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Between 2003 and 2008, within the LORNET research network (www.lornet.org), our team has been 

designing and developing TELOS, an innovative operation system for eLearning and knowledge 

management environments that is driven by a technical ontology. After presenting the underlying 

principles of this system, we will develop a graphic model of the resulting ontology that captures the 

conceptual architecture of the system. Next, we will present the main aggregation modeling tool and the 

way it is related to the TELOS Ontology. Finally, we will illustrate how the ontology is used to drive the 

system at run-time. The conclusion will discuss the contribution of this research to the field of ontological 

engineering of software systems. 

15.1 PRINCIPLES FOR AN OPERATIONS’ SYSTEM 

At the turn of year 2000, new concepts had emerge from various fields such as Web-based programmable 

learning portals, service oriented frameworks, model-driven and ontology-driven architectures, multi-

actor scenarios and workflows. These main technological trends have deeply influenced our work to 

produce more flexible, powerful, yet user-friendly elearning environments. 

     We aimed to go one level up, enabling the aggregation of custom-made platforms or portals in a way 

similar to desktop integration that has enabled the interoperation of components from different sources. 

We have designed the Technology Enhanced Learning Operating System (TELOS) on the same 

interoperability principles.  The TELOS architecture aims to extend portal assembly in ways enabling 

technologists to built their own platforms. These platforms would foster a variety of distributed learning 

environments or models such as electronic performance support systems (EPSS), communities of 

practice, formal on-line training and technology-based classroom, and different forms of blended learning 

or knowledge management environments.        
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     As the project was starting, Service-oriented frameworks (Wilson, Blinco and Rehak 2004) such as 

ELF (2007) or OKI (2007) were proposed to lower the costs of integration, and to encourage more 

flexibility and simplification of software configurations. Such a framework could also create a broad 

vocabulary that could be extended to an ontology. The TELOS conceptual framework presented in 

section 2 would also be designed as a service oriented framework, facilitating the aggregation of services 

to create custom-made platforms and applications. 

     This has led us naturally to a model-driven, ontology-driven architecture (Kleppe, Warmer and Bast 

2003). The main gain of model-driven architectures (MDA) is the generation of the code from the model 

in successive layers, the model being reusable in other contexts with few adaptations. Ontology-driven 

architectures (Tetlow et al. 2001; Davies, van Harmelen and Fensel 2002) add to this paradigm an explicit 

ontology structuring of the objects processed by the system, acting as its executable blueprint. MDA 

therefore put more emphasis on the platform independent model (PIM), reducing the work on platform 

specific (PSM) and code models. Ontology-Driven Architectures foster a programming style analogous to 

the Prolog programming language. Here the declarative part is encoded in the ontology, in our case 

through OWL-DL statements. The execution part is encoded in queries prepared for an inference engine 

that processes the queries. The result of a query is to trigger the execution of some of the services. 

     Another key architectural idea is the concept of multi-actor learning designs and workflows, as the 

main structure of the various environments produced using TELOS.   We wanted to avoid some of the 

weaknesses of our previous virtual campus models and most commercial platforms, where actors only 

interact within mono-actor environments that do not really take in account collaborative processes. As we 

have discussed in chapter 8, this question is now solved partly in workflows modeling languages such as 

BPMN (Correal and Marino, 2007) and in eLearning design specifications like IMS-LD (2003) Multi-

actor learning designs and workflows provide a central aggregation mechanism grouping actors, the 

operation they perform and the resources they use or produce from or for other actors. Based on this 

work, a multi-actor scenario editor and execution engine was planned as a central piece of TELOS 

(Paquette and Rosca 2003; Magnan and Paquette 2006) 

15.2 BUILDING THE  ARCHITECTURE OF TELOS  

Initially, we have tailored the Rational Unified Process (RUP) to the needs of the project. RUP is an 

adaptable process framework that describes how to develop software effectively using proven techniques. 

While the RUP encompasses a large number of different activities, it enables the selection of 

development processes appropriate to a particular software project.  

Development Process 

As shown on figure 15.1 our initial use of RUP was first focused on the business modeling and the 

requirements processes, each with a few cycles including phases of inception, elaboration, construction 

and transition. This has led to a set of architecture documents, the main one being the Use cases and 

software requirements documents (UC 1.0). Then the focus has moved to the Analysis and Design 

process with the construction of the Conceptual Architecture (CA 0.7) and the Conceptual Framework 

(CF 0.8) documents, which includes the TELOS Conceptual Ontology. The first two years followed the 

RUP quite closely but with long iteration cycles resulting in a set of architecture documents and throw-

away prototypes TELOS-1 and TELOS-2. 

