- 15.28 The factors affecting the ease with which the hydrogen will be donated (and therefore acidic) are the electronegativity of the element Y and the number of oxygen atoms attached to the element Y.
- 15.29 A Lewis acid is an electron pair acceptor. A Lewis base is an electron pair donor.
- 15.30 A Lewis acid has an empty orbital (or can rearrange electrons to create an empty orbital) that can accept an electron pair. A Lewis base has a lone pair of electrons it can donate to the Lewis acid.
- 15.31 The combustion of fossil fuels produces oxides of sulfur and nitrogen, which react with oxygen and water to form sulfuric and nitric acids. These acids then combine with rain to form acid rain. Acid rain is a significant problem in the northeastern United States.
- 15.32 Acid rain corrodes man-made structures and also damages aquatic environments and forests. Environmental legislation has helped stabilize the amount of acid rain being produced.

Problems by Topic The Nature and Definitions of Acids and Bases

15.33 (a) acid HNO₃(aq) \rightarrow H⁺(aq) + NO₃⁻(aq)

- (b) acid $NH_4^+(aq) \rightarrow H^+(aq) + NH_3(aq)$
- (c) base $KOH(aq) \rightarrow K^+(aq) + OH^-(aq)$
- (d) acid $HC_2H_3O_2(aq) \rightarrow H^+(aq) + C_2H_3O_2^-(aq)$
- (a) base NaOH(aq) \rightarrow Na⁺(aq) + OH⁻(aq)
- (b) acid $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$
- (c) acid HBr(aq) \rightarrow H⁺(aq) + Br⁻(aq)
- (d) base $Sr(OH)_2(aq) \rightarrow Sr^{2+}(aq) + 2OH^{-}(aq)$
- (a) Since H₂CO₃ donates a proton to H₂O, it is the acid. After H₂CO₃ donates the proton, it becomes HCO₃⁻, the conjugate base. Since H₂O accepts a proton, it is the base. After H₂O accepts the proton, it becomes H₃O⁺, the conjugate acid.
- (b) Since H₂O donates a proton to NH₃, it is the acid. After H₂O donates the proton, it becomes OH⁻, the conjugate base. Since NH₃ accepts a proton, it is the base. After NH₃ accepts the proton, it becomes NH₄⁺, the conjugate acid.
- (c) Since HNO₃ donates a proton to H₂O, it is the acid. After HNO₃ donates the proton, it becomes NO₃⁻, the conjugate base. Since H₂O accepts a proton, it is the base. After H₂O accepts the proton, it becomes H₃O⁺, the conjugate acid.
- (d) Since H₂O donates a proton to C₅H₅N, it is the acid. After H₂O donates the proton, it becomes OH⁻, the conjugate base. Since C₅H₅N accepts a proton, it is the base. After C₅H₅N accepts the proton, it becomes C₅H₅NH⁺, the conjugate acid.
- 15.36 (a) Since HI donates a proton to H₂O, it is the acid. After HI donates the proton, it becomes I⁻, the conjugate base. Since H₂O accepts a proton, it is the base. After H₂O accepts the proton, it becomes H₃O⁺, the conjugate acid.
 - (b) Since H₂O donates a proton to CH₃NH₂, it is the acid. After H₂O donates the proton, it becomes OH⁻, the conjugate base. Since CH₃NH₂ accepts a proton, it is the base. After CH₃NH₂ accepts the proton, it becomes CH₃NH₃⁺, the conjugate acid.
 - (c) Since H₂O donates a proton to CO₃²⁻, it is the acid. After H₂O donates the proton, it becomes OH⁻, the conjugate base. Since CO₃²⁻ accepts a proton, it is the base. After CO₃²⁻ accepts the proton, it becomes HCO₃⁻, the conjugate acid.

15.35

So, solution a > solution b > solution c.

Chapter 15 Acids and Bases

- 583
- 15.44 HCl is a strong acid, $K_a(HF) = 3.5 \times 10^{-4}$, $K_a(HClO) = 2.9 \times 10^{-8}$, $K_a(HC_6H_5O) = 1.3 \times 10^{-10}$.

The larger the value of K_a the stronger the acid and the greater the [H₃O⁺].

The order of decreasing $[H_3O^+]$ is HCl > HF > HClO > HC_6H_5O.

15.45 (a) F⁻ is a stronger base than Cl⁻. F - is the conjugate base of HF (a weak acid), Cl - is the conjugate base of HCl (a strong acid), the weaker the acid, the stronger the conjugate base. (b) NO₂⁻ is a stronger base than NO₃⁻. NO₂⁻ is the conjugate base of HNO₂ (a weak acid), NO₃⁻ is the conjugate base of HNO₃ (a strong acid), the weaker the acid, the stronger the conjugate base. ClO⁻ is a stronger base than F⁻. (c) F⁻ is the conjugate base of HF ($K_a = 3.5 \times 10^{-4}$), ClO⁻ is the conjugate base of HClO ($K_a = 2.9 \times 10^{-8}$) HClO is the weaker acid, the weaker the acid, the stronger the conjugate base. 15.46 (a) ClO₂⁻ is a stronger base than ClO₄⁻. ClO2⁻ is the conjugate base of HClO2 (a weak acid), ClO4⁻ is the conjugate base of HClO4 (a strong acid), the weaker the acid, the stronger the conjugate base. H₂O is a stronger base than Cl⁻. (b) H₂O is the conjugate base of H₃O⁺, Cl⁻ is the conjugate base of HCl (a strong acid), the weaker the acid, the stronger the conjugate base. CN⁻ is stronger base than CIO⁻. (c) CN⁻ is the conjugate base of HCN ($K_a = 4.9 \times 10^{-10}$), ClO⁻ is the conjugate base of HClO $(K_a = 2.9 \times 10^{-8})$, the weaker the acid, the stronger the conjugate base. Autoionization of Water and pH Given: $K_w = 1.0 \times 10^{-14}$, $[H_3O^+] = 1.2 \times 10^{-8} M$ Find: $[OH^-]$ 15.47 (a) Conceptual Plan: $[H_3O^+] \rightarrow [OH^-]$ $K_{\rm w} = 1.0 \times 10^{-14} = [{\rm H_3O^+}][{\rm OH^-}]$ Solution: $K_{\rm w} = 1.0 \times 10^{-14} = (1.2 \times 10^{-8})[{\rm OH}^{-1}]$ $[OH^{-}] = 8.3 \times 10^{-7} M$ $[OH^{-}] > [H_3O^{+}]$ so the solution is basic. Given: $K_w = 1.0 \times 10^{-14}$, $[H_3O^+] = 8.5 \times 10^{-5} M$ Find: $[OH^-]$ (b) Conceptual Plan: $[H_3O^+] \rightarrow [OH^-]$ $K_w = 1.0 \times 10^{-14} = [H_3O^+][OH^-]$ Solution: $K_{\rm w} = 1.0 \times 10^{-14} = (8.5 \times 10^{-5})[{\rm OH}^{-1}]$ $[OH^{-}] = 1.2 \times 10^{-10} M$ $[H_3O^+] > [OH^-]$ so the solution is acidic. Given: $K_w = 1.0 \times 10^{-14}$, $[H_3O^+] = 3.5 \times 10^{-2} M$ Find: $[OH^-]$ (c) Conceptual Plan: $[H_3O^+] \rightarrow [OH^-]$ $K_w = 1.0 \times 10^{-14} = [H_3O^+][OH^-]$ Solution: $K_w = 1.0 \times 10^{-14} = (3.5 \times 10^{-2})[OH^{-1}]$ $[OH^{-}] = 2.9 \times 10^{-13} M$ $[H_3O^+] > [OH^-]$ so the solution is acidic. Given: $K_w = 1.0 \times 10^{-14}$, [OH⁻] = 1.1×10^{-9} M Find: [H₃O⁺] 15.48 (a) Conceptual Plan: $[OH^-] \rightarrow [H_3O^+]$ $K_{\rm w} = 1.0 \ge 10^{-14} = [{\rm H}_3{\rm O}^+][{\rm OH}^-]$

Chapter 15 Acids and Bases

(c)

15.51

5.52

pH = $-\log[H_3O^+] K_w = 1.0 \times 10^{-14} = [H_3O^+][OH^-]$

Given: pH = 2.87 Find: [H₃O⁺], [OH⁻]

 $10^{-2.87} = [H_3O^+]$

 $[OH^{-}] = 7.4 \times 10^{-12} M$

Conceptual Plan: pH \rightarrow [H₃O⁺] \rightarrow [OH⁻]

 $\begin{array}{ll} pH = -\log[H_3O^+] \ {\it K}_w = 1.0 \times 10^{-14} = [H_3O^+][OH^-] \\ \mbox{Solution:} \ pH = -\log[H_3O^+] & 2.87 = -\log[H_3O^+] \end{array}$

 $K_{\rm w} = 1 \times 10^{-14} = (1.3 \times 10^{-3})[{\rm OH}^{-1}]$

 $-2.87 = \log[H_3O^+] \qquad 10^{-2.87} = 10^{\log[H_3O^+]}$

 $[H_3O^+] = 1.3 \times 10^{-3}$

[H ₃ O ⁺]	[OH ⁻]	pH	Acidic or basic
7.1×10^{-4}	1.4×10^{-11}	3.15	acidic
3.7 x 10 ⁻⁹	2.7 x 10 ⁻⁶	8.43	basic
8 x 10 ⁻¹²	1 x 10 ⁻³	11.1	basic
6.2 x 10 ⁻⁴	1.6 x 10 ⁻¹¹	3.20	acidic

