Chapter 15

ACID-BASE EQUILIBRIA (Cont.)

1

TABLE 15.6 The pH of Some Common Substances		TABLE 15.6 The pH of Some Common Substances	
Substance	рН	Substance	рН
Gastric juice (human stomach) Limes Lemons Soft drinks Plums Wines Apples Peaches Cherries Beers	1.0-3.0 $1.8-2.0$ $2.2-2.4$ $2.0-4.0$ $2.8-3.0$ $2.8-3.8$ $2.9-3.3$ $3.4-3.6$ $3.2-4.0$ $4.0-5.0$	Human blood Egg whites Milk of magnesia Household ammonia 4% NaOH solution Copyright © 2008 Pearson F	7.3–7.4 7.6–8.0 10.5 10.5–11.5 14 Prentice Hall, Inc.
Rainwater (unpolluted)	5.6		2

<u>Summary</u>: pH calculations of strong acids and strong bases

- 1. At relatively **high [S.A]** or **high [S.B.]**, i.e. ≥ 10⁻⁶ M, *pH* is calculated from [S.A.] or [S.B.]
- 2. In very dilute [S.A] or [S.B.], i.e. ≤ 10⁻⁸ M, dissociation of water is more important, so the **pH is 7**.

Question: How do we know if a given acid is strong or weak?

Know the following by heart: You have to be able to <u>name</u> them too.

There are only **six (6) strong acids** to remember: HCI, HBr, HI, H₂SO₄, HNO₃, HCIO₄

Perchloric acid

4

3

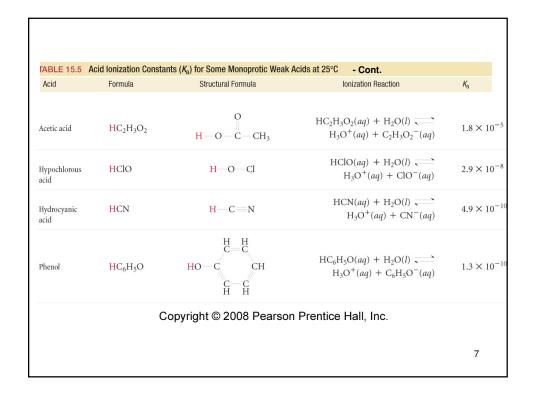
There are only six (6) strong bases to remember: LiOH, NaOH, KOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂

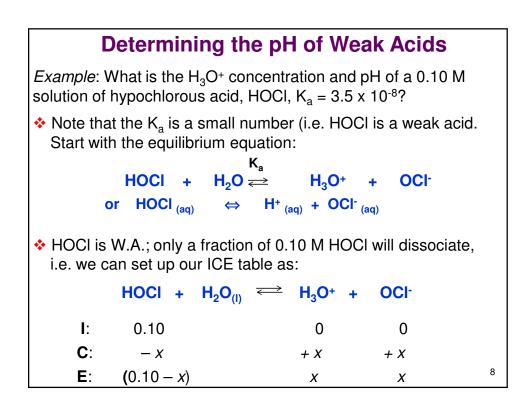
Determining the pH of solutions

Solutions of weak acids (W.A.)

>Ionization is incomplete; Equilibrium is set up

Ionization (dissociation) equation:


$$HA_{(aq)} + H_2O_{(I)} \stackrel{K_a}{\longleftrightarrow} H_3O_{(aq)} + A_{(aq)}^-$$


Or simply: $HA_{(aq)} \xrightarrow{K_a} H^+_{(aq)} + A^-_{(aq)}$

where K_a is the acid ionization (or dissociation) constant

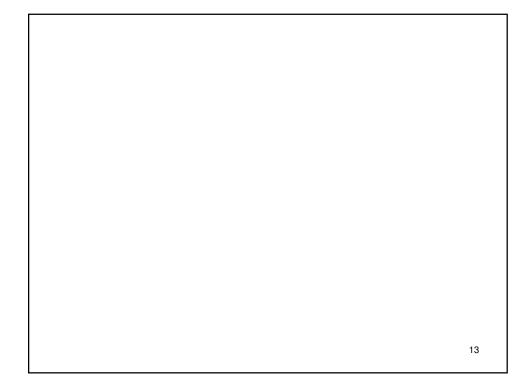
$$K_{a} = \frac{[H^{+}] [A^{-}]}{[HA]} \rightarrow \text{The } K_{a} \text{ for W.A. is < 1.}$$

