Chapter 15

ACID-BASE EQUILIBRIA (Cont.)

TABLE 15.6 The pH of Some Common Substances		TABLE 15.6 The pH of Some Common Substances	
Substance	pH	Substance	pH
Gastric juice (human stomach)	1.0-3.0	Human blood	7.3-7.4
Limes	1.8-2.0	Egg whites	7.6-8.0
Lemons	2.2-2.4	Milk of magnesia	10.5
Soft drinks	2.0-4.0	Household ammonia	10.5-11.5
Plums	2.8-3.0	4\% NaOH solution	14
Wines	2.8-3.8	Copyright © 2008 Pea	ce Hall, Inc.
Apples	2.9-3.3		
Peaches	3.4-3.6		
Cherries	3.2-4.0		
Beers	4.0-5.0		
Rainwater (unpolluted)	5.6		2

Summary: pH calculations of strong acids and strong bases

1. At relatively high [S.A] or high [S.B.], i.e. $\geq 10^{-6} \mathrm{M}, \mathrm{pH}$ is calculated from [S.A.] or [S.B.]
2. In very dilute [S.A] or [S.B.], i.e. $\leq 10^{-8} \mathrm{M}$, dissociation of water is more important, so the pH is 7 .

Question: How do we know if a given acid is strong or weak?

Know the following by heart: You have to be able to name them too.

There are only six (6) strong acids to remember:
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{HClO}_{4}$
Perchloric acid

There are only six (6) strong bases to remember:
$\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$

Determining the pH of solutions

Solutions of weak acids (W.A.)

$>$ lonization is incomplete; Equilibrium is set up
Ionization (dissociation) equation:

Or simply: $\quad \mathrm{HA}_{(\mathrm{aq})} \stackrel{\mathrm{K}_{\mathrm{a}}}{\rightleftarrows} \mathbf{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}^{-}{ }_{(\mathrm{aq})}$
where K_{a} is the acid ionization (or dissociation) constant

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}>\text { The } \boldsymbol{K}_{\mathrm{a}} \text { for W.A. is }<\mathbf{1} \text {. }
$$

$$
5
$$

TABLE 15.5 Acid Ionization Constants (K_{a}) for Some Monoprotic Weak Acids at $25^{\circ} \mathrm{C}$				
Acid	Formula	Structural Formula	Ionization Reaction	$K_{\text {a }}$
Chlorous acid	HClO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}=\mathrm{O}$	$\begin{array}{r} \mathrm{HClO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}_{2}^{-}(a q) \end{array}$	1.1×10^{-2}
Nitrous acid	HNO_{2}	$\mathrm{H}-\mathrm{O}-\mathrm{N}=\mathrm{O}$	$\begin{array}{r} \mathrm{HNO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) \end{array}$	4.6×10^{-4}
Hydrofluoric acid	HF	$\mathrm{H}-\mathrm{F}$	$\begin{aligned} & \mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \quad \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q) \end{aligned}$	3.5×10^{-4}
Formic acid	HCHO_{2}		$\begin{aligned} & \mathrm{HCHO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CHO}_{2}^{-}(a q) \end{aligned}$	1.8×10^{-4}
Benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$		$\begin{array}{r} \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}(a q) \end{array}$	6.5×10^{-5}

「ABLE 15.5 Acid lonization Constants (K_{a}) for Some Monoprotic Weak Acids at $25^{\circ} \mathrm{C}$ - Cont.				
Acid	Formula	Structural Formula	Ionization Reaction	$K_{\text {a }}$
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$		$\begin{array}{r} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)- \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}-(a q) \end{array}$	1.8×10^{-5}
Hypochlorous acid	HClO	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}$	$\begin{aligned} & \mathrm{HClO}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{ClO}^{-}(a q) \end{aligned}$	2.9×10^{-8}
Hydrocyanic acid	HCN	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	$\begin{aligned} & \mathrm{HCN}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ & \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CN}^{-}(a q) \end{aligned}$	4.9×10^{-1}
Phenol	$\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}$		$\begin{gathered} \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\ \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(a q) \end{gathered}$	1.3×10^{-1}

Copyright © 2008 Pearson Prentice Hall, Inc.

Determining the pH of Weak Acids

Example: What is the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration and pH of a 0.10 M solution of hypochlorous acid, $\mathrm{HOCI}, \mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}$?