     In the last three years, the team has reduced the length of the iterations, adopting a process closer to 

Rapid Prototyping in order to achieve workable prototypes. A number of Software Architecture (SA) 

documents have been written to support the implementation of the TELOS prototypes. TELOS-3 was the 

first evolutionary prototype on which we could build the following ones. Each year, a test bed was 

conducted where users would interact with the available prototype within a carefully planned test process. 

Prototypes 2, 3 and 4 were demonstrated at the LORNET annual conferences. The last one, TELOS-5, 

http://en.wikipedia.org/wiki/Framework
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was demonstrated at the ITS-08 conference. This evolution reflects the fact that TELOS does not follow 

traditional software development processes, being considered as innovative, risky and ambitious by many 

persons, in other words, a research project. 

 

Figure 15.1 – TELOS development process. 

Use Cases and Requirements 

     We will now briefly summarize on Figure 15.2 the Use Cases Specifications and Requirements (UCR 

1.0), and the TELOS Conceptual Framework (CF 0.9). 
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Figure 15.2 - Resource life cycle and system cascade actors 

      The UCR has undergone 10 iterations, from June 03 to December 04. It groups 30 use case diagrams 

and descriptions that are packaged as shown on figure 15.2. The use cases at the four levels of the system 

describe how to build, administrate, use and support a Web-based environment, each being used at each 

cascade level (rows on figure 15.2). Level IV concerns mainly an engineer extending the TELOS Core 

that will be used by technologists. At Level III, a technologist uses the TELOS Core to produce a 

platform, technically called a Learning and Knowledge Management System (LKMS). At level II, a 

designer uses a platform, to build one or more Learning and Knowledge Management Applications 

(LKMA), usually called  “courses”, “learning units”, “knowledge management workflows”, etc. Finally at 

level I, using one of these applications, a learner or a knowledge worker will acquire knowledge and 

produce results (homeworks, documents, performance) that can be grouped in a portfolio or a set of 

Learning and Knowledge Management Products (LKMP).  

     Generic resource life cycle use cases (columns on figure 15.2) correspond to four sub-operations 

(phases) that occur at each of the four cascade levels. In these, a resource is composed, managed 

(prepared) for use, used by its intended actors, and analyzed to provide assistance. These operations are 

generally performed in sequence at each of the cascade levels by corresponding actors called respectively 

composers, administrators, explorers (resource users) and facilitators (acting as analysts to provide 

assistance and feedback). These operations are generic, being applicable at any cascade level. When they 

act as composer, learners will have to search for resources in much the same ways as a designer, a 

technologist or an engineer, even though the content of the resources will differ. 

     We can use different metaphors to describe these general processes. In a manufacturing metaphor, the 

resource life cycle corresponds to a process where a product passes through different productions 

operations. Within the system generation cascade, the TELOS Core is like a factory that produces 

machine components or complete machines; the products of this first factory are used to build machines 

that will be used in other factories (LKMSs) to build cars, aircrafts, etc. These transportation machines, 

will finally be used by their clients to produce some outcome (e.g. to travel).  

     As a manufacture, the TELOS Core itself starts with a complete set of components to produce LKMS 
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factories, but it will also be open to improvement, adding new processes and operations, to produce more 

versatile machines. 

Conceptual Architecture 

     Starting with this elaborated set of use cases, the TELOS conceptual architecture (Rosca 2005) and the 

TELOS conceptual framework (Paquette, Rosca Masmoudi and Mihaila 2005) were built as a service-

oriented framework, bringing it closer to a possible implementation. Figure 15.3 present the main classes 

of services. 

 Kernel Communication services. TELOS is built as a distributed architecture on the Internet. To 

become a node in a Virtual Campus, each user installs a TELOS kernel on his machine that 

provides basic communication services with other nodes where resources are distributed. These 

services include for example a service registry, a repository that locates the resources on the 

nodes of the network, connectors to provide communication with resources built using different 

technologies, protocol translation and so on. 