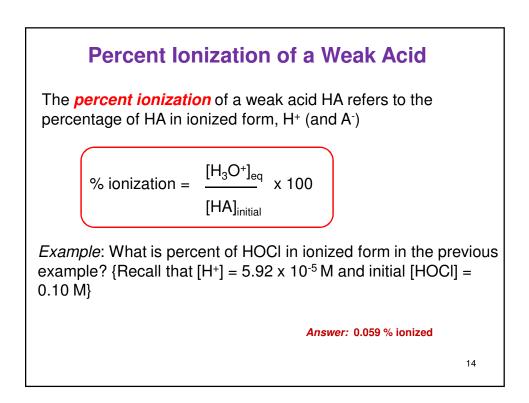
TABLE 15.5 Acid Ionization Constants (K _a) for Some Monoprotic Weak Acids at 25°C						
Acid	Formula	Structural Formula	Ionization Reaction	Ka		
Chlorous acid	HClO ₂	H - O - Cl = O	$HClO_2(aq) + H_2O(l)$ $H_3O^+(aq) + ClO_2^-(aq)$	1.1×10^{-2}		
Nitrous acid	HNO ₂	H-O-N=O	$HNO_{2}(aq) + H_{2}O(l)$ $H_{3}O^{+}(aq) + NO_{2}^{-}(aq)$	4.6×10^{-4}		
Hydrofluoric acid	HF	H—F	$HF(aq) + H_2O(l) =$ $H_3O^+(aq) + F^-(aq)$	3.5×10^{-4}		
Formic acid	HCHO ₂	о H—О—С—Н	$HCHO_2(aq) + H_2O(l) =$ $H_3O^+(aq) + CHO_2^-(aq)$	1.8×10^{-4}		
Benzoic acid	HC ₇ H ₅ O ₂	$H - O - C - H$ $O \qquad \begin{array}{c} H \\ C = C \\ H - O - C - C \\ C \\ H \\ H \end{array}$	$HC_{7}H_{5}O_{2}(aq) + H_{2}O(l) = H_{3}O^{+}(aq) + C_{7}H_{5}O_{2}^{-}(aq)$	6.5×10^{-5}		
				6		

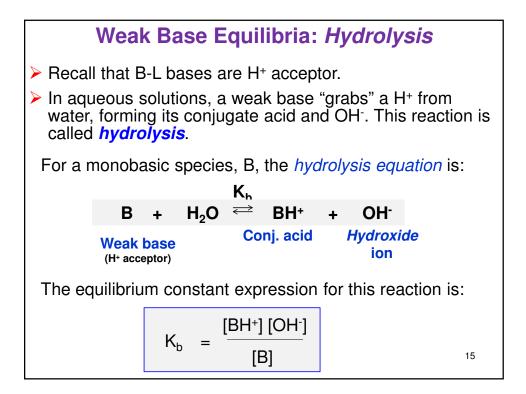
The K_a expression is:

$$\begin{split} \mathsf{K}_{a} &= \frac{[\mathsf{OCI}^{-}] \, [\mathsf{H}_{3}\mathsf{O}^{+}]}{[\mathsf{HOCI}]} &= \frac{(x)(x)}{(0.10 - x)} \\ & 3.5 \times 10^{-8} \,=\, \frac{x^{2}}{(0.10 - x)} \\ & \mathsf{Assuming} \; x << 0.10 \; (\mathsf{since} \; \mathsf{K}_{a} \; \mathsf{is \; very \; small}) \; \mathsf{and \; solving \; for} \\ & \mathsf{x} \; \; = \; 5.9_{2} \times 10^{-5} \; \mathsf{M} = [\mathsf{H}_{3}\mathsf{O}^{+}] = [\mathsf{OCI}^{-}] \end{split}$$

Check: Since 5.9 x $10^{-5} \ll 0.10$ our assumption is valid. We calculate pH as:


9


 $\mathbf{pH} = -\log(5.9_2 \times 10^{-5}) = 4.23$


Weak Acid Equilibria – Cont.Exercise: Calculate the pH of a 1.50 x 10-2 M formic acid,
HCO2H. (pKa = 3.745).Answer: pH = 2.808HINT: You must first determine Ka from pKa. How?