* Note that the K_{a} is a small number (i.e. HOCl is a weak acid. Start with the equilibrium equation:

$$
\begin{aligned}
& \mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{a}}}{\rightleftarrows} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-} \\
& \text {or } \mathrm{HOCl}_{(\mathrm{aq})} \Leftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OCl}^{-}{ }_{(\mathrm{aq})}
\end{aligned}
$$

HOCl is W.A.; only a fraction of 0.10 M HOCl will dissociate,
i.e. we can set up our ICE table as:

$$
\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-}
$$

I:
0.10

0
0
C:
E: $(0.10-x)$
$+x \quad+x$
x x
*The K_{a} expression is:

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{OCl}^{\prime}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HOCl}]}=\frac{(x)(\mathrm{x})}{(0.10-\mathrm{x})} \\
3.5 \times 10^{-8}=\frac{\mathrm{x}^{2}}{(0.10-\mathrm{x})}
\end{gathered}
$$

Assuming $x \ll 0.10$ (since K_{a} is very small) and solving for x, we get:

$$
x=5.9_{2} \times 10^{-5} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{OCl}]
$$

Check: Since $5.9 \times 10^{-5} \ll 0.10$ our assumption is valid. We calculate pH as:

$$
\mathrm{pH}=-\log \left(5.9_{2} \times 10^{-5}\right)=4.23
$$

Weak Acid Equilibria - Cont.

Exercise: Calculate the pH of a $1.50 \times 10^{-2} \mathrm{M}$ formic acid, $\mathrm{HCO}_{2} \mathrm{H} .\left(\mathrm{pK}_{\mathrm{a}}=3.745\right)$.

HINT: You must first determine K_{a} from pK_{a}. How?

Determining K_{a} from Measured pH

Example: A student measured the pH of a 0.10 M solution of formic acid, HCOOH , to be 2.38 at $25^{\circ} \mathrm{C}$. Calculate K_{a} for formic acid at $25^{\circ} \mathrm{C}$.

Answer: $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$

Percent Ionization of a Weak Acid

The percent ionization of a weak acid HA refers to the percentage of HA in ionized form, H^{+}(and A^{-})

$$
\% \text { ionization }=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {eq }}}{[\mathrm{HA}]_{\text {initial }}} \times 100
$$

Example: What is percent of HOCl in ionized form in the previous example? $\left\{\right.$ Recall that $\left[\mathrm{H}^{+}\right]=5.92 \times 10^{-5} \mathrm{M}$ and initial $[\mathrm{HOCl}]=$ $0.10 \mathrm{M}\}$

Weak Base Equilibria: Hydrolysis

Recall that B-L bases are H^{+}acceptor.
> In aqueous solutions, a weak base "grabs" a H^{+}from water, forming its conjugate acid and OH . This reaction is called hydrolysis.
For a monobasic species, B, the hydrolysis equation is:
\(\underset{\substack{Weak base

(H+acceptor)}}{\mathrm{B}}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_{\mathrm{h}}}{\stackrel{Conj. acid}{\rightleftarrows} \mathrm{BH}^{+}}+\underset{\)| Hydroxide |
| :---: |
| ion |$}{\mathrm{OH}^{-}}$

The equilibrium constant expression for this reaction is:

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

Hydrolysis - Cont.
Exercise: Write the hydrolysis reaction of each of the following bases:
$>$ Carbonate, $\mathrm{CO}_{3}{ }^{2-}>$ Sulfate, $\mathrm{SO}_{4}{ }^{2-}$
$>$ Bicarbonate, $\mathrm{HCO}_{3}^{-} \quad>$ Phosphate, $\mathrm{PO}_{4}{ }^{3-}$

$$
\begin{aligned}
& \mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftarrows} \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-} \\
& \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftarrows} \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \\
& \mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftarrows} \mathrm{HSO}_{4}^{-}+\mathrm{OH}^{-} \\
& \mathrm{PO}_{4}{ }^{3-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftarrows} \mathrm{HPO}_{4}^{2-}+\mathrm{OH}^{-}
\end{aligned}
$$

Note: Add a +1 charge to the base to determine charge of conjugate acid

Determining pH of Solutions of Weak Bases

Ammonia is the most commonly used weak base. The hydrolysis of ammonia is written as:

$$
\underset{\text { Weak base }}{\mathrm{NH}_{3}}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftarrows} \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

The K_{b} expression for NH_{3} can be written as:

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

Exercise: Calculate the concentration of OH^{-}in a 0.15 M solution of $\mathrm{NH}_{3} . \mathrm{K}_{\mathrm{b}}$ for NH_{3} is 1.8×10^{-5} at $25^{\circ} \mathrm{C}$. What is the pH of this solution?