 Resource interfacing services. Basic resources comprise documents in a variety of media formats, 

tools to process documents, operations that can perform a process automatically and finally 

persons managing a set of activities on the network. All these resources usually will require to be 

interfaced in different ways, for example by a communication agent for format translation, 

through encapsulation for tracing, etc. They will then be stored in a resource repository in order 

to be reached and to participate in the learning and/or knowledge management processes 

 Resource life cycle services. These services provide a number of editors for a composer to build, 

adapt and aggregate resources, thus producing a model of the resource. The provide tools for an 

administrator to produce instances of the model, as well as interfaces to help users and facilitators 

interact with an environment instance. 

 Aggregates’ management services. These services provide management functionalities for the 

main aggregates (or Web portals) used in the Virtual Campus: Core, LKMSs, LKMAs and 

LKMPs portals. For example, they will help in the storage, modification, display, evolution and 

maintenance of versions of TELOS Core, the interoperability between platforms (LKMSs), the 

management of courses (LKMAs) and the LKMPs such as Portfolios. 

 Semantic services. These services enable users to query or edit semantic resources, for example 

ontologies or metadata, used to reference resources. Resource publication services enable users to 

package resources with their semantic references, enabling various kind of resource search, 

retrieval and display. With these services a user can call upon federated or harvested search 

operations to display documents, tools, operations (including activities and units-of-learning) 

related to some domain knowledge and competencies. 

 Common services. We have grouped in this category all the lower level services that are called by 

the services in the preceding categories. They correspond to operations that all the actors need to 

perform while participating in the Virtual Campus. 
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Figure 15.3 -The Virtual Campus Service Oriented Framework 

15.3 THE TELOS TECHNICAL ONTOLOGY 

In this section we will summarize the general methodology used to develop TELOS. First, we will present 

the conceptual framework of the TELOS system, and the conceptual ontology derived from it. Next, we 

will show how this first ontology was adapted to produce the technical ontology that drives the TELOS 

system.   

From Conceptual Framework to Conceptual Ontology 

     An important goal in the TELOS project was to embed in the system technology-independent models, 

to help the system survive the rapid pace of technology evolution. Another concern was to favour the 

reusability of modular components and the flexibility on the system’s evolution. For that purpose, the 

conceptual specifications of TELOS, are not be kept apart from the code of the system as is usually done 

in software engineering. The TELOS system is able to use ontologies as “conceptual programs”. In this 

vision, the conceptual models are not just prerequisite to the construction of the TELOS system; they are 

part of the system, as one of its most fundamental layer. These considerations motivated the need for an 

ontology-driven architecture (ODA). 

     To achieve that goal, we have translated the use cases and the service-oriented conceptual architecture 

presented above into an OWL-DL ontology. We have selected to use OWL-DL ontologies (W3C 2004) 

for a number or reasons. Of the three languages designed by the W3 consortium, OWL-DL has a wide 

expressivity and its foundation in Description Logic (Baader, Calvanese et al. 2003) guarantees its 
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computational completeness and decidability. On a more practical side, a growing number of software 

tools have been designed to process OWL-DL XML files and to put inference engines at work to query 

ontologies in order to execute the processes in a system. 

   The graph of figure 15.4 presents the upper level of the TELOS Conceptual ontology that has been 

constructed using the MOT+OWL editor (Paquette 2008) presented in chapter 10. In TELOS, the actors, 

the operations they perform and the resources they use or produce are all TELOS resources. This is shown 

on the graph by using S “is-a-sort-of” links. They are represented as classes linked together with 

properties such as “perform” and “use or produce”. 

  

 

Figure 15.4 - Upper part of the TELOS Conceptual Ontology 

     Some classes are further defined in sub-models that present sub-taxonomies of classes and their 

properties. The graph of figure 15.5 shows the taxonomy of TELOS users corresponding to the use cases 

summarized on Figure 15.2, related by the “canPerform” property to corresponding operations they 

perform. The taxonomy of operations is further defined in another Operations’ sub-model (not shown 

here) where the operations are linked with the services (handlers) identified previously in the conceptual 

architecture (Figure 15.3).  
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Figure 15.5 - Part of the TELOS Conceptual Ontology focused on Roles and Actors 

Another sub-graph describes the taxonomy of resources, including the very important concept of 

“content” package, which is redefined as resources having semantic descriptions. The upper part of this 

sub-graph is presented in figure 15.6. 