11

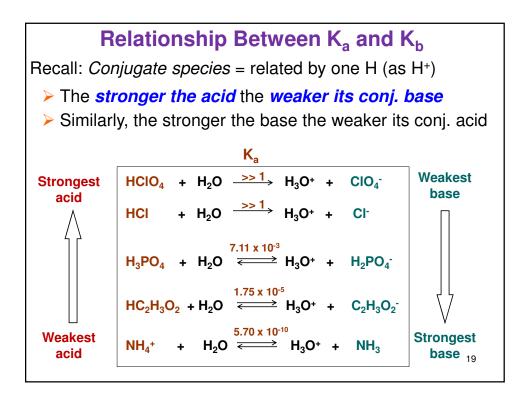
Determining K_a from Measured pH *Example*: A student measured the pH of a 0.10 M solution of formic acid, HCOOH, to be 2.38 at 25 °C. Calculate K_a for formic acid at 25 °C. Answer: $K_a = 1.8 \times 10^{-4}$

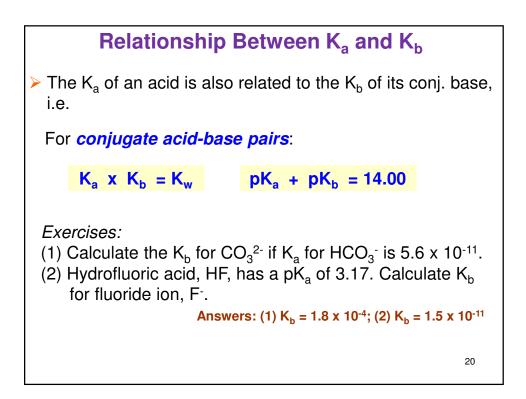
Hydrolysis – Cont.Exercise: Write the hydrolysis reaction of each of the
following bases:
$$\diamond$$
 Carbonate, $CO_3^{2^-}$ \diamond Sulfate, $SO_4^{2^-}$ \diamond Bicarbonate, HCO_3^{-} \diamond Phosphate, $PO_4^{3^-}$ $CO_3^{2^-} + H_2O \rightleftharpoons HCO_3^{-} + OH^-$ Note: Add a +1 charge
to the base to determine
charge of conjugate acid $HCO_3^{-} + H_2O \rightleftharpoons H2O_3 + OH^ SO_4^{2^-} + H_2O \rightleftharpoons HSO_4^{-} + OH^ PO_4^{3^-} + H_2O \rightleftharpoons HPO_4^{2^-} + OH^-$

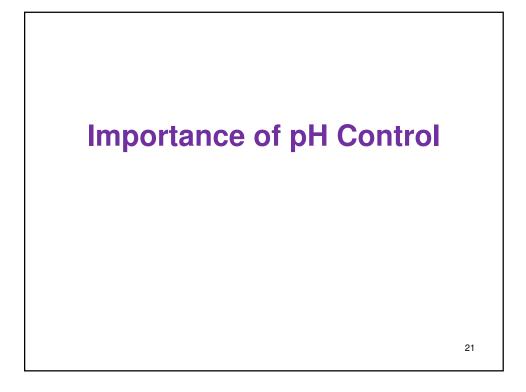
Determining pH of Solutions of Weak Bases

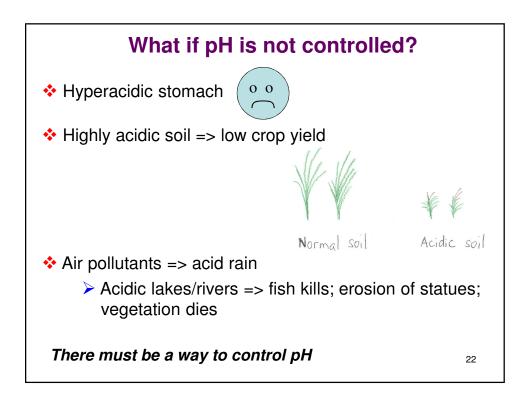
Ammonia is the most commonly used weak base. The hydrolysis of ammonia is written as:

