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Introduction

Emerged in the early 1960s for Artificial 
Intelligence and its subfields:
n Theorem proving
n Symbolic computation

n Rule-based systems
n Natural language processing

The original functional language was Lisp, 
developed by John McCarthy (1960)

4Chapter 15: Functional Programming

Functional Programs

A program is a description of a specific 
computations.
n A program can be seen as a “black box” for 

obtaining outputs from inputs.

n From this point of view, a program is 
equivalent to a mathematical function.
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Mathematical Functions

A function is a rule that associates to each 
x from some set X of values a unique y
from another set Y of values. 
n In mathematical terminology, if f is the name 

of the function
y = f(X) or
f: X à Y

n The set X is called the domain of f.
n The set Y is called the range of f.
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Mathematical Functions

n The x in f(x), which represents any value from 
X (domain), is called independent variable.

n The y from the set Y (range), defined by the 
equation y = f(x) is called dependent variable.

n Sometimes f is not defined for all x in X, it is 
called a partial function . Otherwise it is a total 
function.

Example:    square(x) = x * x 

function 
name parameters

mapping
expressions
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Mathematical Functions

Everything is represented as a mathematical 
function:
n Program: x represents the input and y

represents the output.
n Procedure or function: x represents the 

parameters and y represents the returned 
values.

No distinction between a program, a 
procedure, and a function. However, there is 
a clear distinction between input an output 
values.
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Mathematical Functions: 
variables

In imperative programming languages, 
variables refer to memory locations as well 
as values.

x = x + 1

n Means “update the program state by adding 1 to the 
value stored in the memory cell named x and then 
storing that sum back into that memory cell”

n The name x is used to denote both a value (as in x+1), 
often called an r-value, and a memory address, called 
an l-value.
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Mathematical Functions: 
variables

In mathematics, variables always stand for 
actual values, there is no concept of 
memory location (l-values of variables).
n Eliminates the concept of variable, except as 

a name for a value.

n Eliminates assignment as an available 
operation.
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Mathematical Functions: 
variables

Consequences of the lack of variables 
and assignment

1. No loops.
n The effect of a loop is modeled via recursion, 

since there is no way to increment or decrement 
the value of variables.

2. No notation of the internal state of a function.
l The value of any function depends only on the 

values of its parameters, and not on any previous 
computations, including calls to the function itself.
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Mathematical Functions: 
variables

l The value of a function does not depend on the 
order of evaluation of its parameters.

l The property of a function that its value depend 
only on the values of its parameters is called 
referential transparency.

3. No state.
n There is no concept of memory locations with 

changing values.
n Names are associated to values which once the 

value is set it never changes.
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Mathematical Functions

Functional Forms
n Def: A higher-order function, or functional 

form, is one that either takes functions as 
parameters or yields a function as its result, 
or both
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Functional Forms

1. Function Composition
n A functional form that takes two functions as 

parameters and yields a function whose value 
is the first actual parameter function applied to 
the application of the second

Form: h ≡ f ° g

which means h (x) ≡ f ( g ( x ))

For f (x) ≡ x * x * x and
g (x) ≡ x + 3,

h ≡ f ° g yields (x + 3)* (x + 3)* (x + 3)
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Functional Forms

2. Construction
n A functional form that takes a list of 

functions as parameters and yields a list of 
the results of applying each of its parameter 
functions to a given parameter

Form: [f, g]
For f (x) ≡ x * x * x and

g (x) ≡ x + 3,

[f, g] (4) yields (64, 7)
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Functional Forms

3. Apply-to-all
n A functional form that takes a single function 

as a parameter and yields a list of values 
obtained by applying the given function to 
each element of a list of parameters

Form: α
For h (x) ≡ x * x * x

α( h, (3, 2, 4)) yields (27, 8, 64)
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Pure Functional Programming

In pure functional programming there are 
no variables, only constants, parameters, 
and values.
Most functional programming languages 
retain some notation of variables and 
assignment, and so are “impure”
n It is still possible to program effectively using 

the pure approach.
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Lambda Calculus

The foundation of functional programming 
developed by Church (1941).
A lambda expression specifies the parameters 
and definition of a function, but not its name. 
n Example: lambda expression that defined the 

function square:
(λx⋅x*x)

n The identifier x is a parameter for the (unnamed) 
function body x*x.
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Lambda Calculus

Application of a lambda expression to a 
value: ((λx⋅x*x)2) which evaluates to 4
What is a lambda expression?