 

Figure 15.6: Part of the TELOS Conceptual Ontology focused on Resources 
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From Conceptual Ontogy to Technical Ontology 

     The conceptual ontology was revised, simplified or expanded to build the TELOS technical ontology 

shown on figure 15.7,  that is integrated as code to drive the operation of the system.  

 

 

 

Figure 15.7 - The upper layer of the TELOS technical ontology 
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     First, we had to capture the distributed aspects of TELOS by adding the concept of a “TELOS Node” 

that was not present in the Conceptual Ontology but defined in the Conceptual architecture. The TELOS 

Global bus enables the interoperability between different TELOS nodes abstracting their particular 

physical platform and their network configuration. By connecting TELOS nodes through the Global Bus, 

we form a dynamic peer-to-peer network. This network may contain special nodes called community 

controllers, which are basically centralized repositories for resources.  The first graph of figure 15.7  is the 

upper level of the TELOS Technical ontology. It presents the concept of a TELOS node in relation to the 

concept of a TELOS resource, which was the root of the former conceptual ontology.  

     The second graph on figure 15.7 presents a sub-model of the previous one defining the concept of a 

TELOS Node, and the third one presents a more precise, upper level definition of a TELOS Resource that 

is very similar to the one in the Conceptual ontology. In these graphs, cardinality axioms (hexagons with 

numbers), disjoint axioms (Disj link) and functional property axioms have been added for more precision. 

This is essential because this ontology will have to respond to queries using an inference engine that do 

not tolerate ambiguity. 

     In these upper layer graphs, we find the interrelations between the main concepts of Actors, Operations 

and Digital Resources. The Actors’ and the Operations’ sub-ontologies are directly imported from the 

Conceptual ontology presented on figure 15.4.  The Digital Resources’ sub-ontology has undergone more 

important changes. It is presented on figure 15.8. We see that implementation-focused concepts have been 

added such as productID and locationURL. Each of the five main sub-classes: Documents, Atomic 

Resources, Actors, Aggregates and Digital Operations are detailed in other OWL-DL models no shown 

here. 

 

Figure 15.8 -Part of the sub-ontology for Digital Resources 

     The resources are the persistent data of a TELOS node. The “Aggregates” sub-class is particularly 

important. This type of resource enables users to create new eLearning tools by gluing existing software 

components and other resources. It also enables users to model collaborative workflows or scenarios 
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aggregating actors, the activities they perform and the documents, the software components they use or 

produce. 

      The technical ontology we have just presented forms the heart of the semantic layer if TELOS. It is 

where all TELOS concepts are declared and related together to define the global behavior of TELOS. The 

semantic layer also contains the domain ontologies created by users that later enables the referencing of 

the resources with application domain knowledge and competencies. 

 

15.4 TELOS MAIN TOOLS 

Before discussing how the TELOS system uses its semantic layer and its Technical ontology for its 

operations we will first present de main tools in TELOS. Figure 15.9 displays the TELOS desktop main 

interface in a Web browser, with the three main tools open: the Resource Manager, the Scenario Editor 

and the Task Manager. The MOWL Ontology Editor presented in chapter 10 is also available from the 

TELOS desktop. 

 

 

Figure 15.9 - TELOS desktop main interface 
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The Resource Manager  

     The TELOS Resource Manager serves to integrate and manage the resources that actors use or produce 

in TELOS. These resources are classified according to the technical ontology. On the Figure 15.9, the 

“aggregates” class of the technical ontology is expanded and the “My scenarios” class is selected showing 

the available instances on its right side. Resources can be added, deleted, moved or duplicated within a 

class or to other classes.  

      Once a scenario has been selected, the little icons on the right enable any authorized user to view, 

modify or run the execution of the resource. These functions differ depending on the type to the resources.   

 When a resource is open in modify (write) mode, a key icon ( ) is added in the action column to 

prevent two users to edit the same resource at the same time. The resource is transferred on the 

user’s local machine and opened with his associated applications (MS Word for a doc file, 

PowerPoint for a ppt file, etc...) until it is made available again in the resource manager.  

 For a scenario the View and Modify functions open the scenario editor presented in chapter 8, 

also shown on the second window of figure 15.9; the Run option starts the inference engine that 

will execute the scenario and present it to its users in the Task Manager.  