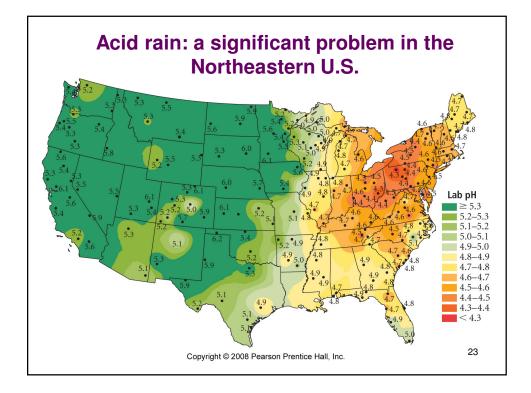
$$\begin{array}{rcl} \mathsf{K}_{\mathsf{b}} \\ \mathsf{NH}_3 \ + \ \mathsf{H}_2\mathsf{O} &\rightleftharpoons \ \mathsf{NH}_{4^+} \ + \ \mathsf{OH}^{\mathsf{H}} \\ \\ \text{Weak base} \end{array}$$

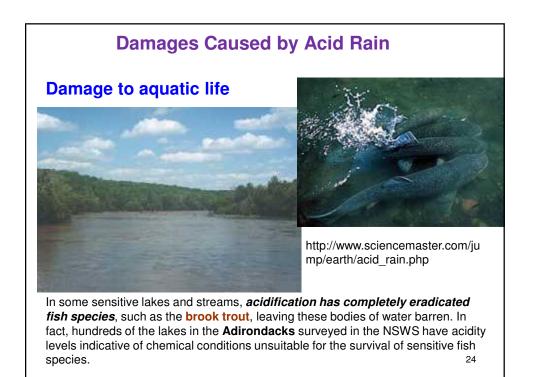

The $K_{\rm b}$ expression for $\rm NH_3$ can be written as:

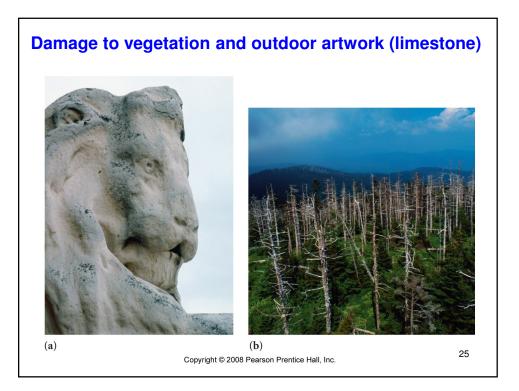

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

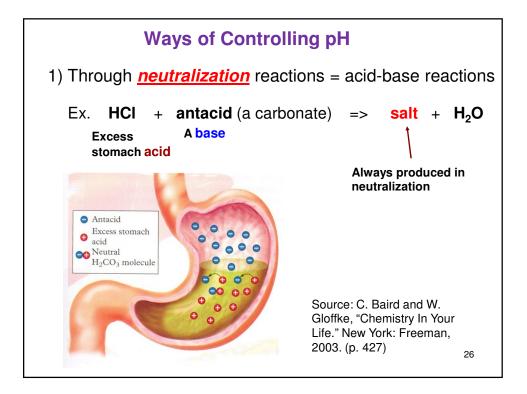

Exercise: Calculate the concentration of OH⁻ in a 0.15 M solution of NH₃. K_b for NH₃ is 1.8 x 10⁻⁵ at 25 °C. What is the pH of this solution?

