Chapter 15: Benzene and Aromaticity

ψ_{1} of Butadiene (no nodes, bonding MO)

Table 14.2 (p. 528): Bond lengths in pm

$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
154	133	149	148	134
				4

Conjugation: series of overlapping p-orbitals
Aromaticity: cyclic conjugated organic compounds such as benzene, that exhibit special stability due to resonance delocalization of π-electrons.

15.2: Naming aromatic compounds: (arenes)

large number on non-systematic names (Table 15.1)

benzene

toluene

phenol

anisole

aniline styrene

Generally, mono-substituted benzenes are named in a similar manner as hydrocarbons with -benzene as the parent name

bromobenzene

ethylbenzene

(1-methylethyl) benzene
nitrobenzene
 7

When the benzene ring is a substituent of a parent chain, referred to as a phenyl group. The benzene ring is is regarded as a substituent when the parent chain has greater than six carbons. The benzene ring is the parent when the longest alkyl chain substituent is six carbons or less

A phenyl substituent $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\right)$ is often abbreviates as Ph-
A $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}$ - susbtitutent is often referred to as a benzyl group (Bn-)

Disubstituted benzene: relative position of the substitutents

1,2-disubstituted: ortho (o-)

1,3-disubstituted: meta (m-)

1,4-disubstituted: para (p-)

Note: ortho, meta, and para are not used in systematic nomenclaure

2-chlorotoluene ortho-chlorotoluene ochlorotoluene

1,3-dimethylbenzene metaxylene m-xylene

4-chlorobenzoic acid parachlorobenzoic acid p-chlorobenzoic acid 9

Benzenes with two or more substituents:

Choose numbers to get lowest possible values
List substituents alphabetically with hyphenated numbers

2-Chloro-1,4-dinitrobenzene
-

4-Bromo-1,2-dimethylbenzene
Thomson - Brooks Cole

2,4,6-Trinitrotoluene (TNT)

Common names, such as "toluene" can serve as root name (as in TNT)

2,6-Dibromophenol

m-Chlorobenzoic acid

15.3: Structure and Stability of Benzene

Formula: $\mathrm{C}_{6} \mathrm{H}_{6}$, four degrees of unsaturation (section 6.2) three double bonds + one ring

The π-bonds of benzene are resistant to the normal reactions of alkenes and alkynes

Benzene's cyclic conjugated structure gives it special stability

Benzene undergoes electrophilic substitution reactions (chapter 16) rather than electrophilic addition

Stability of Benzene: Heats of Hydrogenations

Structure of Benzene:

Kekule benzene: two forms are in rapid equilibrium

- All bonds are ~ 139 pm (intermediate between $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$)
- Electron density is distributed evenly between the six carbons
- Structure is planar, hexagonal
- $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles are 120°
- Each carbon is $s p^{2}$ and has a p orbital perpendicular to the plane of the six-membered ring

Arrows in organic chemistry

Reaction arrow
Equilibrium arrow
Resonance arrow

Mechanism arrows

Drawing and Interpreting Resonance Forms

 (chapter 2.5 and 2.6)1. No one resonance forms accurately depicts the structure of the molecule. The real structure is a composite or hybrid of all resonance forms
2. Resonance forms differ only by the placement of π - or non-bonding electrons. Neither the position or hybridization of the atoms changes.
3. Resonance forms are not necessarily equivalent. While all resonance forms contribute to the actual structure (resonance hybrid), some forms may contribute more.
4. All resonance forms must be proper Lewis structures.
5. The actual resonance hybrid is more stable than any single resonance form.
6. In general, the greater the number of resonance forms, the more stable the resonance hybrid.