$$
\begin{array}{lccc}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{~K}_{\mathrm{b}}}{\rightleftarrows} & \mathrm{NH}_{4}^{+} & +\mathrm{OH}^{-} \\
& \text {WB } & & \\
\mathrm{I}: & 0.15 & 0 & 0 \\
\text { C: } & -y & +y & +y \\
\mathrm{E}: & (0.15-y) & y & y
\end{array}
$$

K_{b} and pH can be expressed as:

$$
\text { or } \quad \mathrm{pH}=14.00-\log (\mathrm{y})
$$

Relationship Between K_{a} and K_{b}

Recall: Conjugate species = related by one $\mathrm{H}\left(\mathrm{as} \mathrm{H}^{+}\right)$
The stronger the acid the weaker its conj. base
Similarly, the stronger the base the weaker its conj. acid

Relationship Between K_{a} and K_{b}

The K_{a} of an acid is also related to the K_{b} of its conj. base, i.e.

For conjugate acid-base pairs:

$$
\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}} \quad \mathrm{pK} \mathrm{a}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14.00
$$

Exercises:

(1) Calculate the K_{b} for $\mathrm{CO}_{3}{ }^{2-}$ if K_{a} for $\mathrm{HCO}_{3}{ }^{-}$is 5.6×10^{-11}.
(2) Hydrofluoric acid, HF, has a pK_{a} of 3.17. Calculate K_{b} for fluoride ion, F -

$$
\text { Answers: (1) } K_{b}=1.8 \times 10^{-4} \text {; (2) } K_{b}=1.5 \times 10^{-11}
$$

Importance of pH Control

What if pH is not controlled?

* Highly acidic soil => low crop yield

* Air pollutants => acid rain
> Acidic lakes/rivers => fish kills; erosion of statues; vegetation dies

There must be a way to control pH

Acid rain: a significant problem in the Northeastern U.S.

In some sensitive lakes and streams, acidification has completely eradicated fish species, such as the brook trout, leaving these bodies of water barren. In fact, hundreds of the lakes in the Adirondacks surveyed in the NSWS have acidity levels indicative of chemical conditions unsuitable for the survival of sensitive fish species.

Damage to vegetation and outdoor artwork (limestone)

Ways of Controlling pH

1) Through neutralization reactions = acid-base reactions

Source: C. Baird and W. Gloffke, "Chemistry In Your Life." New York: Freeman, 2003. (p. 427)

Writing Neutralization Reactions

1) The metal from the base is always written (or named) first.
2) The metal from the base replaces the hydrogen of the acid.

$$
\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \frac{\mathrm{NaCl}}{\text { salt }}+\xrightarrow{\mathrm{HOH}\left(\text { or } \mathrm{H}_{2} \mathrm{O}\right)}
$$

Ways of Controlling pH (Cont.)

2) Through the action of buffers

* Substances that resist drastic changes in pH. HOW?
* They consist of a mixture of a weak acid and its conjugate base (i.e. an acid-base pair).

Ex. The pH of blood is maintained by a biological buffer, a mixture of carbonic acid and bicarbonate ions.
acid component

base component

Ways of Controlling pH: Action of Buffers (Cont.)

Hypoventillation: More CO_{2} in lungs, more carbonic acid in blood = acidosis

(a)

(b)

- During alkalosis (blood pH rises) the acid component $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ of our biological buffer neutralizes the excess base and restores the pH to around 7.4, the normal pH of blood.
- During acidosis (blood pH drops), the base component $\left(\mathrm{HCO}_{3}^{-}\right)$ neutralizes the excess acid and restores the pH to around 7.4.

Acid-Base Properties of Salts

Acid-Base Properties of Salts

Recall: Acids and bases can be electrically neutral (ex. HCl , NH_{3}) or charged (ex. $\mathrm{NH}_{4}{ }^{+}, \mathrm{CO}_{3}{ }^{2-}$)
> Implication: Salts, ionic compounds formed from neutralization reactions, can be acidic, basic or neutral solutions.

* The anion or the cation of a salt, or both, can react with water (= hydrolysis reaction)
* The pH of salt solution depends on the strengths of the original acids and bases

Salts - Cont.

Q. What is the pH of an aqueous solution of a salt?
$>$ The pH of the salt depends on the strengths of the original acids and bases

Acid	Base	Salt pH	Example of salt
Strong	Strong	7 (Neutral)	$\mathrm{NaCl}, \mathrm{KNO}_{3}, \mathrm{CaBr}_{2}$
Weak	Strong	>7 (Basic)	$\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{PO}_{4}$
Strong	Weak	<7 (Acidic)	$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$
Weak	Weak	Depends on which is stronger	$\mathrm{NH}_{4} \mathrm{ClO},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$

Salts - Cont.