1. Any identifier is a lambda expression.
2. If M and N are lambda expressions, then the 

application of M to N , written (MN) is a lambda 
expression.

3. An abstraction, written (λx⋅M) where x is an 
identifier and M is a lambda expression, is also 
a lambda expression.



4

19Chapter 15: Functional Programming

Lambda Expressions: BNF

A simple BNF grammar for the syntax of 
the lambda calculus

LambdaExpression à ident | (M N) | (λ ident ⋅ M)
M à LambdaExpression
N à LambdaExpression

Examples:
x

(λx⋅x)
((λx⋅x)(λy⋅y))
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Lambda Expressions: free and 
bound variables

In the lambda expression (λx⋅M)
n The identifier x is said to be bound in the 

subexpression M.
n Any identifier not bound in M is said to be free.
n Free variables are like globals and bound 

variables are like locals.
n Free variables can be defined as:

free(x) = x
free(MN) = free(M) ∪ free(N)
free(λx⋅M) = free(M) – {x}
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Lambda Expressions: 
substitution

A substitution of an expression N for a variable 
x in M, written M[N/x], is defined:

1. If the free variable of N have no bound occurrences 
in M, then the term M[N/x] is formed by replacing all 
free occurrences of x in M by N.

2. Otherwise, assume that the variable y is free in N
and bound in M. Then consistently replace the 
binding and corresponding bound occurrences of y
in M by a new variable, say u. Repeat this renaming 
of bound variables in M until the condition in Step 1 
applies, then proceed as in Step 1.
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Lambda Expressions: 
substitution

Examples:
x[y/x] = y
(xx)[y/x] = (yy)
(zw)[y/x] = (zw)
(zx)[y/x] = (zy)
[λx⋅(zx))[y/x] = (λu ⋅(zu))[y/x] = (λu ⋅(zu))
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Lambda Expressions: beta-
reduction

The meaning of a lambda expression is 
defined by the beta-reduction rule:

((λx⋅M)N) ⇒ M[N/x]

An evaluation of a lambda expression is a 
sequence P ⇒ Q ⇒ R ⇒ …
n Each expression in the sequence is obtained by 

the application of a beta-reduction to the 
previous expression.
((λy⋅((λx ⋅xyz)a))b) ⇒ ((λy ⋅ayz)b) ⇒ (abz)
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Functional Programming vs. 
Lambda Calculus

A functional programming languages is 
essentially an applied lambda calculus 
with constant values and functions build in.
n The pure lambda expression (xx) can be 

written as (x times x) or (x*x) or (* x x)
n When constants, such as numbers, are added 

(with their usual interpretation and definitions 
for functions, such as *), then applied lambda 
calculi is obtained
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Eager Evaluation

An important distinction in functional 
languages is usually made in the way they 
define function evaluation.
Eager Evaluation or call by value: In 
languages such as Scheme, all arguments 
to a function are normally evaluated at the 
time of the call.
n Functions such as if and and cannot be 

defined without potential run-time error
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Eager Evaluation

(if ( = x 0 ) 1 ( / 1 x ))

n Defined the value of the function to be 1 when 
x is zero and 1/x otherwise.

n If all arguments to the if functions are 
evaluated at the time of the call, division by 
zero cannot be prevented.
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Lazy Evaluation

An alternative to the eager evaluation 
strategy is lazy evaluation or call by name, 
in which an argument to a function is not 
evaluated (it is deferred) until it is needed.
n It is the default mechanism of Haskell.
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Eager vs. Lazy Evaluation

An advantage of eager evaluation is 
efficiency in that each argument passed to 
a function is only evaluated once, 
n In lazy evaluation, an argument to a function 

is reevaluated each time it is used, which can 
be more than once.

An advantage of lazy evaluation is that it 
permits certain interesting functions to be 
defined that cannot be implemented as 
eager languages

Haskell
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Haskell

The interactive use of a functional language is 
provided by the HUGS (Haskell Users Gofer 
System) environment developed by Mark Jones 
of Nottingham University.