15.4: Molecular orbitals of benzenes: (figure 15.3)

15.5 \& 15.8: Aromaticity and the Hückel $4 \boldsymbol{n}+2$ Rule

Cyclic conjugated molecules: not all cyclic conjugated systems are aromatic (no special stability)

Cyclobutadiene: highly reactive two different C-C bonds

Cyclooctatetraene: reactivity similar to normal $\mathrm{C}=\mathrm{C}$
Exists in a boat-like conformation:
little overlap between double bonds

17

Aromatic:
Cyclic
Conjugated: "alternating single and double bonds"
Flat: maximum overlap between conjugated π-bonds Must contain $4 n+2 \pi$-electrons, where n is an integer (Hückel's rule)

Anti-aromatic:
cyclic, conjugated, flat molecules that contain $4 n \pi$-electrons (where n is an integer).
Destabilized (highly reactive) relative to the corresponding open-chain conjugated system

Frost Circles: relative energies of the molecular orbitals of cyclic, conjugated systems

Inscribe the cyclic, conjugated molecule into a circle so that a vertex is at the bottom. The relative energies of the MO's are where the ring atoms intersect the circle
benzene:

For aromatic compounds, such as benzene, the bonding MO's will be filled.
cyclobutadiene:

Cyclobutadiene
4π-electrons

For anti- aromatic compounds, such as cyclobutadiene, there will be unpaired electrons in bonding, non-bonding or 19 antibonding MO's.

15.6: Aromatic ions

15.7: Aromatic Heterocycles

Heterocycle: any cyclic compound that contains ring atom(s) other than carbon ($\mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{P}$)

pyridine

pyrrole

thiophene

imidazole

furan

$$
\left\langle\begin{array}{l}
\| \\
0
\end{array}\right.
$$

thiazole
oxazole

Cyclic compounds that contain only carbon are called carbocycles
Heterocyclic aromatic compounds are numerous, common and a very important class of organic compounds
Nomenclature for heterocyclic compounds is specialized ${ }_{23}$

Pyridine

π-electron structure resembles benzene (6π-electrons) The nitrogen lone pair electrons are not part of the aromatic system (perpendicular orbital)

Six π electrons

Pyrrole:

6π-electron system similar to that of cyclopentadienyl anion

Four sp2-hybridized carbons with $4 p$ orbitals perpendicular to the ring and $4 p$ electrons lone pair of electrons in an sp^{2} orbital; part of the aromatic sextet

Six π electrons
Pyrrole is much less basic than pyridine. Why?
15.9: Polycyclic aromatic hydrocarbons (PAH's):

Polycyclic heterocycles

26

Polycyclic aromatic hydrocarbons

Aromatic compounds can have rings that share a set of carbon atoms (fused rings)
Compounds from fused benzene or aromatic heterocyclic rings are themselves aromatic Naphthalene: $4 n+2=10, n=2$ note: Hückels rule is strictly for monocyclic aromatic compound, its application to polycyclic aromatic compounds is tenuous.

15.10: Spectroscopy of Aromatic Compounds

IR: Aromatic ring $\mathrm{C}-\mathrm{H}$ stretching at $3030 \mathrm{~cm}^{-1}$ and peaks from 1450 to $1600 \mathrm{~cm}^{-1}$

monosubstituted: $\quad 690-710 \mathrm{~cm}^{-1}$ and $730-770 \mathrm{~cm}^{-1}$
o-disubstituted: $\quad 735-770 \mathrm{~cm}^{-1}$
m-disubstituted: $\quad 690-710 \mathrm{~cm}^{-1}$ and $810-850 \mathrm{~cm}^{-1}$
p-disubstituted: $\quad 810-840 \mathrm{~cm}^{-1}$

UV: Absorbance near 205 nm and a less intense peak in 255-275 nm range. Substitution and increased conjugation moves the absorbance to longer wavelengths
${ }^{1} \mathrm{H}$ NMR: Aromatic H's strongly deshielded by ring and absorb between $\delta 6.5$ and $\delta 8.0$
Peak pattern is characteristic positions of substituents

©2004 Thomson - Brooks/Cole

Ring Current: (please read)

Aromatic ring oriented perpendicular to a strong magnetic field, delocalized π electrons producing a small local magnetic field

Opposes applied field in middle of ring but reinforces applied field outside of ring

Results in outside H's resonance at lower field

${ }^{13} \mathrm{C}$ NMR:

Carbons in aromatic ring absorb at $\delta 110$ to 140 Shift is distinct from alkane carbons but in same range as alkene carbons

Benzene
Q2004 Thonson/Brooks Cole

Toluene

Chlorobenzene

Naphthalene