 $[H_{3}O^{+}] = 10^{-3.15} = 7.1 \times 10^{-4} \qquad [OH^{-}] = \frac{1.0 \times 10^{-14}}{7.1 \times 10^{-4}} = 1.4 \times 10^{-11}$ $[OH^{-}] = \frac{1.0 \times 10^{-14}}{3.7 \times 10^{-9}} = 2.7 \times 10^{-6} \qquad pH = -\log(3.7 \times 10^{-9}) = 8.43$ $[H_{3}O^{+}] = 10^{-11.1} = 8 \times 10^{-12} \qquad [OH^{-}] = \frac{1.0 \times 10^{-14}}{8 \times 10^{-12}} = 1 \times 10^{-3}$

 $[H_3O^+] = \frac{1.0 \times 10^{-14}}{1.6 \times 10^{-11}} = 6.2 \times 10^{-4} \quad pH = -\log(6.2 \times 10^{-4}) = 3.20$

 $pH = -log[H_3O^+] K_w = 1.0 \times 10^{-14} = [H_3O^+][OH^-]$

[H ₃ O ⁺]	[OH-]	pH	Acidic or basic
3.5×10^{-3}	2.9 x 10 ⁻¹²	2.46	acidic
2.6×10^{-8}	3.8 x 10 ⁻⁷	7.58	basic
1.8×10^{-9}	5.6 x 10 ⁻⁶	8.74	basic
7.1×10^{-8}	1.4×10^{-7}	7.15	basic

 $\begin{bmatrix} OH^{-} \end{bmatrix} = \frac{1.0 \times 10^{-14}}{3.5 \times 10^{-3}} = 2.9 \times 10^{-12} \quad pH = -\log(3.5 \times 10^{-3}) = 2.46$ $\begin{bmatrix} H_3O^{+} \end{bmatrix} = \frac{1.0 \times 10^{-14}}{3.8 \times 10^{-7}} = 2.6 \times 10^{-8} \quad pH = -\log(2.6 \times 10^{-8}) = 7.58$ $\begin{bmatrix} OH^{-} \end{bmatrix} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-9}} = 5.6 \times 10^{-6} \quad pH = -\log(1.8 \times 10^{-9}) = 8.74$ $\begin{bmatrix} H_3O^{+} \end{bmatrix} = 10^{-7.15} = 7.1 \times 10^{-8} \quad [OH^{-}] = \frac{1.0 \times 10^{-14}}{7.1 \times 10^{-8}} = 1.4 \times 10^{-7}$

Given: $K_w = 2.4 \times 10^{-14}$ at 37°C Find: [H₃O⁺], pH Conceptual Plan: $K_w \rightarrow [H_3O^+] \rightarrow pH$ $K_w = [H_3O^+][OH^-] pH = -log[H_3O^+]$ Solution: $H_2O(l) + H_2O(l) \Longrightarrow H_3O^+(aq) + OH^-(aq)$ $K_w = [H_3O^+][OH^-]$ 585

 $[H_3O^+] = [OH^-] = \sqrt{K_w} = \sqrt{2.4 \times 10^{-14}} = 1.5 \times 10^{-7}$ pH = -log[H₃O⁺] = -log(1.5 × 10⁻⁷) = 6.81 **Check:** The value of K_w increased indicating more products formed, so the [H₃O⁺] increases and the pH decreases from the values at 25°C.

15.54 The increasing value of K_w indicates more products are formed as the temperature increases. According to Le Châtelier, this means the heat is a reactant. Therefore, the autoionization of water is endothermic.

Acid Solutions

15.55 (a)

Given: 0.25 M HCl (strong acid) Find: $[H_3O^+]$, $[OH^-]$, pH Conceptual Plan: $[HCl] \rightarrow [H_3O^+] \rightarrow pH$ and then $[H_3O^+] \rightarrow [OH^-]$ [HCl] → $[H_3O^+] pH = -log[H_3O^+]$ [H₃O⁺](OH⁻] = 1.0 x 10⁻¹⁴ Solution: 0.25 M HCl = 0.25 M H₃O⁺ pH = -log(0.25) = 0.60[OH⁻] = 1.0 x 10⁻¹⁴/0.25 M = 4.0 x 10⁻¹⁴

Check: HCl is a strong acid with a relatively high concentration, so we expect the pH to be low and the [OH⁻] to be small.

(b) Given: 0.015 M HNO₃ (strong acid) Find: $[H_3O^+], [OH^-], pH$ Conceptual Plan: $[HNO_3] \rightarrow [H_3O^+] \rightarrow pH$ and then $[H_3O^+] \rightarrow [OH^-]$ $[HNO_3] \rightarrow [H_3O^+] pH = -log[H_3O^+]$ $[H_3O^+][OH^-] = 1.0 \times 10^{-14}$ Solution: 0.015 M HNO₃ = 0.015 M H₃O⁺ pH = -log(0.015) = 1.82 $[OH^-] = 1.0 \times 10^{-14}/0.015 M = 6.7 \times 10^{-13}$

Check: HNO₃ is a strong acid, so we expect the pH to be low and the [OH⁻] to be small.

(c) Given: 0.052 M HBr and 0.020M HNO₃ (strong acids) Find: $[H_3O^+]$, $[OH^-]$, pH Conceptual Plan: $[HBr] + [HNO_3] \rightarrow [H_3O^+] \rightarrow pH$ and then $[H_3O^+] \rightarrow [OH^-]$ $[HBr] + [HNO_3] \rightarrow [H_3O^+] pH = -log[H_3O^+]$ $[H_3O^+][OH^-] = 1.0 \times 10^{-14}$ Solution: 0.052 M HBr = 0.052 M H₃O⁺ and 0.020 M HNO₃ = 0.020 M H₃O⁺

Total $H_3O^+ = 0.052 \text{ M} + 0.020 \text{ M} = 0.072 \text{ M} \text{ pH} = -\log(0.072) = 1.14$ [OH⁻] = 1.0 x 10⁻¹⁴/0.072 M = 1.4 x 10⁻¹³

Check: HBr and HNO_3 are both strong acids and completely dissociate. This gives a relatively high concentration, so we expect the pH to be low and the $[OH^-]$ to be small.

(d) Given: HNO₃ = 0.655% by mass, d_{solution} = 1.01 g/mL Find: [H₃O⁺],[OH⁻], pH Conceptual Plan:

% mass HNO₃ \rightarrow g HNO₃ \rightarrow mol HNO₃ and then g soln \rightarrow mL soln \rightarrow L soln \rightarrow M HNO₃ $\frac{\frac{100}{100}}{\frac{1000 \text{ mL soln}}{1000 \text{ mL soln}}} \frac{\frac{1000 \text{ mL soln}}{1000 \text{ mL soln}}}{\frac{1000 \text{ mL soln}}{1 \text{ soln}}} \frac{\frac{1000 \text{ mL soln}}{1 \text{ soln}}}{\frac{1000 \text{ mL soln}}{1 \text{ soln}}} \frac{\frac{1000 \text{ mL soln}}{1 \text{ soln}}}{\frac{1000 \text{ mL soln}}{1 \text{ soln}}}$ \rightarrow M H₃O⁺ \rightarrow pH and then [H₃O⁺] \rightarrow [OH⁻] [HNO₃] \rightarrow [H₃O⁺] pH = -log[H₃O⁺] [H₃O⁺][OH⁻] = 1.0 \times 10^{-14} Solution: $\frac{0.655 \text{ g} \text{ HNO₃}}{100 \text{ g} \text{ soln}} \times \frac{1 \text{ mol HNO₃}}{63.018 \text{ g} \text{ HNO₃}} \times \frac{1.01 \text{ g} \text{ soln}}{\text{mL soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ soln}} = 0.105 \text{ M} \text{ HNO₃}$

 $0.105 \text{ M HNO}_3 = 0.105 \text{ M H}_3\text{O}^+ \quad \text{pH} = -\log(0.105) = 0.979$

 $[OH^{-}] = 1.00 \times 10^{-14} / 0.105 \text{ M} = 9.52 \times 10^{-14}$

Check: HNO_3 is a strong acid and completely dissociates. This gives a relatively high concentration, so we expect the pH to be low and the [OH⁻] to be small.

15.56

(a) Given: 0.048 M HI (strong acid) Find: $[H_3O^+],[OH^-], pH$ Conceptual Plan: $[HI] \rightarrow [H_3O^+] \rightarrow pH$ and then $[H_3O^+] \rightarrow [OH^-]$ $[HI] \rightarrow [H_3O^+] pH = -log[H_3O^+]$ $[H_3O^+][OH^-] = 1.0 \times 10^{-14}$

Solution: 0.048 M HI = 0.048 M H₃O⁺ pH = -log(0.048) = 1.32

 $[OH^{-}] = 1.0 \times 10^{-14}/0.048 \text{ M} = 2.1 \times 10^{-13}$ Check: HI is a strong acid with a relatively high concentration, so we expect the pH to be low and the $[OH^{-}]$ to be small. 15.62 **Given:** 0.200 M formic acid. $K_a = 1.8 \times 10^{-4}$ **Find:** [H₃O⁺], pH

Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine [H₂O⁺] and pH.