Predicting whether a salt solution will be acidic, basic or neutral:

1. Break the salt down into its cation and anion.
2. Identify (+) and (-) ions as either:
$>$ Spectator ion* (SI)
$>$ Weak acid (WA)
> Weak base (WB)
A spectator ion, SI, does not react with water (i.e. it does not hydrolyze) and does not change the pH of water because it is neither acidic nor basic.
3. Add the two effects to decide on effect on solution pH

Exercise: Show that $\mathrm{Na}_{2} \mathrm{CO}_{3}$ hydrolyzes in water to form a basic solution.

Work:
(1) Ionize $\mathrm{Na}_{2} \mathrm{CO}_{3}$

(2) ID ions as SI, WA or WB

Hydrolysis of CO_{3}^{-2} :

(will grab $\mathrm{H}+$ from water)
Basic!

Exercise: Show that ammonium chloride hydrolyzes in water to form an acidic solution.

Work:

Hydrolysis of $\mathrm{NH}_{4}{ }^{+}$:

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\underbrace{\mathrm{H}_{3} \mathrm{O}^{+}}_{\text {Acidic! }}
$$

Exercise: 1) Predict whether each of the following salts will be acidic, basic or neutral in water. Show your work, including applicable hydrolysis equations.

SrCl_{2}

NaCHO_{2}
AlBr_{3}
$\mathrm{NH}_{4} \mathrm{NO}_{3}$

Exercise 2) Calculate the pH of each of the following aqueous solutions: (a) $0.100 \mathrm{M} \mathrm{NaCHO}_{2}$, (b) $0.100 \mathrm{M} \mathrm{AlBr}_{3}$ and (c) $0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$

WORK:
(a) pH of $0.100 \mathrm{M}_{\mathrm{CHO}_{2}}^{-} \quad\left(\mathrm{Na}^{+}\right.$is S.I. $)$
W.B. = will hydrolyze to form OH -

$\mathrm{CHO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(1)} \Leftrightarrow$		CHO	
1	0.100	0	0
C	- x	$+x$	$+x$
E	$(0.100-x)$	x	x

Next we need $\mathrm{K}_{\mathrm{b}}=>$ use $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HCHO}_{2}\right)$ and K_{w}
Table: $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HCHO}_{2}\right)=1.80 \times 10^{-4}$

WORK - Cont.
(a) pH of $0.100 \mathrm{M} \mathrm{CHO}_{2}{ }^{-}$

Table: $\mathrm{K}_{\mathrm{b}}\left(\mathrm{CHO}_{2}^{-}\right)=\frac{1.00 \times 10^{-14}}{1.80 \times 10^{-4}}=5.56 \times 10^{-11}$

Hydrolysis: $\mathrm{CHO}_{2}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{HCHO}_{2(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$

$$
\mathrm{K}_{\mathrm{b}}=5.56 \times 10^{-11}=\frac{\mathrm{x}^{2}}{(0.100-\mathrm{x})} \quad \text { Assume } \mathrm{x} \ll 0.100
$$

$$
x=2.36 \times 10^{-6} \mathrm{M}=\left[\mathrm{OH}^{-}\right]
$$

$$
\mathrm{pOH}=5.63 ; \mathrm{pH}=8.37
$$

WORK:

(b) pH of $0.100 \mathrm{M} \mathrm{AlBr}_{3}$ (Br^{-}is S.I. - comes from $\mathrm{HBr}, \mathrm{SA}$)
Al^{3+} is a WA which exists as $\mathbf{A l}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ in water (See K_{a} table)

$$
\mathrm{K}_{\mathrm{a}} \text { for } \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}=1.4 \times 10^{-5}
$$

Dissociation: $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}{ }_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{3+}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}$

I	0.100		0	0
C	$-x$		$+x$	$+x$
E	$(0.100-x)$		x	x

$\mathrm{K}_{\mathrm{a}}=1.4 \times 10^{-5}=\frac{\mathrm{x}^{2}}{(0.100-x)} \quad$ Assume $\mathrm{x} \ll 0.100$

$$
x=1.18 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\mathrm{pH}=2.93
$$

WORK:

