r⃗, t) = iℏ
𝜕Ψ(r⃗, t)
𝜕t

and skipping many steps we eventually get

dam(t)
dt

≈ − i
ℏ ∫V

Ψ∗
m(r⃗, t)V̂(t)Ψn(r⃗, t)d𝜏
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Rate of Light Absorption and Stimulated Emission
Using our expression for V̂(t) = − ⃗̂𝜇 ⋅ ⃗0(r⃗) cos𝜔t and Ψn = 𝜓ne−iEnt∕ℏ we get

dam(t)
dt

≈ − i
ℏ ∫V

Ψ∗
m(r⃗, t)V̂(t)Ψn(r⃗, t)d𝜏 = − i

ℏ

[
∫V
𝜓∗

m
⃗̂𝜇𝜓nd𝜏

]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

transition moment integral

ei𝜔mnt ⋅ ⃗0 cos𝜔t

Setting |an(0)|2 = 1 and |am(0)|2 = 0 for n ≠ m (after many steps) we find

||am(t)||2 =
⟨𝜇mn⟩2t
6𝜖0ℏ2 u(𝜈mn)

u(𝜈mn) is radiation density at 𝜈mn = 𝜔mn∕2𝜋.
Rate at which n → m transition from absorption of light energy occurs is

Rn→m =
d ||am(t)||2

dt
=

⟨𝜇mn⟩2

6𝜖0ℏ2 u(𝜈mn)

P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics



Okay, but what about spontaneous emission?
An atom or molecule in an excited energy eigenstate can spontaneously emit light and return to its
ground state in the absence of any electromagnetic radiation, i.e., V̂(t) = 0

How does spontaneous emission happen?

In this lecture’s derivations we treat light as classical E&M wave. No mention of photons.

Treating light classically gives no explanation for how superposition gets formed.

To explain spontaneous emission we need quantum field theory, which for light is called quantum
electrodynamics (QED).

Beyond scope of course to give QED treatment.

Instead, we examine Einstein’s approach to absorption and stimulated emission of light and see
what he learned about spontaneous emission.
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Light Absorption and Emission (Meanwhile, back in 1916)
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Light Absorption and Emission (Meanwhile, back in 1916)
Before any of this quantum theory was worked out. At this time Einstein used Planck’s distribution

u(𝜈) = 8𝜋𝜈2

c3
0

(
h𝜈

eh𝜈∕kBT − 1

)
to examine how atom interacts with light inside cavity full of radiation.

For Light Absorption he said atom’s light absorption rate, Rn→m, depends on light frequency,
𝜈mn, that excites Nn atoms from level n to m, and is proportional to light intensity shining on atom

Rn→m = NnBnmu(𝜈mn)

Bnm is Einstein’s proportionality constant for light absorption.
For Light Emission, when atom drops from m to n level, he proposed 2 processes: Spontaneous
Emission and Stimulated Emission

Absorption Stimulated
Emission

Spontaneous
Emission
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Light Absorption and Emission (Meanwhile, back in 1916)
Spontaneous Emission: When no light is in cavity, atom spontaneously radiates away
energy at rate proportional only to number of atoms in mth level,

Rspont
m→n = NmAmn

▶ Amn is Einsteins proportional constant for spontaneous emission.
▶ Einstein knew oscillating dipoles radiate and he assumed the same for atoms.
▶ Remember, in 1916, he wouldn’t know about stationary states and Schrödinger Eq.

incorrectly predicting atoms do not spontaneously radiate.

Stimulated Emission: From E&M Einstein guessed that emission was also generated by
external oscillating electric fields—light in cavity—and that stimulated emission rate is
proportional to light intensity and number of atoms in mth level.