solve for x. Determine [H₃O⁺] and pH. **Solution:** $HCH_2O(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CH_2O^-(aq)$ I 0.200 M 0.0 0.0 C - x x х E 0.200 - rr x $[H_3O^+][CH_2O^-]$ (x)(x) $= 1.8 \times 10^{-4}$ $K_a =$ (0.200 - x)[HCH₂O] Assume x is small compared to 0.200. $x^{2} = (1.8 \times 10^{-4})(0.200)$ $x = 6.0 \times 10^{-3} \text{ M} = [\text{H}_{3}\text{O}^{+}]$ Check assumption: $\frac{6.0 \times 10^{-3}}{0.000}$ - x 100% = 3.0%, assumption valid. $pH = -log(6.0 \times 10^{-3}) = 2.22$ **Given:** 0.500 M HNO₂. $K_a = 4.6 \times 10^{-4}$ **Find:** pH (a) Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine [H₃O⁺] and pH. Solution: $HNO_2(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + NO_2^-(aq)$ 0.500 M 0.0 T 0.0 C - X х x E 0.500 - xx x $\frac{[H_{3}O^{+}][NO_{2}^{-}]}{=}$ (x)(x) $= 4.6 \times 10^{-4}$ [HNO₂] (0.500 - x)Assume *x* is small compared to 0.500. $x^2 = (4.6 \times 10^{-4})(0.500)$ $x = 0.015 \text{ M} = [\text{H}_3\text{O}^+]$ Check assumption: $\frac{0.015}{0.500} \times 100\% = 3.0\%$ assumption valid. pH = -log(0.015) = 1.82 **Given:** 0.100 M HNO₂. $K_a = 4.6 \times 10^{-4}$ **Find:** pH (b) Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine $[H_3O^+]$ and pH. **Solution:** $HNO_2(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + NO_2^-(aq)$ I 0.100 M 0.0 0.0 C - X x x E 0.100 - xx x $K_a = \frac{[H_3O^+][NO_2^-]}{[IIINO_2]} =$ (x)(x) $= 4.6 \times 10^{-4}$ (0.100 - x)[HNO₂] Assume x is small compared to 0.100. $x^2 = (4.6 \times 10^{-4})(0.100)$ $x = 0.0068 \text{ M} = [\text{H}_3\text{O}^+]$ Check assumption: $\frac{0.0068}{0.100} \times 100\% = 6.8\%$ assumption not valid, solve using quadratic equation. $x^{2} = (4.6 \times 10^{-4})(0.100 - x)$ $x^{2} + 4.6 \times 10^{-4} x - 4.6 \times 10^{-5} = 0$ x = 0.00656pH = -log(0.00656) = 2.18Given: 0.100 M HNO₂. $K_a = 4.6 \times 10^{-4}$ Find: pH (c) Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x,

Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine [H₃O⁺] and pH.

 $K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]} = \frac{(x)(x)}{(0.0250 - x)} = 3.5 \times 10^{-4}$ Assume x is small compared to 0.0250. $x^{2} = (3.5 \times 10^{-4})(0.0250) \qquad x = 0.00295 \text{ M} = [H_{3}O^{+}]$ Check assumption: $\frac{0.00295}{0.0250} \times 100\% = 11.8\%$ assumption not valid, solve with quadratic equation. $x^{2} + 3.5 \times 10^{-4} x - 8.75 \times 10^{-6} = 0 \qquad x = 0.00279 = [H_{3}O^{+}]$ pH = $-\log(0.00279) = 2.55$

15.65

Conceptual Plan: mL acetic acid \rightarrow g acetic acid \rightarrow mol acetic acid \rightarrow M and then write a balanced reaction. $\frac{1.05 \text{ g}}{\text{mL}} \qquad \frac{\text{mol acetic acid}}{60.05 \text{ g}} \qquad \text{M} = \frac{\text{mol}}{\text{L}}$ Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine $[\text{H}_3\text{O}^+]$ and pH. Solution: $15.0 \text{ mL} \times \frac{1.05 \text{ g}}{\text{mL}} \times \frac{1 \text{ mol}}{60.05 \text{ g}} \times \frac{1}{1.50 \text{ L}} = 0.1748 \text{ M}$ $\qquad \text{HC}_2\text{H}_3\text{O}_2(aq) + \text{H}_2\text{O}(l) \leftrightarrows \text{H}_3\text{O}^+(aq) + \text{C}_2\text{H}_3\text{O}_2^-(aq)$ $I \qquad 0.1748 \text{ M} \qquad 0.0 \qquad 0.0$ $C \qquad -x \qquad x \qquad x \qquad x$ $E \qquad 0.1748 - x \qquad x \qquad x \qquad x$ $[\text{H}_3\text{O}^+][\text{C}_2\text{H}_3\text{O}_2^{-1}] \qquad (x)(x) \qquad 1.0 \ 10^{-5}$

Given: 15.0 mL glacial acetic, d = 1.05 g/mL, dilute to 1.50 L, $K_a = 1.8 \times 10^{-5}$ Find: pH

$$\begin{array}{l} 1 & 0.1748 \,\mathrm{M} & 0.0 & 0.0 \\ \mathrm{C} & -x & x & x \\ \mathrm{E} & 0.1748 - x & x & x \\ \mathrm{E} & 0.1748 - x & x & x \\ \mathrm{K}_{\mathrm{a}} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2}^{-}]}{[\mathrm{H}\mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2}]} = \frac{(x)(x)}{(0.1748 - x)} = 1.8 \,\mathrm{x} \, 10^{-5} \\ \mathrm{Assume} \, x \,\mathrm{is \ small \ compared \ to \ 0.1748.} \\ x^{2} = (1.8 \,\mathrm{x} \, 10^{-5})(0.1748) \quad x = 0.001\underline{77} \,\mathrm{M} = [\mathrm{H}_{3}\mathrm{O}^{+}] \\ \mathrm{Check \ assumption:} \quad \frac{0.001\underline{77}}{0.1748} \,\mathrm{x} \, 1005 = 1.0\% \ \mathrm{assumption \ valid.} \\ \mathrm{pH} = -\log(0.001\underline{77}) = 2.75 \end{array}$$

15.66

Given: 1.35% formic acid, d = 1.01 g/mL, $K_a = 1.8 \times 10^{-4}$ Find: pH Conceptual Plan: % formic acid \rightarrow g formic acid \rightarrow mol and g soln \rightarrow mL soln \rightarrow L soln and then M $\frac{\text{mol}}{46.03 \text{ g}}$ $\frac{1.01 \text{ g soln}}{\text{mL soln}}$ $\frac{1000 \text{ mL}}{\text{L soln}}$

Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine $[H_3O^+]$ and pH.

Solution: $\frac{1.35 \overline{g} \text{ HCHO}_2}{100 \overline{g} \text{ soln}} \times \frac{\text{mol HCHO}_2}{46.03 \overline{g}} \times \frac{1.01 \overline{g} \text{ soln}}{\overline{m} \text{L soln}} \times \frac{1000 \overline{m} \text{L soln}}{\text{L soln}} = 0.2962 \text{ M}$ $HCHO_2(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CHO_2^-(aq)$ 0.2962 M 0.0 0.0 I C - x x x E 0.2962 - xx x $K_a = \frac{[H_3O^+][CHO_2^-]}{K_a}$ (x)(x) $= 1.8 \times 10^{-4}$ [HCHO₂] (0.2962 - x)Assume *x* is small compared to 0.2962. $x^2 = (1.8 \times 10^{-4})(0.2962)$ $x = 0.00730 \text{ M} = [\text{H}_3\text{O}^+]$ Check assumption: $\frac{0.00730}{0.2962} \times 100\% = 2.5\%$ assumption valid. pH = -log(0.00730) = 2.14

15.67

Given: 0.185 M HA, pH = 2.95 Find: K_a

Conceptual Plan: pH \rightarrow [H₃O⁺] and then write a balanced reaction. Prepare an ICE table, calculate equilibrium concentrations, and then plug into the equilibrium expression to solve for K_{a} .

Solution: $[H_3O^+] = 10^{-2.95} = 0.00112 \text{ M} = [A^-]$ $H_3O^+(aq) + A^-(aq)$ $HA(aq) + H_2O(l) \Leftrightarrow$ I 0.185 M 0.0 0.0 С - x x r E 0.185 - 0.001120.00112 0.0011 $\frac{[H_3O^+][A^-]}{[H_3O^+][A^-]} = \frac{(0.00112)(0.00112)}{(0.00112)} = 6.8 \times 10^{-6}$ Ka [HA] (0.185 - 0.00112)15.68 Given: 0.115 M HA, pH = 3.29 Find: K_a Conceptual Plan: $pH \rightarrow [H_3O^+]$ and then write a balanced reaction. Prepare an ICE table, calculate equilibrium concentrations, and then plug into the equilibrium expression to solve for Ka. Solution: $[H_3O^+] = 10^{-3.29} = 5.13 \times 10^{-4} M = [A^-]$ $HA(aq) + H_2O(l) \Leftrightarrow$ $H_3O^+(aq) + A^-(aq)$ x 0.0 T 0.185 M 0.0 С x - X $0.115 - 5.13 \times 10^{-4} \qquad 5.13 \times 10^{-4} \ 5.13 \times 10^{-4}$ Ε $K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm A}^-]}{[{\rm H}{\rm A}]} = \frac{(5.\underline{1}3 \times 10^{-4})(5.\underline{1}3 \times 10^{-4})}{(0.115 - 5.\underline{1}3 \times 10^{-4})} = 2.3 \times 10^{-6}$ **Given:** 0.125 M HCN $K_a = 4.9 \times 10^{-10}$ **Find:** % ionization 15.69 Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, solve for *x*, and then $x \to \%$ ionization. % ionization = $\frac{x}{[\text{HCN}]_{\text{original}}} \times 100$ **Solution:** HCN(*aq*) + H₂O(*l*) \Leftrightarrow H₃O⁺(*aq*) + CN⁻(*aq*) I 0.125 M C - x 0.0 0.0 x x E 0.125 - xx х (x)(x) $K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm CN}^-]}{[{\rm HCN}]} = \frac{(x)(x)}{(0.125 - x)} = 4.9 \times 10^{-10}$ Assume *x* is small compared to 0.125. $x^{2} = (4.9 \times 10^{-10})(0.125) \qquad x = 7.\underline{83} \times 10^{-6}$ % ionization = $\frac{7.\underline{83} \times 10^{-6}}{0.125} \times 100 = 0.0063^{\circ}$ -x 100 = 0.0063% ionized 0.125 Given: 0.225 M HC₇H₅O₂ $K_a = 6.5 \times 10^{-5}$ Find: % ionization 15.70 Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, solve for *x*, and then $x \rightarrow \%$ ionization. % ionization = $\frac{x}{[HC_7H_5O_2]_{original}} \times 100$ Solution: $HC_7H_5O_2(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + C_7H_5O_2^-(aq)$ 0.0 0.0 I 0.125 M C x x - x 0.125 - xE x x (x)(x) $\frac{[H_3O^+][C_7H_5O_2^-]}{[HC_7H_5O_2]} = \frac{(x)(x)}{(0.225 - x)}$ $= 6.5 \times 10^{-5}$ $K_a =$

Assume *x* is small compared to 0.225. $x^2 = (6.5 \times 10^{-5})(0.1225)$ $x = 0.003\underline{8}2$ % ionization = $\frac{0.003\underline{8}2}{0.225} \times 100 = 1.7\%$ ionized

 $(x)(x) = 1.8 \times 10^{-4}$ $K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm CHO}_2^-]}{[{\rm HCHO}_2]} = \frac{(x)(x)}{(0.100 - x)}$ Assume x is small compared to 0.100. $x^2 = (1.8 \ge 10^{-4})(0.100)$ x = 0.00424 $\frac{0.00424}{2.100} \times 100 = 4.2\% \text{ ionized}$ % ionization =

Given: 0.0500 M HCHO₂ $K_a = 1.8 \times 10^{-4}$ Find: % ionization (d)

Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, solve for *x*, and then $x \rightarrow \%$ ionization.