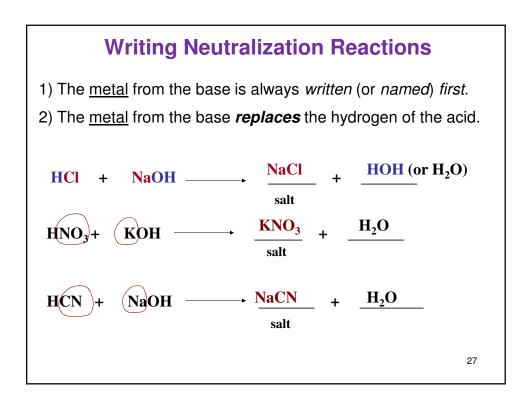

17

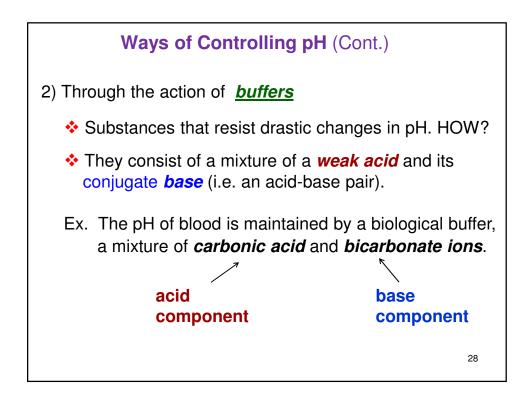

$$\begin{split} & H_{3} + H_{2}O \stackrel{K_{b}}{\Longrightarrow} \quad NH_{4}^{+} + OH^{+} \\ \underbrace{NH_{3}}{W} + H_{2}O \stackrel{K_{b}}{\Longrightarrow} \quad NH_{4}^{+} + OH^{+} \\ \underbrace{NH_{3}}{W} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad 0 \quad 0 \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad 0 \quad 0 \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^{+} \\ \hline H_{2} + H_{2}O \stackrel{K_{3}}{\Longrightarrow} \quad H_{4}^{+} + OH^{+} \\ \hline H_{2} + OH^$$