 For an ontology, the View and Modify functions open the ontology in the Ontology Editor 

presented in chapter 10. 

 Resources of type TELOS Users, viewing or editing opens a User Browser that lets you enter 

personal information, e-mails, photo, etc....; this information is reachable in scenario execution 

process, by clickable icons that represent scenario's users. For groups (type 

Actors/TELOSGroups), a dedicated editor is opened to add or delete individuals from a group. 

 Software component can also be integrated into scenarios through operations objects stored in the 

resource manager. Operations automate some processes during scenario execution. This kind of 

resource must be a zip archive that contains the binary code of the component plus an XML 

manifest file that describes its services : name, input parameters, output parameters and arguments 

order. 

The Scenario Editor 

     The TELOS scenario Editor has been briefly presented in chapter 8. Let us recall that MOT Concept 

symbols serve to represent all kinds of resources: documents, tools, semantic resources, environments, 

actors (as a resource), activities (as a resource) and data. MOT procedure symbols represent Functions 

that are aggregates of resources (e.g. scenarios) that together achieve a function. Functions can be 

decomposed into other functions at any depth down to activities enacted by humans, or operations 

performed automatically by the system. Finally, MOT principles serve to represent actors as well as 

conditions, depicted by two different sets of symbols. The Actor symbols represent users, groups, roles or 

software agents, all seen as control objects that rule the activities using and producing resources as 

planned by the scenario model. The Condition symbols represent control elements inserted within the 

basic flow to decide on the following functions, activities or operations to execute. 

     Now let us look more closely at the operation of the TELOS Scenario Editor. As a user starts 

elaborating a scenario model, the top level will be a function (generated by default) that represents the 

whole scenario that is created. This aggregate will be consequently added as a resource into the resource 

manager. At this top level, it is recommended to add and to link to this function all key actors and 

resources involved in this scenario. Afterwards, the user will add one or more levels of sub-models, to add 

more details to the scenario, as shown on figure 15.10. This sub-model shows that the scenario is 

composed of a sequence of four acts or modules involving three actors and two forum tools. Learning 

objectives are presented in the first act. 
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Figure 15.10 - Example of a model and its sub-model 

 
     Each graphic object at any level of the scenario can be described by a property sheet grouping 

properties like its name, type, annotation, etc., the most important one being its execution semantic.  

 

Figure 15.11 - A sub-model of a sub-model 



 14 

     Figure 15.11 presents a sub-model of act 2 that displays a property sheet for the selected object called 

“Planet Properties land surface temperature and orbital velocity”. If we do not tell TELOS what this icon 

represents in terms of its technical ontology, the system will not be able to process it. This is the role the 

selected property called “Execution semantic”. By clicking on this field, we open the little window of the 

Ontology chooser that opens a class of resources, here “Documents” and all the available instances that 

are member of that class. Here, the resource “Planet Properties A”, in fact a Powerpoint presentation on 

the planets, has been selected to be associated to the selected icon. At runtime, this document will be 

opened from the Resource Manager. In the same way, the teacher, a TELOS user, and the two teams of 

learners, will be given an execution semantic. The teacher icon will be associated to an individual user 

acting as the teacher, and the group icons will be associated to a list of precise learners, previously entered 

in the resource manager. The same can be said for the two chat tools into which each team will interact. 

Here, the execution semantic is to simply link the icons to URLs that will open in a browser each chat tool 

at runtime. 

     The TELOS scenario language provides a high-level programming visual language for TELOS. This 

generic language is designed for all TELOS users, including students/workers, teachers/designers, 

technologists and programmers/engineers, when they act, respectively, as composers (see figure 15.2) and 

use composition handlers (see figure 15.3) at the different levels of the cascade of TELOS aggregates.  

     In (Paquette and Magnan 2007) we have presented three examples of scenarios. The first case, 

presented above, is built by a designer that has constructed the course. The second example is less 

common, showing how a technologist can combine an existing platform with TELOS tools to extend the 

functionalities of the design environment. The third one has been built by an engineer aggregating four 

different components built with different technologies, in order to insert automatically the learning objects 

found by a Google search into a resource manager. 