% ionization = $\frac{1}{[\text{HCHO}_2]_{\text{original}}} \times 100$ Solution: $HCHO_2(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + CHO_2^-(aq)$ 0.0500 M T 0.0 0.0 C - x x x $\frac{[H_3O^+][CHO_2^-]}{[H_3O^+][CHO_2^-]} = \frac{(x)(x)}{(0.0500 - x)}$ 0.0500 - xE x $= 1.8 \times 10^{-4}$ $K_a =$ Assume x is small compared to 0.0500. $x^2 = (1.8 \times 10^{-4})(0.0500)$ x = 0.00300% ionization = $\frac{0.000}{0.0500}$ 0.00300 x 100% = 6.0% ionized x is small assumption is invalid since 6.0% is greater than the 5.0% limit. $x^2 + 1.8 \ge 10^{-4}x - 9.0 \ge 10^{-6} = 0$ Solve for *x* using the quadratic equation x = 0.002910.00291 % ionization = $\frac{0.00291}{0.0500}$ x 100 = 5.8% Given: 0.148 M HA 1.55% dissociation Find: K_a Conceptual Plan: $M \rightarrow [H_3O^+] \rightarrow K_a$ and then write a balanced reaction, determine equilibrium concentration, and plug into the equilibrium expression. Solution: $(0.148 \text{ M HA})(0.0155) = 0.002294 [H_3O^+] = [A^-]$ $\mathrm{HA}(aq) + \mathrm{H}_2\mathrm{O}(l) \leftrightarrows \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{A}^-(aq)$ 0.148 M 0.0 0.0 - x x x 0.148 -0.002294 0.002294 0.002294 $\frac{[H_3O^+][A^-]}{[H_3O^+][A^-]} = \frac{(0.002294)(0.002294)}{(0.002294)(0.002294)}$ $= 3.61 \times 10^{-5}$ Ka (0.148 - 0.002294)[HA] Given: 0.085 M HA 0.59% dissociation Find: Ka Conceptual Plan: $M \rightarrow [H_3O^+] \rightarrow K_a$ and then write a balanced reaction, determine equilibrium concentration, and plug into the equilibrium expression.

Solution: $(0.085 \text{ M HA})(0.0059) = 5.02 \times 10^{-4} [H_3 O^+] = [A^-]$ $HA(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + A^-(aq)$ I 0.0 0.085 M 0.0 C $\frac{10.085 - 5.02 \times 10^{-4}}{[H_3O^+][A^-]} = \frac{(5.02 \times 10^{-4})}{(0.085 - 5.02 \times 10^{-4})} = 3.0 \times 10^{-6}$ - x E Ka

15.75

(a)

15.7

15.74

I

C

Е

Given: 0.250 M HF $K_a = 3.5 \times 10^{-4}$ **Find:** pH, % dissociation Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, solve for x, and then $x \rightarrow \%$ ionization. % ionization = $\frac{x}{[HF]_{original}} \times 100$

- 15.78 (a) **Given:** 0.075 M HNO₃ (strong acid), 0.175 M HC₇H₅O₂ (weak acid) Find: pH Conceptual Plan: Since the mixture is a strong acid and a weak acid, the strong acid will dominate. Use the concentration of the strong acid to determine [H₃O⁺] and then pH. Solution: 0.075 M HNO₃ = 0.075 M [H₃O⁺] pH = $-\log(0.075) = 1.12$
 - (b) Given: 0.020 M HBr (strong acid), 0.015 M HClO₄ (strong acid) Find: pH Conceptual Plan: Since the mixture is a strong acid and another strong acid, the [H₃O⁺] is the sum of the concentration of both acids. Determine pH. Solution: 0.020 M HBr = 0.020 [H₃O⁺], 0.015 M HClO₄ = 0.015 M [H₃O⁺] [H₃O⁺] = 0.020 + 0.015 = 0.035 M pH = -log(0.035) = 1.46
 - (c) Given: 0.095M HF, $K_a = 3.5 \times 10^{-4}$; 0.225 M HC₆H₅O₂, $K_a = 1.3 \times 10^{-10}$ Find: pH Conceptual Plan: Since the values of K are more than 10^1 apart, the acid with the larger K will dominate the reaction. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x.

Solution: $HF(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + F^-(aq)$ I 0.095 M 0.0 0.0 C - x x x E 0.095 - xx x $K_a = \frac{[H_3O^+][F^-]}{G_{ab}} =$ (x)(x) $= 3.5 \times 10^{-4}$ (0.095 - x)[HF] $x^2 = (3.5 \times 10^{-4})(0.095)$ $x = 0.00577 \text{ M} = [\text{H}_3\text{O}^+]$

 $(0.00577/0.095) \ge 100 = 6.1\%$. Assumption is invalid since 6.1% is greater than the 5.0% limit. Solve for *x* using the quadratic formula;

 $x^{2} + 3.5 \times 10^{-4} x - 3.325 \times 10^{-5} = 0$ $x = 0.00559 \text{ M} = [\text{H}_{3}\text{O}^{+}]$

pH = -log(0.00559) = 2.25

(d) **Given:** 0.100 M HCHO₂, $K_a = 1.8 \times 10^{-4}$; 0.050 M HClO, $K_a = 2.9 \times 10^{-8}$ Find: pH

Conceptual Plan: Since the values of K are more than 10^1 apart, the acid with the larger K will dominate the reaction. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x.

Solution: HCHO₂ (aq) + H₂O(l) \Leftrightarrow H₃O⁺(aq) + C₂H₃O₂⁻ (aq) Ι 0.100 M 0.0 0.0 C - x x x E 0.100 - xx x $[H_3O^+][CHO_2^-] =$ (x)(x) $= 1.8 \times 10^{-4}$ (0.100 - x)[HCHO₂] Assume x is small compared to 0.0500. $x^2 = (1.8 \times 10^{-4})(0.100)$ x = 0.00424pH = -log(0.00424) = 2.37

Base Solutions

15.79 (a)

Given: 0.15 M NaOH Find: [OH⁻], [H₃O⁺], pH, pOH Conceptual Plan: [NaOH] \rightarrow [OH⁻] \rightarrow [H₃O⁺] \rightarrow pH \rightarrow pOH $K_w = [H_3O^+][OH^-] \qquad pH = -log[H_3O^+] \qquad pH + pOH = 14$ Solution: [OH⁻] = [NaOH] = 0.15M [H₃O⁺] = $\frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.15M} = 6.7 \times 10^{-14} M$ pH = $-log(6.7 \times 10^{-14}) = 13.17$ pOH = 14.00 - 13.18 = 0.83