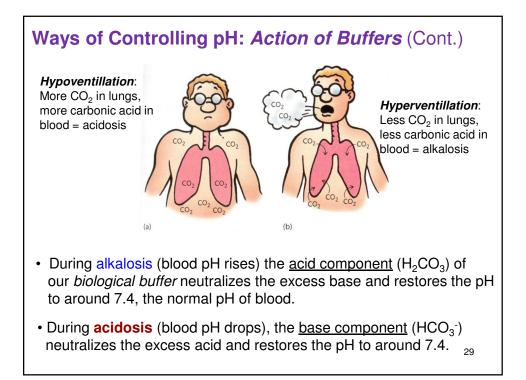


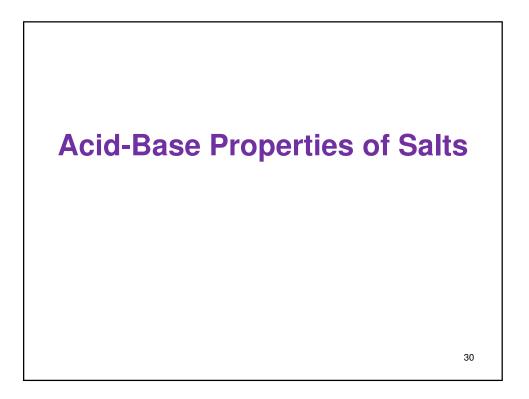


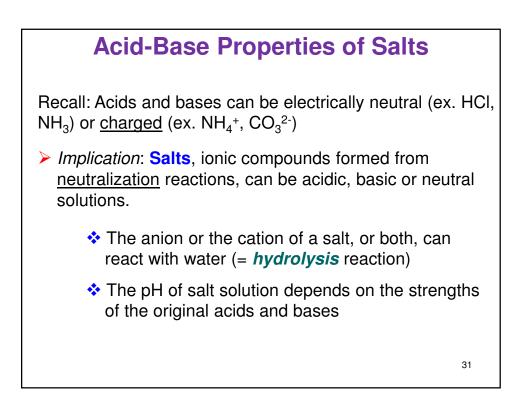


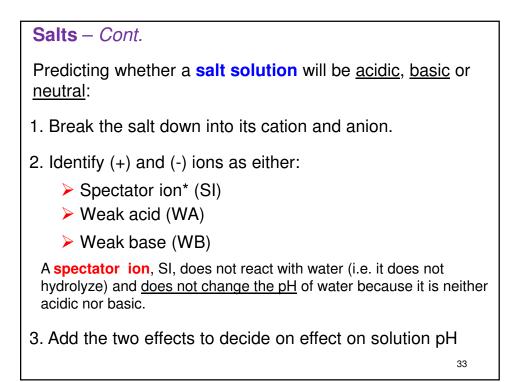


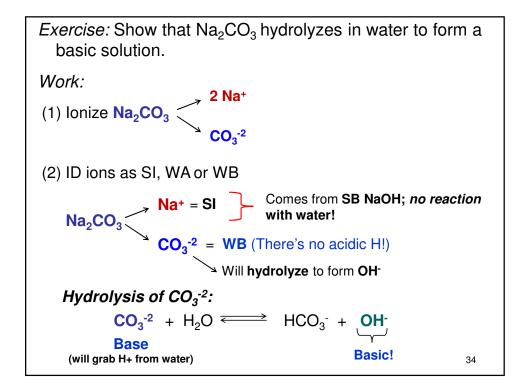


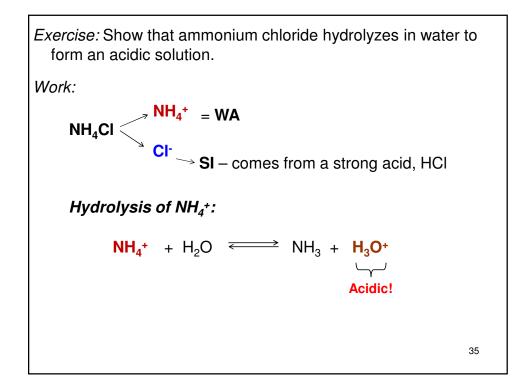


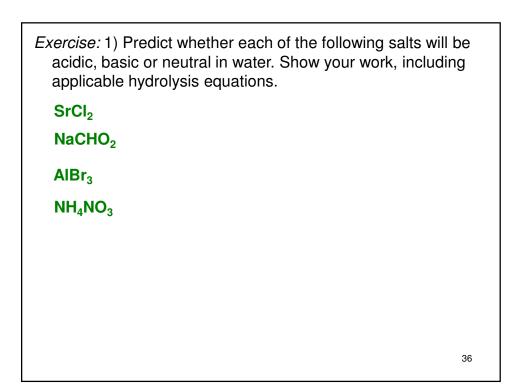




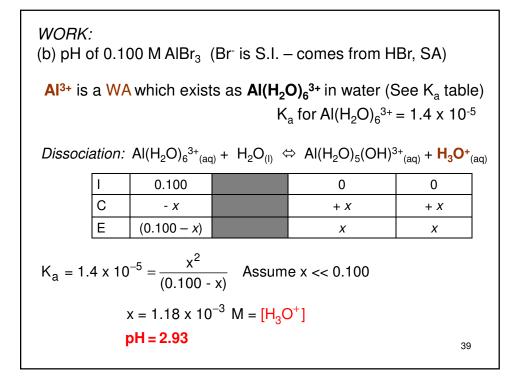




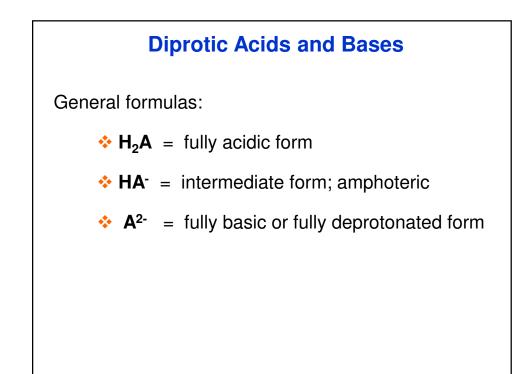




ç	Salts – Cont.						
 Q. What is the pH of an aqueous solution of a salt? > The pH of the salt depends on the strengths of the original acids and bases 							
	Acid	Base	Salt pH	Example of salt			
	Strong	Strong	7 (Neutral)	NaCl, KNO3, CaBr2			
	Weak	Strong	> 7 (Basic)	Na ₂ CO ₃ , K ₃ PO ₄			
	Strong	Weak	< 7 (Acidic)	NH₄CI, CH₃NH₃Br			
	Weak	Weak	Depends on which is stronger	NH_4CIO , $(NH_4)_2CO_3$			
-				32			