HUGS is available from 

http://www.haskell.org/hugs/
The Haskell web page is 
http://www.haskell.org/
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Haskell: sessions

Expressions can be typed directly into the 
Hugs/Haskell screen.
n The computer will respond by displaying the 

result of evaluating the expression, followed 
by a new prompt on a new line, indicating that 
the process can begin again with another 
expression
? 6 * 7
42

This sequence of interactions between 
user and computer is called a session.
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Haskell: scripts

Scripts are collections of definitions supplied 
by the programmer.
square :: Integer à Integer
square x = x * x
smaller :: (Integer,Integer) à Integer
smaller (x,y)= if x ≤ y then x else y 

Given the previous script, the following session is 
now possible:
? square 3768 ? square(smaller(5,3+4))
14197824 25
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Haskell: scripts

The purpose of a definition of a function is 
to introduce a binding associating a given 
name with a given definition.
n A set of bindings is called an environment or 

context.
Expressions are always evaluated in some context 
and can contain occurrences of the names found 
in that context.
The Haskell evaluator uses the definitions 
associated with those names as rules for 
simplifying expressions.
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Haskell: scripts

Some expressions can be evaluated 
without having to provide a context.
n Those operations are called primitives (the 

rules of simplification are build into the 
evaluator).

Basic operations of arithmetic.
Other libraries can be loaded.

At any point, a script can be modified and 
resubmitted to the evaluator.
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Haskell: first things to remember

Scripts are collections of definitions supplied by 
the programmer.
Definitions are expressed as equations between 
certain kinds of expressions and describe 
mathematical functions.
n Definitions are accompanied by type signatures.

During a session, expressions are submitted for 
evaluation 
n These expressions can contain references to the 

functions defined in the script, as well as references 
to other functions defined in libraries.
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Haskell: evaluation

The computer evaluates an expression by 
reducing it to its simplest equivalent form 
and displaying the result. 
n This process is called evaluation,  simplification, 

or reduction.
n Example: square(3+4)
n An expression is canonical or in normal form If 

it cannot be further reduced.
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Haskell: evaluation

A characteristic feature of functional 
programming is that if two different 
reduction sequences terminate, they lead 
to the same result.
n For some expressions some ways of 

simplification will terminate while other do not.
n Example: three infinity
n Lazy evaluation guarantees termination 

whenever termination is possible 
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Getting Started with Hugs
% hugs
Type : ? for help
Prelude> 6*7
42
Prelude> square(smaller(6,9))
ERROR – Undefined variable “smaller”
Prelude> sqrt(16)
4.0
Prelude> :load example1.hs
Reading file “example1.hs”
Main> square(smaller(6,9))
36
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Getting Started with Hugs

Typing :? In Hugs will produce a list of possible 
commands.

Typing :quit will exit Hugs
Typing :reload will repeat last load command
Typing :load will clear all files

40Chapter 15: Functional Programming

Topics

Values
Functions
Extensionality
Currying
Definitions
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Values

An expression is used to describe (or denote) a 
value.
n Among the kinds of value are: numbers of various 

kinds, truth values, characters, tuples, functions, and 
lists.

n New kinds of value  can be introduced.

The evaluator prints a value by printing its 
canonical representation.
n Some values have no canonical representation (i.e. 

function values).
n Other values are not finite (i.e. Π)
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Values

n For some expressions the process of 
reduction never stops and never produces any 
result (i.e. the expression infinity).

n Some expressions do not denote well-defined 
values in the normal mathematical sense (i.e. 
the expression 1/0).

Every syntactically well-formed expression 
denotes a value.
n A special symbol ⊥ (bottom) stands for the 

undefined value of a particular type
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Values

n The value of infinity is the undefined value ⊥ or 
type Integer.

n 1/0 is the undefined value ⊥ or type Float
1/0 = ⊥

n The computer is not able to produce the value ⊥.
It generates an error message or it remains 
perpetually silent.

n ⊥ is a special value that can be added to the 
universe of values only if its properties and its 
relationship with other values are precisely 
stated.
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Values

n If f ⊥ = ⊥, then f is strict; otherwise it is 
nonstrict.

n square is a strict function because the evaluation 
of the undefined value goes into an infinite 
reduction (i.e. ? square infinity)

n three is nonstrict because the evaluation of the 
undefined value is 3 (i.e. ? three infinity)
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Functions

A function f is a rule of correspondence 
that associates each element of given 
type A (domain) with a unique element of 
a second type B (range).
n The result of applying function f to an 

element x of the domain is written as f(x)
or f x (when the parentheses are not 
necessary).