(b) Given: 1.5 × 10⁻³ M Ca(OH)₂ Find: [OH⁻⁷], [H₃O⁺] → pH → pOH
K_∞ = H₅O⁻¹[OH⁻¹] → [H₃O⁺] → pH → pOH
K_∞ = H₅O⁻¹[OH⁻⁷] → [L₃O⁺⁷] → pH → pOH
K_∞ = H₅O⁻¹[OH⁻⁷] =
$$\frac{1.0 \times 10^{-14}}{0.0030 M}$$
 = $3.3_3 \times 10^{-12} M$
pH = $-\log(3.33 \times 10^{-12}) = 11.48$
pOH = 14.00 - 11.48 = 2.52
(c) Given: 4.8 × 10⁻⁴ M Sr(OH)₂ Find: [OH⁻⁷], [H₃O⁺], pH, pOH
Conceptual Plan: [Sr(OH)₂] → [OH⁻⁷] → [H₃O⁺] → pH → pOH
K_∞ = [H₅O⁻][OH⁻⁷] → [H₃O⁺⁷] → pH → pOH
K_∞ = [H₅O⁻¹[OH⁻⁷] → [H₃O⁺⁷] → pH → pOH
K_∞ = [H₅O⁻¹[OH⁻⁷] → [H₃O⁺⁷] → pH → pOH
K_∞ = [H₅O⁻¹[OH⁻⁷] → [H₃O⁺⁷] → pH → pOH
K_∞ = [H₅O⁻¹[OH⁻⁷] = 10.98
pOH = 14.00 - 10.98 = 3.02
(d) Given: 8.7 × 10⁻⁵ M KOH Find: [OH⁻⁷], [H₃O⁺¹], pH, pOH
Conceptual Plan: [KOH] → [OH⁻⁷] → [H₃O⁺⁷], pH, pOH
Conceptual Plan: [KOH] → [OH⁻⁷] → [H₃O⁺⁷], pH → pOH
K_∞ = [H₅O⁻¹[OH⁻⁷] = $\frac{1.0 \times 10^{-14}}{8.7 \times 10^{-5} M}$ = $1.1 \times 10^{-10} M$
[H₃O⁺¹] = [KOH] = $8.7 \times 10^{-5} M$
[H₃O⁺¹] = [KOH] = $8.7 \times 10^{-5} M$
[H₃O⁺¹] = [LOH⁻¹] = [H₃O⁺¹] → pH → pOH
K_∞ = [H₅O⁻¹][OH⁻⁷] → [H₃O⁺¹], pH, pOH
Conceptual Plan: [LiOH] → [OH⁻⁷] → [H₃O⁺¹], pH → pOH
K_∞ = [H₅O⁻¹][OH⁻⁷] = 1.0×10^{-14} = $1.1 \times 10^{-10} M$
pH = $-\log(1.1 \times 10^{-10})$ = 9.94
pOH = 14.00 - 9.94 = 4.06
(a) Given: $8.77 \times 10^{-3} M$ LiOH Find: [OH⁻⁷], [H₃O⁺¹], pH, pOH
Conceptual Plan: [LiOH] → [OH⁻⁷] → [H₃O⁺¹] → pH → pOH
K_∞ = [H₅O⁻¹](OH⁻⁷] = 1.1×10^{-14} = $1.1 \div 10^{-12} M$
pH = $-\log(1.1 \div 10^{-12})$ = 1.943
pOH = 14.00 - 11.943 = 2.057
(b) Given: 0.0112 M Ba(OH)₂ Find: [OH⁻⁷], [H₃O⁺¹], pH, pOH
Conceptual Plan: [Ba(OH)₂] = 2(0.0112) = 0.0224 M
[H₃O⁺] = $\frac{K_{w}}{[OH-7]}$ = $\frac{1.0 \times 10^{-14}}{1.023}$ = $4.46 \times 10^{-13} M$
pH = $-\log(4.464 \times 10^{-13})$ = 12.350
pOH = 14.00 - 12.350 = 1.650
(c) Given: $1.9 \times 10^{-4} M$ KOH Find: [OH⁻⁷], [H₃O⁺], pH, pOH
Conceptual Plan: [KOH] → 10H⁻⁷] → 11.49(H₅O⁻⁷]

601

Given: 5.0 x 10⁻⁴ M Ca(OH)₂ Find: [OH⁻], [H₃O⁺], pH, pOH (d) Conceptual Plan: $[Ca(OH)_2] \rightarrow [OH^-] \rightarrow [H_3O^+] \rightarrow pH \rightarrow pOH$ $K_w = [H_3O^+][OH^-]$ $pH = -log[H_3O^+]$ pH + pOH = 14Solution: $[OH^{-}] = [Ca(OH)_2] = 2(5.0 \times 10^{-4}) = 0.0010 \text{ M}$ $[H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.0010 \text{ M}} = 1.00 \times 10^{-11} \text{ M}$ $pH = -log(1.00 \times 10^{-11}) = 11.00$ pOH = 14.00 - 11.00 = 3.0015.81 **Given:** 3.85% KOH by mass, *d* = 1.01 g/mL **Find:** pH Conceptual Plan: % mass \rightarrow g KOH \rightarrow mol KOH and mass soln \rightarrow mL soln \rightarrow L soln \rightarrow M KOH \rightarrow [OH⁻] 1 mol KOH 1.01 g soln 1000 mL soln mol KOH mL soln 56.01 g KOH L soln \rightarrow pOH \rightarrow pH $pOH = -log[OH^{-}] pH + pOH = 14$ Solution: $\frac{3.85 \text{ }\overline{\text{g} \text{ } \text{KOH}}}{100.0 \text{ }\overline{\text{g} \text{ } \text{soln}}} \times \frac{1 \text{ mol } \text{KOH}}{56.01 \text{ }\overline{\text{g} \text{ } \text{KOH}}} \times \frac{1.01 \text{ }\overline{\text{g} \text{ } \text{soln}}}{\overline{\text{mL} \text{ soln}}} \times \frac{1000 \text{ }\overline{\text{mL} \text{ soln}}}{\text{L} \text{ soln}} = 0.6942 \text{ M } \text{KOH}$ $[OH^{-}] = [KOH] = 0.6942 \text{ M} \text{ pOH} = -\log(0.6942) = 0.159 \text{ pH} = 14.000 - 0.159 = 13.841$ **Given:** 1.55% NaOH by mass, *d* = 1.01 g/mL **Find:** pH 15.82 **Conceptual Plan:** % mass \rightarrow g NaOH \rightarrow mol NaOH and mass soln \rightarrow mL soln \rightarrow L soln \rightarrow M NaOH \rightarrow [OH⁻] 1 mol NaOH 1.01 g soln 1000 mL soln mol NaOH mL soln 40.01 g NaOH L soln L soln \rightarrow pOH \rightarrow pH $pOH = -log[OH^{-}] pH + pOH = 14$ $\begin{array}{l} \textbf{Solution:} \ \frac{1.55 \ \overline{g} \ \textbf{NaOH}}{100.0 \ \overline{g} \ \textbf{soln}} x \\ \hline x \\ \hline 40.01 \ \overline{g} \ \textbf{KOH} \\ \hline x \\ \hline \hline \textbf{mL} \ \textbf{soln} \\ \hline \textbf{mL} \ \textbf{soln} \\ \hline x \\ \hline \textbf{L} \ \textbf{soln} \\ \hline \end{array} \\ \begin{array}{l} 1000 \ \overline{\textbf{mL}} \ \textbf{soln} \\ \hline \textbf{L} \ \textbf{soln} \\ \hline \textbf{L} \ \textbf{soln} \\ \hline \end{array} \\ = 0.39 \\ \underline{13} \ \textbf{M} \ \textbf{NaOH} \\ \end{array}$ $[OH^{-}] = [NaOH] = 0.3913 M POH = -log(0.3913) = 0.407 PH = 14.000 - 0.407 = 13.593$ 15.83 Given: 3.55 L, pH = 12.4; 0.855 M KOH Find: Vol Conceptual Plan: pH \rightarrow [H₃O⁺] \rightarrow [OH⁻] and then V₁M₁ = V₂M₂ $[H_3O^+] = 10^{-pH} \quad 1.0 \times 10^{-14} = [H_3O^+][OH^-] \quad V_1M_1 = V_2M_2$ Solution: $[H_3O^+] = 10^{-12.4} = 3.98 \times 10^{-13} \quad 1.0 \times 10^{-14} = 3.98 \times 10^{-13}[OH^-]$ $[OH^{-}] = 0.02512$ $V_1M_1 = V_2M_2$ $V_1(0.855 \text{ M}) = (3.55 \text{ L})(0.0251 \text{ M})$ $V_1 = 0.104 \text{ L}$ 15.84 Given: 5.00 L, pH = 10.8; 15.0% NaOH, d = 1.116 g/ mL Find: Vol **Conceptual Plan:** % mass \rightarrow g NaOH \rightarrow mol NaOH and mass soln \rightarrow mL soln \rightarrow L soln \rightarrow M NaOH \rightarrow [OH⁻] 1 mol NaOH1.01 g soln40.01 g NaOHmL soln 1000 mL soln mol NaOH Lsoln L soln and then: $V_1M_1 \rightarrow V_2M_2$ $V_1M_1 = V_2M_2$ $\textbf{Solution:} \ \frac{15.0 \ \overline{\text{g NaOH}}}{100.0 \ \overline{\text{g soln}}} x \frac{1 \ \text{mol NaOH}}{40.01 \ \overline{\text{g KOH}}} x \frac{1.116 \ \overline{\text{g soln}}}{\overline{\text{mL soln}}} x \frac{1000 \ \overline{\text{mL soln}}}{L \ \text{soln}} = 4.184 \ \text{M NaOH}$ $[OH^{-}] = [NaOH] = 4.184 M$ $[H_3O^+] = 10^{-10.8} = 1.58 \times 10^{-11}$ $1.0 \times 10^{-14} = (1.58 \times 10^{-11})[OH^-]$ $[OH^{-}] = 6.31 \times 10^{-4} M$ $V_1(4.18 \text{ M}) = (5.00 \text{ L})(6.31 \times 10^{-4} \text{ M})$ $V_1 = 7.55 \times 10^{-4} \text{ L} = 0.8 \text{ mL}$ $K_{\rm b} = \frac{[{\rm NH_4^+}][{\rm OH^-}]}{[{\rm NH_4^+}]}$ $NH_3(aq) + H_2O(l) \Leftrightarrow NH_4^+(aq) + OH^-(aq)$ 15.8 (a) [NH₃]