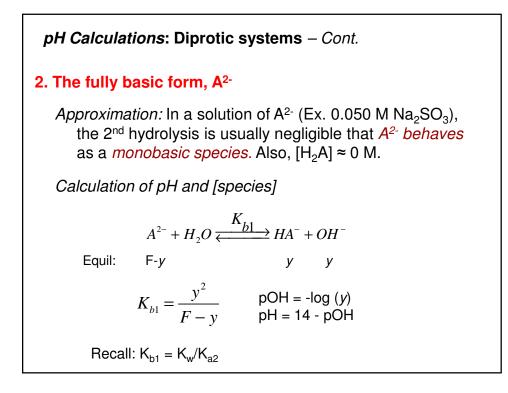
Exercise 2) Calculate the pH of each of the following aqueous solutions: (a) 0.100 M NaCHO₂, (b) 0.100 M AlBr₃ and (c) 0.100 M NH₄NO₃ WORK: (a) pH of 0.100 M CHO₂ (Na⁺ is S.I.) W.B. = will hydrolyze to form OH- $CHO_2^{-}_{(aq)} + H_2O_{(I)} \Leftrightarrow HCHO_2_{(aq)} + OH^{-}_{(aq)}$ 0.100 0 0 С - X + X + X Е (0.100 - x)Х Х Next we *need* $K_b =$ use K_a (HCHO₂) and K_w 37 Table: $K_a (HCHO_2) = 1.80 \times 10^{-4}$

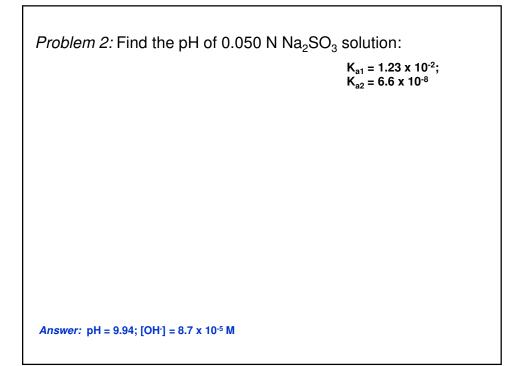

WORK - Cont. (a) pH of 0.100 M CHO₂: $Table: K_{b} (CHO_{2}^{-}) = \frac{1.00 \times 10^{-14}}{1.80 \times 10^{-4}} = 5.56 \times 10^{-11}$ Hydrolysis: CHO₂⁻ (aq) + H₂O () \Leftrightarrow HCHO₂ (aq) + OH⁺ (aq) $K_{b} = 5.56 \times 10^{-11} = \frac{\chi^{2}}{(0.100 - \chi)}$ Assume x << 0.100 $x = 2.36 \times 10^{-6} M = [OH⁻]$ pOH = 5.63; pH = 8.37

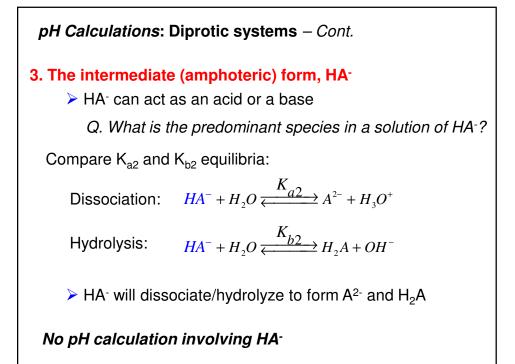
WORK: (c) pH of 0.100 M NH₄NO₃ (NO₃⁻ is S.I. – comes from HNO₃, SA) NH_4^+ is a WA (CA of WB NH₃; From K_a and K_b table, $K_{\rm b}$ of NH₃ = 1.76 x 10⁻⁵) $K_{a (NH_4^+)} = \frac{1.00 \times 10^{-14}}{1.76 \times 10^{-5}} = 5.68 \times 10^{-10}$ Ionization: $NH_4^+_{(aq)} + H_2O_{(I)} \iff NH_3_{(aq)} + H_3O^+_{(aq)}$ T 0.100 0 0 С - X + X + X Е (0.100 - x)Х Х $K_a = 5.68 \times 10^{-10} = \frac{x^2}{(0.100 - x)}$ Assume x << 0.100 40