(c) pH of $0.100 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}\left(\mathrm{NO}_{3}{ }^{-}\right.$is S.I. - comes from HNO_{3}, SA)
$\mathrm{NH}_{4}{ }^{+}$is a WA (CA of WB NH_{3}; From K_{a} and K_{b} table, K_{b} of $\mathrm{NH}_{3}=1.76 \times 10^{-5}$)
$\mathrm{K}_{\mathrm{a}\left(\mathrm{NH}_{4}^{+}\right)}=\frac{1.00 \times 10^{-14}}{1.76 \times 10^{-5}}=5.68 \times 10^{-10}$
Ionization: $\mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Leftrightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$

I	0.100		0	0
C	$-x$		$+x$	$+x$
E	$(0.100-x)$		x	x

$K_{a}=5.68 \times 10^{-10}=\frac{x^{2}}{(0.100-x)} \quad$ Assume $x \ll 0.100$

$$
\begin{aligned}
& \mathrm{x}=7.54 \times 10^{-6} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=5.12
\end{aligned}
$$

Diprotic Acids and Bases

General formulas:

- $\mathrm{H}_{2} \mathrm{~A}=$ fully acidic form
* $\mathrm{HA}^{-}=$intermediate form; amphoteric
* $\mathbf{A}^{2-}=$ fully basic or fully deprotonated form

Equilibria involved: Diprotic Acids and Bases

Diprotic Acid, $\mathrm{H}_{2} \mathrm{~A}$

$\begin{array}{ll}\text { First dissociation: } & \mathrm{H}_{2} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O} \underset{a l}{\stackrel{K_{a l}}{\rightleftarrows}} \mathrm{HA}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ \text {Second dissociation: } & \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{a 2}}{\rightleftarrows} A^{-2}+\mathrm{H}_{3} \mathrm{O}^{+}\end{array}$

Dibasic species, \mathbf{A}^{2-}
First hydrolysis: $\quad A^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b 1}}{\rightleftarrows} \mathrm{HA}^{-}+\mathrm{OH}^{-}$
Second hydrolysis: $\quad \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_{b 2}}{\rightleftarrows} \mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}^{-}$
Q. How do we calculate $K_{b 1}$ and $K_{b 2}$ from K_{a} values?

Note that $\mathrm{H}_{2} A$ and HA^{-}species in the $\mathrm{K}_{\mathrm{a} 1}$ expression both appear in the $K_{b 2}$ expression. Similarly, the conjugates HA^{-}and A^{2-} in the $\mathrm{K}_{\mathrm{a} 2}$ expression both appear in the $\mathrm{K}_{\mathrm{b} 1}$ expression.

Thus, $\quad K_{\mathrm{a} 1} \cdot K_{\mathrm{b} 2}=K_{\mathrm{w}}$

$$
K_{\mathrm{a} 2} \cdot K_{\mathrm{b} 1}=K_{\mathrm{w}}
$$

Proof:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{a 1}}{\rightleftarrows} \mathrm{HA}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b 2}}{\rightleftarrows} \mathrm{H}_{2} \mathrm{~A}^{\mathrm{A}} \mathrm{OH}^{-}
\end{aligned}
$$

$+$

$$
2 \mathrm{H}_{2} \mathrm{O} \stackrel{K_{w}}{\rightleftarrows} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a} 1} \times \mathrm{K}_{\mathrm{b} 2}
$$

pH Calculation: Diprotic Acids and Bases

1. The fully acidic form, $\mathrm{H}_{2} \mathrm{~A}$

Approximation: In a solution of $\mathrm{H}_{2} \mathrm{~A}$ (Ex. $0.050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$), the $2^{\text {nd }}$ dissociation is usually negligible that $\mathrm{H}_{2} \mathrm{~A}$ behaves as a monoprotic acid. Also, $\left[\mathrm{A}^{2-}\right] \approx 0 \mathrm{M}$.

Calculation of pH and [species]

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{al}}{\stackrel{K_{a 1}}{\rightleftarrows}} \mathrm{HA}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\text {Equil: } \mathrm{F}-x \quad x \\
\\
K_{a 1}=\frac{x^{2}}{F-x}
\end{gathered}
$$

pH Calculation: Fully acidic form $\left(\mathrm{H}_{2} \mathrm{~A}\right)-$ Cont.
Problem 1: Find the pH of a $0.050 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$ solution.
$\mathrm{K}_{\mathrm{a} 1}=1.23 \times 10^{-2} ; \mathrm{K}_{\mathrm{a} 2}=6.6 \times 10^{-8}$
$\begin{array}{ll} & \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{Kal}_{\mathrm{al}}^{\rightleftarrows}}{\rightleftarrows} \mathrm{HSO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ \text {Equil: } & 0.050-x\end{array}$
$K_{a 1}=1.23 \times 10^{-2}=\frac{x^{2}}{(0.050-x)}$
$x^{2}+1.23 \times 10^{-2} x-6.15 \times 10^{-4}$
$x=1.94 \times 10^{-2} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HSO}_{3}^{-}\right]$
$p H=1.71$

pH Calculations: Diprotic systems - Cont.