	(b)	$\mathrm{HCO}_3^{-}(aq) + \mathrm{H}_2\mathrm{O}(l) \leq$	⇒ H ₂ CO ₃ (ad	$q) + OH^{-}(aq)$	$K_{\rm b} = \frac{[{\rm H}_2 {\rm CO}_3][{\rm OH}^-]}{[{\rm HCO}_3^-]}$	
	(c)	$\mathrm{CH}_3\mathrm{NH}_2(aq) + \mathrm{H}_2\mathrm{O}(l)$	⇔ CH ₃ NH	$_3^+(aq) + \mathrm{OH}^-(aq)$	$K_{\rm b} = \frac{[{\rm CH}_3{\rm NH}_3^+][{\rm OH}^-]}{[{\rm CH}_3{\rm NH}_2]}$	
15.86	(a)	$\text{CO}_3^{2-}(aq) + \text{H}_2\text{O}(l) \leftrightarrows$	HCO ₃ ⁻ (aq)	+ OH ⁻ (<i>aq</i>)	$K_{\rm b} = \frac{[\rm HCO_3^-][\rm OH^-]}{[\rm CO_3^{2-}]}$	
	(b)	$\mathrm{C_6H_5NH_2}(aq) + \mathrm{H_2O}(l$	$\Rightarrow C_6H_5N_1$	$\mathrm{H_3}^+(aq) + \mathrm{OH}^-(aq)$	$K_{\rm b} = \frac{[{\rm C}_{6}{\rm H}_{5}{\rm N}{\rm H}_{3}^{+}][{\rm O}{\rm H}^{-}]}{[{\rm C}_{6}{\rm H}_{5}{\rm N}{\rm H}_{2}]}$	1
-	(c)	$C_2H_5NH_2(aq) + H_2O(l$	$\Rightarrow C_2H_5N$	$\mathrm{H_3}^+(aq) + \mathrm{OH}^-(aq)$	$K_{\rm b} = \frac{[C_2 H_5 N H_3^+][OH^-}{[C_2 H_5 N H_2]}$	1
15.87	Given: 0.15 M NH ₃ $K_b = 1.76 \times 10^{-5}$ Find: [OH ⁻], pH, pOH Conceptual Plan: Write a balanced reaction. Prepare an ICE table, represent the change with <i>x</i> , sum th table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, an solve for <i>x</i> . $x = [OH-] \rightarrow pOH \rightarrow pH$					
	p Solut	$OH = -\log[OH^{-}] pH + pOH = 1$ ion: $NH_{2}(aa) + H_{2}O(I)$	$4 = NH^{+}(aa)$	$+ OH^{-}(aa)$		
	I	0.15 M	0.0	0.0		
	(-x	x	x		
	F	5 = 0.15 - x [NH4 ⁺][OH ⁻]	(x)(x)	x		
	ŀ	$\zeta_{b} = \frac{\left[1 + \Pi_{4} + \Pi_{5} + \Pi_{1}\right]}{\left[NH_{3}\right]} = \frac{1}{2}$	$\frac{(x)(x)}{(0.15 - x)} =$	$1.76 \ge 10^{-5}$		
	F	Assume <i>x</i> is small.				
	x	$x^2 = (1.76 \times 10^{-5})(0.15)$	$x = [OH^{-}]$] = 0.00162 M		
	P	$oOH = -\log(0.00162) =$	= 2.79			
	F	bH = 14.00 - 2.79 = 1	1.21			
15.88	Giver Conc table, solve	n: 0.125 M CO ₃ ²⁻ $K_b =$ eptual Plan: Write a ba determine the equilib for x.	1.8 x 10 ⁻⁴ F lanced react rium values	ind: [OH⁻], pH, pOl tion. Prepare an ICE a, put the equilibrium	H table, represent the chan m values in the equilibriu	ge with <i>x</i> , sum the m expression, and
	л – [С	$OH = -log[OH^-] pH + pOH = 1$	4			
	Solut	ion: $CO_3^{2-}(aq) + H_2O(l)$	\Rightarrow HCO ₃ ⁻ (a	$(aq) + OH^{-}(aq)$		
	I	0.125 M	0.0	0.0		
	F	-x = 0.125 - x	x	x		
	ŀ	$ \zeta_{b} = \frac{[HCO_{3}^{-}][OH^{-}]}{[CO_{3}^{-}]} = $	$\frac{(x)(x)}{(0.125-x)}$	$= 1.8 \times 10^{-4}$		
	ŀ	Assume <i>x</i> is small.				
	x	$x^2 = (1.8 \times 10^{-4})(0.125)$	$x = [OH^-$] = 0.00474 M		
		$\frac{0.00474}{0.125} \ge 100\% = 3.8\%;$	assumption	is valid		
\sim	F	$OH = -\log(0.00474) =$	= 2.32			
2	F	DH = 14.00 - 2.32 = 1	1.68			
15.89	Giver	n : $pK_b = 10.4, 455 \text{ mg/L}$	caffeine Fir	nd: pH	A DECKED AND AND A DECKED AND A	a) (1950) inter-
1	Conce	eptual Plan: $pK_b \rightarrow K_b$	and then m	$g/L \rightarrow g/L \rightarrow mol/I$	and then write a balance	d reaction. Prepare
	an IC	E table, represent the	change wit	n x, sum the table,	determine the equilibriu	m values, put the
	x = [C]	$(H^-] \rightarrow pOH \rightarrow pH$		Treesery and solve		
	p	OH = -log[OH ⁻] pH + pOH = 14	1			

Solution: $K_{\rm b} = 10^{-10.4} = 3.98 \text{ x} 10^{-11}$ $\frac{455 \text{ mg caffeine}}{\text{L soln}} \times \frac{\overline{\text{g caffeine}}}{1000 \text{ mg caffeine}} \times \frac{1 \text{ mol caffeine}}{194.19 \text{ g}} = 0.002343 \text{ M caffeine}$ $C_8H_{10}N_4O_2(aq) + H_2O(l) \leftrightarrows HC_8H_{10}N_4O_2^+(aq) + OH^-(aq)$ I 0.002342 0.0 0.0 С -x x x E 0.002342 - xx x (x)(x)= 3.98 x 10⁻¹¹ = $[C_8H_{10}N_4O_2]$ (0.002342 - x)Assume *x* is small. $x^2 = (3.98 \times 10^{-11})(0.002342)$ $x = [OH^-] = 3.05 \times 10^{-7} M$ $3.05 \times 10^{-7} M$ -x 100% = 0.013%; assumption is valid 0.002342 $pOH = -log(3.05 \times 10^{-7}) = 6.5$ pH = 14.00 - 6.5 = 7.515.90 **Given:** $pK_b = 4.2$, 225 mg/L amphetamine **Find:** pH Conceptual Plan: $pK_b \rightarrow K_b$ and then mg/L \rightarrow g/L \rightarrow mol/L and then write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. $x = [OH^{-}] \rightarrow pOH \rightarrow pH$ pOH = $-\log[OH^{-}]$ pH + pOH = 14 Solution: $K_b = 10^{-4.2} = 6.31 \times 10^{-5}$ $\frac{1 \text{ mol amphetamine}}{1 \text{ mol amphetamine}} = 0.001664 \text{ M amphetamine}$ 225 mg amphetamine g amphetamine $x = \frac{1}{1000 \text{ mg amphetamine}} x = \frac{1}{1000 \text{ mg amphetamine}} x$ L soln $C_9H_{13}N(aq) + H_2O(l) \Leftrightarrow C_9H_{13}NH^+(aq) + OH^-(aq)$ Ι 0.0016<u>6</u>4 M 0.0 0.0 С -x x x $\frac{[C_9H_{13}NH^+][OH^-]}{[C_2H_{13}N]} = \frac{(x)(x)}{(0.0016\underline{6}4 - x)}$ 0.001664 - x xΕ $= 6.31 \times 10^{-5}$ $K_{\rm b} =$ Assume *x* is small. $x^2 = (6.31 \times 10^{-5})(0.001664)$ $x = [OH^-] = 3.24 \times 10^{-4} M$ 3.24×10^{-4} $\frac{1}{0.001664}$ x 100% = 19.4%; assumption not valid, solve with quadratic equation. $x^2 + 6.31 \ge 10^{-5} x - 1.05 \ge 10^{-7} = 0$ $x = [OH^{-}] = 2.94 \times 10^{-4} M$ $pOH = -log(2.94 \times 10^{-4}) = 3.5$ pH = 14.00 - 3.5 = 10.515.91 Given: 0.150 M morphine, pH = 10.5 Find: K_b **Conceptual Plan:** $pH \rightarrow pOH \rightarrow [OH]$ and then write a balanced equation, prepare an ICE table, and determine pH = pOH = 14 pOH = -log[OH]equilibrium concentrations $\rightarrow K_{\rm b}$. **Solution:** $pOH = 14.0 - 10.5 = 3.5 [OH^{-}] = 10^{-3.5} = 3.16 \times 10^{-4} = [Hmorphine^{+}]$ $morphine(aq) + H_2O(l) \Leftrightarrow Hmorphine^+(aq) + OH^-(aq)$ T 0.150 M 0.0 0.0 С -x x x 3.16×10^{-4} 3.16×10^{-4} E 0.150 - x $\frac{[\text{Hmorphine}^+][\text{OH}^-]}{[\text{Morphine}^+][\text{OH}^-]} = \frac{(3.16 \times 10^{-4})(3.16 \times 10^{-4})}{(3.16 \times 10^{-4})} = 6.68 \times 10^{-7} = 7 \times 10^{-7}$ $K_{\rm b} =$ $(0.150 - 3.16 \times 10^{-4})$ [morphine]

$$pOH = -log[OH^{-}] pH + pOH = 14$$

604

- (d) pH neutral: RbI Rb⁺ is the counterion of a strong base; therefore, it is pH neutral. I⁻ is the conjugate base of a strong acid; therefore, it is pH neutral.
- (e) basic NH₄ClO NH₄⁺ is the conjugate acid of a weak base; therefore, it is a weak acid. ClO⁻ is the conjugate base of a weak acid; therefore, it is a weak base. To determine pH, compare K values. 1.0×10^{-14} 1.0×10^{-14}

$$K_{\rm a} ({\rm NH_4^+}) = \frac{1.0 \times 10^{-5}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$
 $K_{\rm b} ({\rm ClO^-}) = \frac{1.0 \times 10^{-12}}{2.9 \times 10^{-8}} = 3.4 \times 10^{-7}$
 $K_{\rm b} > K_{\rm a}$; therefore, the solution is basic.

Identify each species and determine the acid, base, or neutral.

NaCl pH neutral: Na⁺ is the counterion of a strong base; therefore, it is pH neutral. Cl⁻ is the conjugate base of a strong acid; therefore, it is pH neutral.

 NH_4Cl acidic: NH_4^+ is the conjugate acid of a weak base; therefore, it is acidic. Cl^- is the conjugate base of a strong acid; therefore, it is pH neutral.

NaHCO₃ basic: Na⁺ is the counterion of a strong base; therefore, it is pH neutral. HCO_3^- is the conjugate base of a weak acid; therefore, it is basic.