x = 7.54 x 10⁻⁶ M = [H₃O⁺] pH = 5.12

41

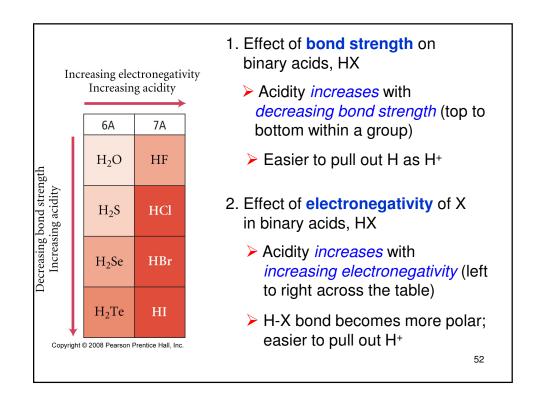


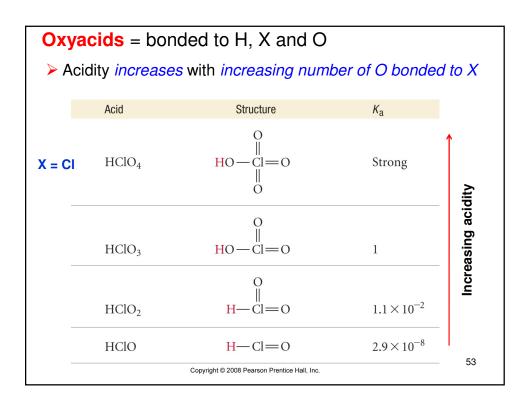

Equilibria involved: Diprotic Acids and BasesDiprotic Acid, H2AFirst dissociation: $H_2A + H_2O \xleftarrow{K_{a1}} HA^- + H_3O^+$ Second dissociation: $HA^- + H_2O \xleftarrow{K_{a2}} A^{-2} + H_3O^+$ Dibasic species, A2-First hydrolysis: $A^{2-} + H_2O \xleftarrow{K_{b1}} HA^- + OH^-$ Second hydrolysis: $HA^- + H_2O \xleftarrow{K_{b2}} H_2A + OH^-$ Q. How do we calculate K_{b1} and K_{b2} from K_a values?


Note that H₂A and HA⁻ species in the K_{a1} expression both appear in the K_{b2} expression. Similarly, the conjugates HA⁻ and A²⁻ in the K_{a2} expression both appear in the K_{b1} expression. Thus, $K_{a1} \cdot K_{b2} = K_{w}$ $K_{a2} \cdot K_{b1} = K_{w}$ Proof: $H_{2}A + H_{2}O \xleftarrow{K_{a1}} HA^{-} + H_{3}O^{+}$ $+ HA^{-} + H_{2}O \xleftarrow{K_{b2}} HA^{-} + OH^{-}$ $2H_{2}O \xleftarrow{K_{w}} H_{3}O^{+} + OH^{-}$ $K_{w} = K_{a1} \times K_{b2}$ Harris, Quantitative Chemical Analysis, 8e $\oplus 2011 \text{ W. H. Freeman}$

pH Calculation: Diprotic Acids and Bases **1. The fully acidic form, H₂A** *Approximation*: In a solution of H₂A (Ex. 0.050 M H₂SO₃), the 2nd dissociation is usually negligible that *H₂A behaves* as a *monoprotic acid*. Also, [A²⁻] \approx 0 M. *Calculation of pH and [species]* $H_2A + H_2O \xleftarrow{K_{a1}}{HA^-} + H_3O^+$ Equil: F-x x x x $K_{a1} = \frac{x^2}{F-x}$

pH Calculation: Fully acidic form $(H_2A) - Cont$. Problem 1: Find the pH of a 0.050 M H₂SO₃ solution. $K_{a1} = 1.23 \times 10^{-2}$; $K_{a2} = 6.6 \times 10^{-8}$ $H_2SO_3 + H_2O \xleftarrow{K_{a1}} HSO_3^- + H_3O^+$ Equil: 0.050-x x x x $K_{a1} = 1.23 \times 10^{-2} = \frac{x^2}{(0.050 - x)}$ x cannot be ignored since K_{a1} isn't too small $x^2 + 1.23 \times 10^{-2} x - 6.15 \times 10^{-4}$ Solve for x using quadratic equation $x = 1.94 \times 10^{-2}M = [H_3O^+] = [HSO_3^-]$ pH = 1.71





The intermediate form, HA⁻ (Cont.) **Calculation of pH and [species]** $[H^+] \approx \sqrt{\frac{K_1K_2F + K_1K_w}{K_1 + F}} \qquad \begin{array}{c} \text{Where} \\ K_1 = K_{a1} \\ K_2 = K_{a2} \\ F = F_{HA}. \end{array}$ $pH = -\log [H^+]$ $Quick \ check: pH = \frac{1}{2} (pK_1 + pK_2)$ $\text{Solve for } [H_2A] \ and [A^{2-}] \ using [H^+] \ above \ and \ K_1 \ \& \ K_2 \\ equilibria \end{array}$