    The example on figure 15.12 shows how a technologist can combine an existing platform with TELOS 

tools to provide a composition environment for a course designer. This design scenario corresponds to the 

central tasks of the MISA instructional engineering method presented in chapter 8 (Paquette 2001, 

Paquette 2004). The figure shows part of this scenario that involves using Concept@, Télé-université’s 

actual course design platform, augmented with the TELOS scenario editor and other components. The 

little window on the right present the tools used by designers in this design scenario. 

     The design scenario starts with two parallel functions performed by a designer: design of a course 

backbone using the Concept@ LCMS and the development of a knowledge and competency model for the 

course using the TELOS ontology editor. Let us note that actually, Concept@ helps produce an activity 

tree representing the course plan and its subdivision into modules and activities. This is a common 

situation in most LCMS (Learning Content Management Systems). This tree structure can be exported to a 

SCORM package. Then we add to the design scenario an operation that automatically transforms a 

SCORM package to the TELOS scenario format. This last XML file can now be imported in the scenario 

editor and displayed in the form of a scenario graph where it can be expanded. 

     Many roles can be defined in Concept@ but this exceeds SCORM’s mono-actor capabilities. So 

information about roles/actors is lost when we open the corresponding graph in the TELOS scenario 

editor. The next design phase proceeds graphically in the TELOS scenario editor to add manually the 

actors identified in Concept@.  

     Within the scenario editor more advanced flow of control can also be added to better personalize 

learning based on the knowledge and competency model. This is shown by the last three steps of the 

design scenario  on figure 15.12: associate knowledge and competencies to scenarios components, use a 

resource manager like PALOMA (see chapter 18 and 20) to add complementary resources to the scenario 

targeting the competencies and, finally parameterize the Competency + software (see chapter 20) for self-

diagnosis by the learners of their competencies. We will discuss the question on assistance and 

personalization in chapter 21.  
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Figure 15.12: Technologist constructing an augmented LKMS platform for designers 

     A third use of the scenario editor is presented on figure 15.13. It has been built by an engineer 

aggregating a new service encapsulated in an operation called the “Batch LOM Extractor”. This operation 

takes a set of keywords, a number of LOM records to be found and the name of a destination folder in a 

repository of learning objects managed by the PALOMA software.  

     The aim of this aggregated operation is first to make a Google query with the given keywords and 

collect the specified number of Web sites. Then, the next step will apply a text mining algorithm on each 

websites to extract automatically part of the metadata according to the LOM standard. Then, each of these 

metadata records will be inserted into the PALOMA folder identified at the beginning. Finally, this folder 

will open to show to the user the list of LOMs into the PALOMA software interface. 

     What we see here is the aggregation of software components built by different groups using different 

technologies. These software components transfer data from one to another. The Google Search Service is 

launched using a SOAP Web service connector provided by the TELOS kernel. The Metadata Extractor is 

a C# component linked to the TELOS kernel by a C# connector; it creates a metadata record in the Dublin 

Core (DC) format.  The DC to LOM conversion is a Scheme program linked to TELOS through a Scheme 

connector. PALOMA is a Java applet linked to TELOS through a Java connector.  

     This example illustrates the multi-technology aspect of TELOS and the capability of the scenario editor 

to aggregate software components as if they were one. The resulting aggregate can now be inserted in any 

scenario as one of its tool. 
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Figure 15.13 - Engineer constructing an operation aggregating services 

 

15.5 ONTOLOGY-DRIVEN SCENARIO EXECUTION 

     Although these scenarios differ greatly by their goals, their component resources and the  level of their 

actors in the view of TELOS on Figure 15.2, they can all be run by TELOS as long as each resource has 

an execution semantic based on the TELOS technical ontology. The Scenario Evaluator is the engine that 

executes a scenario. It coordinates the interactions between actors, activities/operations/tasks and other 

resources in the scenario at runtime. It looks at each graphic form in the scenario, obtains their location in 

the TELOS technical ontology and, with this data, it runs the user interface of the task manager 

accordingly. 

The Task Manager 

     The TELOS Task Manager is the tool allowing a user to interact with running scenarios. To invoke the 

Task Manager, a user clicks on the Task Manager icon on the desktop or select the Task Manager item in 

the Start menu. The Task Manager will also be invoked automatically when launching a scenario via the 

Resource Manager.  

     Figure 15.14 shows the Task Manager for the scenario of figure 15.10 and 15.11 at the very beginning. 