 NH_4ClO_2 acidic: NH_4ClO_2 NH_4^+ is the conjugate acid of a weak base; therefore, it is a weak acid. ClO_2^- is the conjugate base of a weak acid; therefore, it is a weak base. $K_a(NH_4^+) = 5.6 \times 10^{-10} K_b(ClO_2^-) = 9.1 \times 10^{-13}$

NaOH strong base

Increasing acidity: NaOH < NaHCO₃ < NaCl < NH₄ClO₂ < NH₄Cl

15.102 Identify each species and determine the acid, base, or neutral.

 CH_3NH_3Br acidic: $CH_3NH_3^+$ is the conjugate acid of a weak base; therefore, it is acidic. Br^- is the conjugate base of a strong acid; therefore, it is pH neutral.

KOH strong base

KBr pH neutral: K⁺ is the counterion of a strong base; therefore, it is pH neutral. Br⁻ is the conjugate base of a strong acid; therefore, it is pH neutral.

KCN basic: K⁺ is the counterion of a strong base; therefore, it is pH neutral. CN⁻ is the conjugate base of a weak acid; therefore, it is basic.

C₅H₅NHNO₂ acidic: C₅H₅NH⁺ is the conjugate acid of a weak base; therefore, it is acidic. NO₂⁻ is the conjugate base of a weak acid; therefore, it is basic. $K_a(C_5H_5NH^+) = 5.9 \times 10^{-6}$; $K_b(NO_2^-) = 2.2 \times 10^{-11}$

Increasing basicity: CH₃NH₃Br < C₅H₅NHNO₂ < KBr < KCN < KOH

15.103

(a)

Given: 0.10 M NH₄Cl Find: pH

Conceptual Plan: Identify each species and determine which will contribute to pH. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine $[H_3O^+] \rightarrow pH$.

Solution: NH_4^+ is the conjugate acid of a weak base; therefore, it is acidic. CI^- is the conjugate base of a strong acid; therefore, it is pH neutral.

 $\mathrm{NH_4^+}\left(aq\right) + \mathrm{H_2O}(l) \leftrightarrows \mathrm{NH_3}\left(aq\right) + \mathrm{H_3O^+}\left(aq\right)$ I 0.10 0.0 0.0 C x -x x Ε 0.10 - xx x $\frac{K_{\rm w}}{K} = \frac{1.0 \times 10^{-14}}{1000}$ $\frac{1.8 \times 10^{-5}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} = -500$ (x)(x)(0.10 - x)Kb Assume x is small. $x = 7.45 \times 10^{-6} = [H_3O^+]$ $pH = -log(7.45 \times 10^{-6}) = 5.13$

(b) Given: 0.10 M NaC₂H₃O₂ Find: pH

Conceptual Plan: Identify each species and determine which will contribute to pH. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine $[OH^-] \rightarrow pOH \rightarrow pH$.

 $pOH = -log[OH^-] pH + pOH = 14$

Solution: Na⁺ is the counterion of a strong base; therefore, it is pH neutral. $C_2H_3O_2^-$ is the conjugate base of a weak acid; therefore, it is basic.

 $C_2H_3O_2^-(aq) + H_2O(l) \Longrightarrow H C_2H_3O_2(aq) + OH^-(aq)$ I 0.0 0.10 0.0C -x x x E 0.10 - xx x $K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} = \frac{(x)(x)}{(0.10 - x)}$ Assume x is small. $x = 7.45 \times 10^{-6} = [OH^{-}] \text{ pOH} = -\log(7.45 \times 10^{-6}) = 5.13$ pH = 14.00 - 5.13 = 8.87

(c) Given: 0.10 M NaCl Find: pH

Conceptual Plan: Identify each species and determine which will contribute to pH. Solution: Na⁺ is the counterion of a strong base; therefore, it is pH neutral. Cl⁻ is the conjugate base of a strong acid; therefore, it is pH neutral. pH = 7.0

15.104

(a)

Given: 0.20 M NaCHO₂ Find: pH

Conceptual Plan: Identify each species and determine which will contribute to pH. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine $[OH^{-}] \rightarrow pOH \rightarrow pH$.

 $pOH = -log[OH^-] pH + pOH = 14$

Solution: Na⁺ is the counterion of a strong base; therefore, is pH neutral. CHO₂⁻ is the conjugate base of a weak acid; therefore, it is basic.

 $CHO_2^{-}(aq) + H_2O(l) \Leftrightarrow HCHO_2(aq) + OH^{-}(aq)$ I 0.20 M 0.0 0.0 C x -x x E 0.20 - xx x $K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-4}} = 5.56 \times 10^{-11} = \frac{(x)(x)}{(0.20 - x)}$ Assume x is small. $x = 3.33 \times 10^{-6} = [OH^{-}] \text{ pOH} = -\log(3.33 \times 10^{-6}) = 5.48$ pH = 14.00 - 5.48 = 8.52

(b) Given: 0.20 M CH₃NH₃I Find: pH

Conceptual Plan: Identify each species and determine which will contribute to pH. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Determine $[H_3O^+] \rightarrow pH$.

Solution: $CH_3NH_4^+$ is the conjugate acid of a weak base; therefore, it is acidic. Cl^- is the conjugate base of a strong acid; therefore, it is pH neutral.

	$CH_3NH_3^+(aq) + H_2O$	$(l) \leftrightarrows CH_3 NH_2 (l)$	$(aq) + H_3O^+(aq)$	
I	0.20 M	0.0	0.0	
C	- <i>x</i>	x	x	
E	0.20 - x	x	x	
Ka	$=\frac{K_{\rm w}}{K_{\rm b}}=\frac{1.0\times10^{-14}}{4.4\times10^{-4}}=$	$2.27 \times 10^{-11} = -0$	$\frac{(x)(x)}{0.20-x)}$	

Polyprotic Acids

15.107	H ₃ PC	$D_4(aq) + 1$	$H_2O(l) \Leftrightarrow H_3O^+(al)$	$q) + H_2PO_4^{-}(aq)$	$K_{a_1} = \frac{[H_3C]}{[}$	0 ⁺][H ₂ PO ₄ ⁻] H ₃ PO ₄]	
	H ₂ PC	$D_4^{-}(aq) +$	$H_2O(l) \Leftrightarrow H_3O^+(a)$	$(aq) + \mathrm{HPO}_4^{2-}(aq)$	$K_{a_2} = \frac{[H_3O]}{[I]}$	⁺][HPO ₄ ²⁻] H ₂ PO ₄ ⁻]	
F	HPO	$4^{2-}(aq) +$	$H_2O(l) \Leftrightarrow H_3O^+(a)$	$(aq) + PO_4^{3-}(aq)$	$K_{a_3} = \frac{[H_3O]}{[H]}$	$(PO_4^{3-}]$	
15.108	H ₂ CO	D ₃ (aq) + 1	$H_2O(l) \Leftrightarrow H_3O^+(ad)$	q) + HCO ₃ ⁻ (aq)	$K_{a_1} = \frac{[H_3O]}{[I]}$	⁺][HCO ₃ ⁻] H ₂ CO ₃]	
	HCO	$p_3^{-}(aq) + 1$	$H_2O(l) \Leftrightarrow H_3O^+(au)$	$(q) + CO_3^{2-}(aq)$	$K_{a_2} = \frac{[H_3O]}{[H_3O]}$	$^{+}][CO_{3}^{2}^{-}]$ $ICO_{3}^{-}]$	
15.109	(a)	Given: Concep Prepare put the Solution I C E $K_a = \prod_{i=1}^{n}$ Assume $x^2 = (7)$ Check a $x^2 + 7$ pH = -	0.350 M H ₃ PO ₄ tual Plan: K_{a_1} is m an ICE table, rep equilibrium value n: H ₃ PO ₄ (aq) + H ₂ 0.350 M - x 0.350 - x H ₃ O ⁺][H ₂ PO ₄ ⁻] [H ₃ PO ₄] = x is small compa (3x10 ⁻³)(0.350) assumption: $\frac{0.056}{0.35}$ (.5 x 10 ⁻³ x - 0.00) -log(0.04 <u>7</u> 62) = 1	$K_{a_1} = 7.5 \times 10^{-3}, H$ uch larger than K_a resent the change is in the equilibriu $2O(l) \cong H_3O^+(aq) - 0.0$ x $\frac{x}{(x)(x)} = 7.2$ red to 0.350. x = 0.0505 M = [0.0505 M] $\frac{20}{0} \times 100\% = 14.4\%$ 2625 = 0 $x = 0.32$	$K_{a_2} = 6.2 \times 10^{-8}$ K_{a_2} so use K_{a_1} to with x , sum the in expression, $+ H_2PO_4^-(aq)$ 0.0 x x 3×10^{-3} H_3O^+] K_4^0 assumption r $047_62 = [H_3O^{-1}]$	Find: [H ₃ O ⁺], pH calculate [H ₃ O ⁺]. Write a b the table, determine the eq and solve for <i>x</i> .	valanced reaction. uilibrium values,
15.110	(b) (a)	Given: Concep Prepare put the Solutio I C E $K_a = \frac{[I]}{x^2 + 6.0}$ pH = - Given: Concep Prepare put the Solutio I C	0.350 M H ₂ C ₂ O ₄ tual Plan: K_{a_1} is m an ICE table, rep equilibrium value n: H ₂ C ₂ O ₄ (<i>aq</i>) + H 0.350 M - x 0.350 - x H ₃ O ⁺][HC ₂ O ₄ ⁻] [H ₂ C ₂ O ₄] = (H ₂ C ₂ O ₄] = 0.21 -log(0.1 <u>1</u> 79) = 0.9 0.125 M H ₂ CO ₃ tual Plan: K_{a_1} muc an ICE table, rep equilibrium value n: H ₂ CO ₃ (<i>aq</i>) + H ₂ 0.125 M	$K_{a_1} = 6.0 \times 10^{-2}, k$ uch larger than K_{a_1} resent the change is in the equilibrium $I_2O(l) \Leftrightarrow H_3O^+(aq)$ 0.0 x $\frac{x}{(x)(x)}$ $= 0 x = 0.1179$ $K_{a_1} = 4.3 \times 10^{-7}, K$ is harger than K_{a_2} resent the changer is in the equilibrium $O(l) \Leftrightarrow H_3O^+(aq) + 0.0$ x	$K_{a_2} = 6.0 \times 10^{-5}$, so use K_{a_1} to over with <i>x</i> , sum the um expression, + HC ₂ O ₄ ^{-(aq)} 0.0 <i>x</i> <i>x</i> 0 × 10 ⁻² 0 = 0.12 M [H ₃ $K_{a_2} = 5.6 \times 10^{-11}$ so use K_{a_1} to car with <i>x</i> , sum the um expression, - HCO ₃ ^{-(aq)} 0.0 <i>x</i> <i>x</i>	Find: $[H_3O^+]$, pH calculate $[H_3O^+]$. Write a b e table, determine the equ and solve for x. $(3O^+)$ Find: $[H_3O^+]$, pH alculate $[H_3O^+]$. Write a base e table, determine the equ , and solve for x.	alanced reaction. uilibrium values, alanced reaction. uilibrium values,
		C E	-x 0.125 - x	x x	x x		