Rstimul
m→n = NmBmnu(𝜈mn)

Bmn is Einstein’s proportional constant for stimulated emission.
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Light Absorption and Emission (Meanwhile, back in 1916)
Taking 3 processes together and assuming that absorption and emission rates are equal at
equilibrium

Rn→m = Rspont
m→n + Rstimul

m→n

we obtain
NnBnmu(𝜈mn) = Nm[Amn + Bmnu(𝜈mn)]

Einstein knew from Boltzmann’s statistical mechanics that n and m populations at equilibrium
depends on temperature

Nm
Nn

= e−(Em−En)∕kBT = e−ℏ𝜔∕kBT

We can rearrange the rate expression and substitute for Nm∕Nn to get

Amn + Bmnu(𝜈mn) =
Nn
Nm

Bmnu(𝜈mn) = eℏ𝜔∕kBTBnmu(𝜈mn)

and then get
u(𝜈mn) =

Amn

Bnmeℏ𝜔∕kBT − Bmn
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Light Absorption and Emission (Meanwhile, back in 1916)
Einstein compared his expression to Planck’s

u(𝜈mn) =
Amn

Bnmeℏ𝜔∕kBT − Bmn
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Einstein

=
8𝜋𝜈2

mn

c3
0

(
h𝜈mn

eh𝜈∕kBT − 1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Planck

Bnm = Bmn, i.e., stimulated emission and absorption rates must be equal to agree with Planck.

u(𝜈mn) =
Amn
Bnm

(
1

eℏ𝜔∕kBT − 1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Einstein

=
8𝜋𝜈2

mn

c3
0

(
h𝜈mn

eh𝜈∕kBT − 1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Planck

Relationship between spontaneous and stimulated emission rates:

Amn
Bnm

=
8𝜋𝜈2

mn

c3
0

h𝜈mn =
8𝜋h𝜈3

mn

c3
0

Amazing Einstein got this far without full quantum theory.
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Light Absorption and Emission
Fast forward to Schrödinger’s discovery of quantum wave equation, which gives light absorption rate as

Rn→m =
⟨𝜇mn⟩2

6𝜖0ℏ2 u(𝜈mn) = Bmnu(𝜈mn)

setting this equal to Einstein’s rate for absorption gives

Bmn =
⟨𝜇mn⟩2

6𝜖0ℏ2

from which we can calculate the spontaneous emission rate

Amn =
8𝜋h𝜈3

mn

c3
0

⟨𝜇mn⟩2

6𝜖0ℏ2

For H atom, spontaneous emission rate from 1st excited state to ground state is ∼ 108/s in
agreement with what Amn expression above would give.
QED tells us that quantized electromagnetic field has zero point energy.
It is these “vacuum fluctuations” that “stimulate” charge oscillations that lead to spontaneous
emission process.
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Selection Rules for Transitions
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Transition Selection Rules

In all spectroscopies you find that transition rate between certain levels will be nearly zero.

This is because corresponding transition moment integral is zero.

For electric dipole transitions we found that transition rate depends on

⟨𝜇⟩mn = ∫V
𝜓∗

m(r⃗) ⃗̂𝜇𝜓n(r⃗)d𝜏

𝜓m and 𝜓n are stationary states in absence of electric field.
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Harmonic Oscillator Selection Rules
Consider quantum harmonic oscillator transitions.

Imagine vibration of diatomic molecule with electric dipole moment.

This is 1D problem so we write electric dipole moment operator of harmonic oscillator in
series expansion about its value at equilibrium

𝜇(r̂) = 𝜇(re) +
d𝜇(re)

dr
(r̂ − re) +

1
2

d2𝜇(re)
dr2 (r̂ − re)2 +⋯

1st term in expansion, 𝜇(re), is permanent electric dipole moment of harmonic oscillator
associated with oscillator at rest.

2nd term describes linear variation in electric dipole moment with changing r.