On the left, the tree view shows the four acts of figure 15.10. Each can be expanded by the + sign, but 

none is yet active because the execution engine is positioned at the function main level. On the right side 

of the interface, we see an annotation that has been added to state the general description of the scenario, 

followed by a list of the input parameters of the function specified on figure 15.10. The Learning 

Objective is a concrete document specified at design time so it can already be displayed by clicking on its 

name.  
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     The other three input parameters, two groups of learners and the teacher, have to be instantiated at run 

time because their execution semantic is a class of the technical ontology. This is what the administrator 

has to do in order  to launch the scenario: look up in the Ontology Chooser the instances of groups and 

users available in the resource manager (as shown on the little window in the front), select a value for each 

parameter and click on the Launch button.  

 

 
 

Figure 15.14 - Task Manager Interface 

     From that moment, the flow of control will move down to the level of the four acts. The first one will 

be executed, and then the second one and so on, according to the flow of the graph designed on figure 

15.9. 

Interface for each actor’s roles     

    Figure 15.15 shows the interface in the task manager for team A and team B members at the beginning 

of Act 2, when they start separate chats to discuss planet properties. It is important for the pedagogy in 

this scenario that they do not have the same information to analyze. Afterwards, they will share their 

information in the forum grouping all students and the teacher. 

   The essential thing here is that the task manager, guided by the technical ontology, presents adapted task 

manager interfaces to all the participants in the scenario. The teacher sees everything because he is an 

actor monitoring all the tasks in this scenario. This enables him to see all the documents, actors and task 

progress for all the learners involved in the scenario.  

     On the other hand, as shown on figure 15.15, the learners see only the tasks they are involved in and 

only the document they are suppose to use or produce. For example, learners in team A have terminated 

activity 1.2A which was their only task in Act 1 and their 2.1A activity is activated. From the Documents 



 18 

menu or from the Input Parameters section to activity 2.1A, they can launch the document shown on the 

figure that provides information on the rotational periods, the orbital periods and surface temperature of 

the planets. In the Actors menu, they see for the moment only the v-cards of their co-learners and of the 

teacher. And from the tools menu, they have access only to the Science chat A tool.  

     Meanwhile, learners in team B have access to information on other planet properties, their mass and 

equatorial radius. They can access their own team mate and the teacher in the Actors’ menu and they can 

open their own chat environment in the tools’ menu. 

 

 

Figure 15.15 - Different views in the Task Manager for team A and team B. 

Providing contextual views 

     Another interesting feature of the task manager is the graphic view presented on figure 15.16 that also 

uses the structure of the scenario graph and the links between its objects and the TELOS technical 

ontology. In this mode, the currently selected task is always shown in the center of the graph. Tasks that 
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immediately precede and succeed the current task are displayed, respectively, on the left and right side of 

the central node. This way, a user can see the task contextually. To see farther tasks, a user can click on 

another node and the graphical view will adjust itself. The location bar at the top indicates in which sub-

graph the current task belong. A user can use the location bar to navigate to upper sub-graphs. 

     Here, we see a selected activity where the teacher provides the initial objectives, assignments and 

information to the learners. We see that this task is followed by two parallel learner tasks 1.2A and 1.2B. 

Clicking on the persons’ icons, shows that 1.1 is performed by the teacher,  giving access to its personal 

information stored in the resource manager in the ontology class “Actor”.  For task 1.2 A, performed by a 

group of learners, we see the list of group members stored in the class “Group” of the research manager 

plus the teacher, here played by the author. 

 

 
 

Figure 15.16 - Contextual graphic views in the task manager 

Conditions and control at run time 

Figure 15.17 shows how a teacher can adapt a scenario at run-time thanks to conditions in the scenario. A 

sub-model for the team A discussion starts by opening the chat service for team A. Then, the control splits 

between the learning activity 2.1.A, where team A learners discuss documents on planet properties, and 

the support activity 2.2.A performed by the teacher where he observes the team A discussion.  

     The teacher’s part is highlighted on the figure. After a certain time activity 2.2.A,  observing the chat in 

team A, the teacher can either stop the discussion or provide additional information (Clue A) to help the 

learners solve the problem. The learners can also decide to stop, either before or after they have received 

this additional information. A similar pattern rules the discussion for team B, with the same teacher acting 

as a facilitator for both teams, each with a different set of planet properties as additional information. 
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The conditions shown on figure 15.17 are rules expressing the equivalent of IMS-LD level B properties. 