 $K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm HCO}_3^-]}{[{\rm H}_2{\rm CO}_3]} = \frac{(x)(x)}{(0.125 - x)}$ $= 4.3 \times 10^{-7}$ Assume *x* is small. $x^2 = (4.3 \times 10^{-7})(0.125)$ $x = 2.32 \times 10^{-4} = [H_3O^+]$ 2.32×10^{-4} - x 100% = 0.19%; assumption valid 0.125 $pH = -\log(2.32 \times 10^{-4}) = 3.63$

Given: $0.125 \text{ M H}_3\text{C}_6\text{H}_5\text{O}_3 \ K_{a_1} = 7.4 \times 10^{-4}$, $K_{a_2} = 1.7 \times 10^{-5}$, $K_{a_3} = 4.0 \times 10^{-7}$ Find: [H₃O⁺], pH Conceptual Plan: K_{a_1} and K_{a_2} are only 10⁻¹ apart, so use both to calculate [H₃O⁺]. Write a balanced (b) reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x.

Solution: $H_3C_6H_5O_3(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + H_2C_6H_5O_3^-(aq)$ I 0.125 M 0.0 0.0 C - X x x E 0.125 - xx $K_{a_1} = \frac{[H_3O^+][H_2C_6H_5O_3^-]}{[H_1C_1H_2C_3]} =$ (x)(x) $= 7.4 \times 10^{-4}$ (0.125 - x)[H₃C₆H₅O₃] Assume x is small. $x^2 = (7.4 \times 10^{-4})(0.125)$ $x = 9.62 \times 10^{-3} = [H_3O^+]$ 9.62×10^{-3} - x 100% = 7.8%; assumption not valid, solve with quadratic equation. 0.125 $x^{2} + 7.4 \times 10^{-4} x - 9.25 \times 10^{-5} = 0$ $x = 0.009255 = [H_{3}O^{+}] = [H_{2}C_{6}H_{5}O_{3}^{-}]$ and then: $H_2C_6H_5O_3^-(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + HC_6H_5O_3^{2-}(aq)$ T 0.009255 M 0.009255 0.0 C - y 4 y E 0.009255 - y 0.009255 + y = y $\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}\mathrm{C}_{6}\mathrm{H}_{5}\mathrm{O}_{3}^{2-}]}{[\mathrm{H}_{6}\mathrm{O}_{4}\mathrm{O}_{5}^{-1}]} = \frac{(0.009255 + y)(y)}{(2.000075)}$ $= 1.7 \times 10^{-5}$ [H₂C₆H₅O₃⁻] (0.009255 - y)Then, $y = 1.7 \times 10^{-5}$ Assume y is small. 1.7×10^{-5} $\frac{3}{0.009255}$ x 100% = 1.8%; assumption valid $[H_3O^+] = 1.7 \times 10^{-5}$ (from second ionization) $[H_3O^+] = 0.009\underline{2}55 + 1.7 \times 10^{-5} = 0.009\underline{2}7 \text{ M} \quad pH = -\log(0.009\underline{2}7) = 2.03$

Given: 0.500 M H₂SO₃ $K_{a_1} = 1.6 \times 10^{-2}$, $K_{a_2} = 6.4 \times 10^{-8}$ Find: concentration all species Conceptual Plan: K_{a_1} is much larger than K_{a_2} so, use K_{a_1} to calculate [H₃O⁺]. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x.

Solution: $H_2SO_3(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + HSO_3^-(aq)$ I 0.500 M 0.0 0.0 С - x x x E 0.500 - xx x $\frac{[\text{H}_3\text{O}^+][\text{HSO}_3^-]}{[\text{H}_2\text{SO}_3]} = \frac{(x)(x)}{(0.500 - x)}$ $= 1.6 \times 10^{-2}$ $K_a =$ $x^2 + 1.6 \ge 10^{-2} x - 0.0080 = 0$ $x = 0.0818 = 0.082 \text{ M} [\text{H}_3\text{O}^+] = [\text{HSO}_3^-]$ Use the values from reaction 1 in reaction 2. $\mathrm{HSO}_3^{-}(aq) + \mathrm{H_2O}(l) \leftrightarrows \mathrm{H_3O^+}(aq) + \mathrm{SO_3^{2-}}(aq)$ 0.0 0.0818 1 0.0818 M C - V 0.0818 + y yE 0.0818 - y

 $K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm SO}_3{}^{2-}]}{[{\rm HSO}_3{}^{-}]} = \frac{(0.0818 + y)(y)}{(0.0818 - y)} = 6.4 \times 10^{-8}$ Assume y is small $y = 6.4 \times 10^{-8}$. $[H_2SO_3] = 0.500 - 0.0818 = 0.418 M$ $[HSO_3^{-}] = x = 0.0818 = 0.082 M$ $[SO_3^{2-}] = y = 6.4 \times 10^{-8} M$ $[H_3O^+] = x + y = 0.0818 = 0.082 \text{ M}$ $[OH^{-}] = \frac{K_{w}}{[H_{3}O^{+}]} = \frac{1.0 \times 10^{-14}}{0.0818} = 1.2 \times 10^{-13} M$

15.112

Given: $0.155 \text{ M H}_2\text{CO}_3$ $K_{a_1} = 4.3 \times 10^{-7}$, $K_{a_2} = 5.6 \times 10^{-11}$ Find: concentration all species Conceptual Plan: K_{a_1} is much larger than K_{a_2} so, use K_{a_1} to calculate [H₃O⁺] and [HCO₃⁻]. Use K_{a_2} to find [CO₃⁻]. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x.

Solution: $H_2CO_3(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + HCO_3^-(aq)$ I 0.125 M 0.0 0.0 $\begin{array}{cccc} -x & x & x \\ 0.125 - x & x & x \\ K_{a} = \frac{[H_{3}O^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]} = \frac{(x)(x)}{(0.155 - x)} = 4.3 \times 10^{-7} \end{array}$ C E Assume x is small. $x^{2} = (4.3 \times 10^{-7})(0.155)$ $x = 2.58 \times 10^{-4} \text{ M} = [\text{H}_{3}\text{O}^{+}] = [\text{HCO}_{3}^{-1}]$ Reaction 2 $\mathrm{HCO}_{3}^{-}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \leftrightarrows \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{CO}_{3}^{2-}(aq)$ Since K_{a_2} is small, $y = [CO_3^{2^-}] = K_{a_2}$ $[H_2CO_3] = 0.155 - 2.58 \times 10^{-4} = 0.1547 = 0.155 M$ $[HCO_3^{-}] = x = 2.58 \times 10^{-4} = 2.6 \times 10^{-4} M$ $[CO_3^{2-}] = y = 5.6 \ge 10^{-11} \text{ M}$ $[H_3O^+] = x = 2.58 \times 10^{-4} = 2.6 \times 10^{-4} M$ $[OH^{-}] = \frac{K_{w}}{[H_{3}O^{+}]} = \frac{1.0 \times 10^{-14}}{2.58 \times 10^{-4}} = 3.88 \times 10^{-11} \text{ M} = 3.9 \times 10^{-11} \text{ M}$

15.113

(a)

Given: $[H_2SO_4] = 0.50 \text{ M} K_{a_2} = 0.012 \text{ Find:} [H_3O^+], pH$

Conceptual Plan: The first ionization step is strong. Use K_{a_2} and reaction 2. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x. Solution: $H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$ strong

0.50 M $[H_3O^+] = [HSO_4^-] = 0.50 \text{ M}$ $\mathrm{HSO}_{4}^{-}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \leftrightarrows \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{SO}_{4}^{2-}(aq)$ I 0.50 M 0.50 0.0 C - x x x 0.50 + x0.500 - xE x $K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm SO}_4{}^{2-}]}{[{\rm HSO}_4{}^{-}]} = \frac{(0.50 + x)(x)}{(0.50 - x)} = 0.012$ $x^{2} + 0.512 x - 0.006 = 0$ $x = 0.0115 = [H_{3}O^{+}]$ from second ionization step $[H_3O^+] = 0.50 + 0.012 = 0.51 \text{ M}$ $pH = -\log(0.51) = 0.29$

Given: $[H_2SO_4] = 0.10 \text{ M } K_{a_2} = 0.012 \text{ Find:} [H_3O^+], pH$ (b) Conceptual Plan: The first ionization step is strong. Use K_{a_2} and reaction 2. Write a balanced reaction. Prepare an ICE table, represent the change with x, sum the table, determine the equilibrium values, put the equilibrium values in the equilibrium expression, and solve for x.