Parentheses are necessary when the argument 
is not a simple constant or variable. 
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Functions

n Examples 
square(3+4) vs. square3+4
n square3+4 means (square3)+4

square(square3) vs. square square 3
n square square 3 means (square square) 3
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Extensionality

Two functions are equal if they give equal 
results for equal arguments.
n f = g if an only if f x = g x for all x
n This is called the principle of extensionality .
n Example:

double, double’ :: Integer à Integer
double x = x + x
double’ x = 2 * x

n double and double’ defines the same 
functional value, double = double’
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Currying

Replacing a structure argument by a 
sequence of simpler ones is  a way to 
reduce the number of parentheses in an 
expression.

smaller :: (Integer,Integer) à Integer
smaller (x,y) = if x ≤ y then x else y

smallerc :: Integer à (Integer à Integer)
smallerc x y = if x ≤ y then x else y
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Currying: advantages

1. Currying can help to reduce the number 
of parentheses that have to be written 
in expressions.

2. Curried function can be applied to one 
argument only, giving another function 
that may be useful in its own right
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Definitions

There are definitions for different kinds of 
values:
n Definitions of fixed values.

pi :: Float
pi = 3.14159

n Some definitions of functions use conditional
expressions
smaller :: (Integer, Integer) à Integer
smaller(x,y) = if x ≤ y then x else y
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Definitions

n The same expressions can be defined using 
guarded equations.
smaller :: (Integer, Integer) à Integer
smaller(x,y)

| x ≤ y = x
| X > y = y

Each clause consists of a condition, or guard, and 
an expression, which is separated from the guard 
by an = sign.
The main advantage of guarded expressions is 
when there are three or more clauses in a 
definition.
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Topics
Reduction and Currying
Recursive definitions
Local definitions
Type Systems
n Strict typing
n Polymorphism

Types Classes
Types
n Booleans
n Characters
n Enumerations
n Tuples
n Strings
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Currying

Viewing a function with two or more 
arguments as a function that takes one 
argument at a time.

f

x

y

result The function f

The curried function fx f f x

y resultf x The function f x
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Currying: example

The uncurried function times takes two 
numbers as inputs and return their 
multiplication.

times

x

y

x * y



10

55Chapter 15: Functional Programming

Currying: example

The curried function times takes a number 
x and return the function (times x).
(times x) takes a number y and returns 
the number (x * y).

y

x * ytimes x

x times
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Reduction

Reduction is the process of converting a 
functional expression to its canonical form 
by repeatedly applying reduction rules

Expression
Canonical 

FormReduction
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Reduction Rules

There are two kinds of reduction rules:
n Build- in definitions

For example the arithmetic operations
n User supplied definitions

58Chapter 15: Functional Programming

Recursive Definitions

Definitions can also be recursive.
Example:

fact :: Integer à Integer
fact n = if n==0 then 1 else n*fact(n-1)

n This definition of fact is not completely satisfactory: if it 
is applied to a negative integer, then the computation 
never terminates.

n For negative numbers, fact x = ⊥. 
It is better if the computation terminated with a suitable error
message rather than proceeding indefinitely with a futile 
computation.
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Recursive Definitions
fact :: Integer à Integer
fact n 

| n < 0  =  error “negative argument”
| n == 0 = 1
| n > 0  = n * fact(n-1)

n The predefined function error takes a string as 
argument; when evaluated it causes immediate 
termination of the evaluator and displays the given 
error message.
? fact (-1)
Program error: negative argument
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Local Definitions

In mathematical descriptions there are 
expressions qualified by a phrase of the 
form “where …”.
n f(x,y) = (a+1)(a+2),where a = (x+y)/2

Example:
f :: (Float,Float) à Float
f(x,y) = (a+1) * (a+2) where a = (x+y)/2

n The special word where is used to introduce a 
local definition whose context (or scope) is the 
expression on the RHS of the definition of f.
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Local Definitions

When there are two or more local 
definitions, there are two styles:

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2
b = (x+y)/3

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2; b = (x+y)/3
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Local Definitions