The decision “Need Clues or Stop Team A?” depends on its input data and the value “true” or “false” that 

a teacher action will produce in activity 2.2.A. If the value “Stop team A discussion” is true, then the flow 

of control goes to the end symbol, after which the flow goes up to the main act 2 model. If the value of 

“Clues A needed” is true, the flow will proceed to the teacher’s activity where he will select a document 

named “Clue A”. If both input variables are false, the flow will come back to activity 2.2.A. In the task 

manager, a Web interface, shown on the bottom window, is provided to the Teacher actor to enter a value 

in the data objects “Stop Team A Discussion” and “Clues A needed”. Depending on these values, the 

condition “Need Clues or Stop Team A” will be executed to orient the flow of activities. The Condition 

Edition windows on the Figure is where above rules are edited, here showing the rule “If Clues A needed 

is true and Stop Team A discussion is false, then go to 2.3A Add clues for team A. 

 

      

Figure 15.17 - Condition specification and execution at run time 
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Conclusion to Chapter 15 

We now summarize the benefits we expect from this ontology-driven design of TELOS and, more 

generally, from ontology-driven systems.  

1. Fidelity from Requirements to Code: Capturing in an ontology the main use cases and conceptual 

architecture concepts improves the fidelity of the final system with respect to initial requirements. 

Transforming the Conceptual ontology to a technical ontology embedded in the system ensures 

that the code will respect the architecture requirements. Also, the ontology-driven aspect of 

TELOS eases its evolution when new concepts will need to be integrated in the system.  

2. Global Systemic View. The technical ontology can be seen as a kind Virtual Campus/Enterprise 

model. It provides a global view to support the cohesion of the activities, from the upper level 

where an institution can create a global workflow to coordinate its major processes, to the lower 

levels of a design scenario-based platform and scenario-based applications. An example of this 

will be given with the GIT project presented in the first section of chapter 19. 

3. Extended set of actors. Compared to the commercial LCMS in operation this new global 

approach leads to an unlimited set of actors. At any level any number of actors can be defined and 

really supported. 

4. Better process coordination. The fact that the system holds a model of the processes and the 

support resources leads to better process coordination. Especially in distance universities or 

distributed organizations, this provides a better assurance that the quality of services will be 

maintained when the personnel changes or it must provide new products to other actors. 

5. Visible scenarios and workflows. Learning scenarios or workflows can always be consulted in a 

Web portal interface such as the Task Manager, links between resources, activities and actors can 

be seen right away. Each user taking an actor’s role can visually see the context of the activities 

he has to perform, what resources to use or produce and with whom he is to interact with. 

6. Flexible and adaptable environments. Each environment operates according to a technical 

ontology which is an integral part of the system. This enables very flexible and adaptable 

environments. If a new kind of actor, activity or resource needs to be introduced, this is done 

simply by modifying the instances or classes of the ontology, without changing the main 

operations of the system. 

7. Resource reusability is a goal pursued by many advocates of learning object repositories, but it is 

not that easy to achieve. Using ontologies to annotate each resource within the same framework, 

and adding connecting operations to take care of possible technology mismatches brings solutions 

to many reusability problems.  

8. System interoperability. With TELOS, it is possible to bring different technologies and different 

platforms to work together. For example, a designer could built a course using a scenario editor in 

one platform, and transfer it to TELOS to add new functionalities, for example personalized 

assistance. This process can be designed by defining the aggregation scenario between platforms 

at the technologist’s level. 

9. Modeling for all. Modeling is not an easy task but it is important enough to make it accessible not 

only to engineers and technologists, but also to instructional designers, learners and trainers.  

10. Focus on learning and work designs. Finally, we hope the proposed approach will reduce the 

technology noise that is often present in eLearning applications when too much time is devoted to 

solving pure technology problems, instead of focusing on learning problems. We hope the 

activities will be more focused on pedagogy and on the quality of educational services or 

knowledge management activities. 

These approaches offer new possibilities but also pose additional challenges. The LORNET five year 

research project having ended, some considerable refinements will happen. We will also need to ensure a 
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user friendliness of the tools that will be novel to most users. But our hope is that the results achieved here 

will lead the way to future research and developments and fruitful applications to Web-based learning and 

knowledge management systems. 
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