We will ignore 3rd and higher-order terms in expansion.
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Harmonic Oscillator
Plug 1st two terms of expansion into transition moment integral

⟨𝜇nm⟩ = ∫
∞

−∞
𝜓∗

m(r)
(
𝜇(re) +

d𝜇(re)
dr

(r̂ − re)
)
𝜓n(r)dr,

=
�����������:0
𝜇(re)∫

∞

−∞
𝜓∗

m(r)𝜓n(r)dr +
(

d𝜇(re)
dr

)
∫

∞

−∞
𝜓∗

m(r)(r̂ − re)𝜓n(r)dr

Since m ≠ n we know that 1st integral is zero as stationary state wave functions are orthogonal leaving
us with ⟨𝜇nm⟩ = (

d𝜇(re)
dr

)
∫

∞

−∞
𝜓∗

m(r)(r̂ − re)𝜓n(r)dr

In quantum harmonic oscillator it is convenient to transform into coordinate 𝜉 using x = r − re and
𝜉 = 𝛼x to obtain ⟨𝜇nm⟩ = (

d𝜇(re)
dr

)
∫

∞

−∞
𝜒∗

m(𝜉)𝜉𝜒n(𝜉)d𝜉
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Harmonic Oscillator
With harmonic oscillator wave function, 𝜒n(𝜉), we obtain

⟨𝜇nm⟩ = (
d𝜇(re)

dr

)
AmAn ∫

∞

−∞
Hm𝜉Hne−𝜉

2
d𝜉

Using recursive relation, 𝜉Hn = 1
2 Hn+1 + nHn−1, we obtain

⟨𝜇nm⟩ = (
d𝜇(re)

dr

)
AmAn

[
1
2 ∫

∞

−∞
HmHn+1e−𝜉

2
d𝜉 + n∫

∞

−∞
HmHn−1e−𝜉

2
d𝜉

]
To simplify expression we rearrange

AmAn ∫
∞

−∞
Hm(𝜉)Hn(𝜉)e−𝜉

2
d𝜉 = 𝛿m,n to ∫

∞

−∞
Hm(𝜉)Hn(𝜉)e−𝜉

2
d𝜉 =

𝛿m,n

AmAn

Substitute into expression for ⟨𝜇nm⟩ gives

⟨𝜇nm⟩ = (
d𝜇(re)

dr

)[
1
2

An
An+1

𝛿m,n+1 + n
An

An−1
𝛿m,n−1

]
P. J. Grandinetti Chapter 14: Radiating Dipoles in Quantum Mechanics



Harmonic Oscillator
Recalling

An ≡ 1√
2nn!𝜋1∕2

we finally obtain transition dipole moment for harmonic oscillator

⟨𝜇nm⟩ = (
d𝜇(re)

dr

)[√
n + 1

2
𝛿m,n+1 +

√
n
2
𝛿m,n−1

]

For absorption, m = n + 1, transition is n → n + 1 and ⟨𝜇mn⟩2 gives

Rn→n+1 =
u(𝜈mn)
6𝜖0ℏ2 ⟨𝜇mn⟩2 =

u(𝜈mn)
6𝜖0ℏ2

(
d𝜇(re)

dr

)2 n + 1
2

For emission, m = n − 1, transition is n → n − 1 and ⟨𝜇mn⟩2 gives

Rn→n−1 =
u(𝜈mn)
6𝜖0ℏ2 ⟨𝜇mn⟩2 =

u(𝜈mn)
6𝜖0ℏ2

(
d𝜇(re)

dr

)2 n
2
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Harmonic Oscillator

Rn→n+1 =
u(𝜈mn)
6𝜖0ℏ2

(
d𝜇(re)

dr

)2 n + 1
2

and Rn→n−1 =
u(𝜈mn)
6𝜖0ℏ2

(
d𝜇(re)

dr

)2 n
2

Selection rule for harmonic oscillator is Δn = ±1.

Also, for allowed transitions
(
d𝜇(re)∕dr

)
must be non-zero.

For allowed transition it is not important whether a molecule has permanent dipole
moment but rather that dipole moment of molecule varies as molecule vibrates.

In later lectures we will examine transition selection rules for other types of quantized
motion, such as quantized rigid rotor and orbital motion of electrons in atoms and
molecules.
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Web Apps by Paul Falstad

Quantum transitions in one dimension
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