2. The fully basic form, \mathbf{A}^{2-}

Approximation: In a solution of A^{2-} (Ex. $0.050 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$), the $2^{\text {nd }}$ hydrolysis is usually negligible that A^{2-} behaves as a monobasic species. Also, $\left[\mathrm{H}_{2} \mathrm{~A}\right] \approx 0 \mathrm{M}$.

Calculation of pH and [species]

$$
\text { Equil: } \begin{gathered}
A^{2-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{b 1}}{\rightleftarrows} \mathrm{HA}^{-}+\mathrm{OH}^{-} \\
y \quad y \\
\\
\\
K_{b 1}=\frac{y^{2}}{F-y} \quad \begin{array}{l}
\mathrm{pOH}=-\log (y) \\
\mathrm{pH}=14-\mathrm{pOH}
\end{array}
\end{gathered}
$$

Recall: $\mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 2}$

Problem 2: Find the pH of $0.050 \mathrm{~N} \mathrm{Na}_{2} \mathrm{SO}_{3}$ solution:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a} 1}=1.23 \times 10^{-2} ; \\
& \mathrm{K}_{\mathrm{a} 2}=6.6 \times 10^{-8}
\end{aligned}
$$

Answer: $\mathrm{pH}=9.94 ;\left[\mathrm{OH}^{-}\right]=8.7 \times 10^{-5} \mathrm{M}$

pH Calculations: Diprotic systems - Cont.

3. The intermediate (amphoteric) form, HA^{-}
$>\mathrm{HA}^{-}$can act as an acid or a base
Q. What is the predominant species in a solution of $H A$?
Compare $\mathrm{K}_{\mathrm{a} 2}$ and $\mathrm{K}_{\mathrm{b} 2}$ equilibria:
Dissociation: $\quad \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{a 2}}{\rightleftarrows} \mathrm{~A}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Hydrolysis: $\quad \mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{K}_{b 2}}{\rightleftarrows} \mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}^{-}$
$>\mathrm{HA}^{-}$will dissociate/hydrolyze to form A^{2-} and $\mathrm{H}_{2} \mathrm{~A}$
No pH calculation involving HA^{-}

The intermediate form, HA (Cont.)
Calculation of pH and [species]

$$
\left[\mathrm{H}^{+}\right] \approx \sqrt{\frac{K_{1} K_{2} \mathrm{~F}+K_{1} K_{\mathrm{w}}}{K_{1}+\mathrm{F}}} \quad \begin{aligned}
& \text { Where } \\
& \mathrm{K}_{1}=\mathrm{K}_{\mathrm{a}} \\
& \mathrm{~K}_{2}=\mathrm{K}_{\mathrm{a} 2} \\
& \mathrm{~F}=\mathrm{F}_{\mathrm{HA}}
\end{aligned}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
Quick check: $\mathrm{pH}=1 / 2\left(\mathrm{pK}_{1}+\mathrm{pK}_{2}\right)$
$>$ Solve for $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ and $\left[\mathrm{A}^{2}\right]$ using $\left[\mathrm{H}^{+}\right]$above and K_{1} \& K_{2} equilibria

Trends in Acidity

1. Effect of bond strength on

 binary acids, HX$>$ Acidity increases with decreasing bond strength (top to bottom within a group)
$>$ Easier to pull out H as H^{+}
2. Effect of electronegativity of X in binary acids, HX
$>$ Acidity increases with increasing electronegativity (left to right across the table)
$>\mathrm{H}-\mathrm{X}$ bond becomes more polar; easier to pull out H^{+}

Oxyacids = bonded to H, X and O

\rightarrow Acidity increases with increasing number of O bonded to X

$\mathrm{X}=\mathrm{Cl}$	Acid	Structure	$K_{\text {a }}$
	HClO_{4}		Strong
	HClO_{3}		1
	HClO_{2}		1.1×10^{-2}
	HClO	$\mathrm{H}-\mathrm{Cl}=\mathrm{O}$	2.9×10^{-8}