A local definition can be used in 
conjunction with a definition that relies on 
guarded equations.:

f :: Integer à Integer à Integer
f x y = 

| x ≤ 10 = x + a
| x > 10 = x-a

where a = square(y+a)

n The where clause qualifies both guarded 
equations.
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Type Systems

Programming languages have either:
n No type systems

Lisp, Prolog, Basic, etc

n A strict type system
Pascal, Modula2

n A polymorphic type systems
ML, Mirada, Haskell, Java, C++
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Strong Typing Principle

Every expression must have a type
n 3 has type Int
n ‘A’ has type Char

The type of a compound expression can 
be deduced from its constituents alone.
n (‘A’,1+2) has type (Char, Int)

An expression which does not have a 
sensible type is illegal.
n ‘A’+3 is illegal
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Strict Typing

Every expression has a unique concrete type.
n Although this system is good for trapping errors, it is too 

restrictive.

What type should be given to id?
n Is it IntàInt?, CharàChar?, (Int,Bool)à(Int,Bool)

With strict typing we have to define separate 
versions of id for each type.

id xx
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Polymorphism

Polymorphism allows the definition of 
certain functions to be used  with different 
types.
Without polymorphism we would have to 
write different versions of the function for 
each possible type (type declaration is 
different but the body is the same).
Polymorphism results in simpler, more 
general, reusable and concise programs.
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Type Classes

A curried multiplication can be used with 
two different type signatures:

(x) :: Integer à Integer à Integer
(x) :: Float à Float à Float

So, it can be assigned a polymorphic type:
(x) :: α à α à α

n This type is too general (two characters or two 
booleans should not be multiplied).
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Type Classes

Group together kindred types into type 
classes .
n Integer and Float belong to the same 

class, the class of numbers. 
(x) :: Num α ⇒ α à α à α

There are other kindred types apart from 
numbers.
n The types whose value can be displayed, the 

types whose value can be compared for 
equality, the type whose value can be 
enumerated, etc.
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Types

In addition to defining functions and 
constants, functional languages allows to 
define types to build new and useful types 
from existing ones.
The universe of values is divided into 
organized collections, called types.
n Integer, Float, Double, booleans, characters, lists, 

trees, etc.
n An infinity variety of other types can be put 

together: Integer à Float, (Float, Float), etc.
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Types

Each type has associated with it certain 
operations which are not meaningful for 
other types.

123

-123333

314159
Int

False

True

Bool

Int
addition          +

multiplication  *
Bool

conjunction      and

disjunction         or
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Type Declaration

The type of an expression is declared 
using the following convention:

expression :: type
n Example: e :: t

Reads: “the expression e has the type t”

pi :: Double
Square :: Integer à Integer
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Types

Strong typing: the value of an expression 
depends only on the values of its 
component expressions, so does its type.
Consequence of strong typing
n Any expression which cannot be assigned a 

sensible type is not well formed and is 
rejected by the computer before evaluation 
(illegal expressions).
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Types
quad :: Integer à Integer
quad x = square square x

Advantage of strong typing
n Enables a range of errors to be detected 

before evaluation.

There are two stages of analysis when 
a expression is submitted for 
evaluation.
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Types

n The expression is checked to see whether 
it conforms to the correct syntax laid down 
for constructing expressions.
n No: the computer signals a syntax error
n Yes: perform the second stage of evaluation

n The expression is analysed to see if it 
posses a sensible type
n Fails: the computer signals a type error.
n Yes: the expression is evaluated.
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Classification of Types

Basic/Simple Types
n Contain primitive values

User-defined Types
n Contain user-defined values

Derived Types
n Contain more complex values
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Simple Data Types: booleans

Used to define the truth value of a 
conditional expression.
n There are two truth values, True and False.
n These two values comprise the datatype Bool

of boolean values.

n True, False and Bool begin with a capital 
letter. 

n The datatype Bool can be introduce with a 
datatype declaration:

data Bool = False | True
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Simple Data Types: booleans

Having introduce Bool, it is possible to 
define functions that take boolean
arguments by pattern matching.
n Example: the negation function

not :: Bool à Bool
not False = True
not True = False

l To simplify expressions of the form not e: first e is 
reduced to normal form.
n If e cannot be reduced to normal form then the value of 

not e is undefined
n not ⊥ = ⊥ then not is strict.
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Simple Data Types: booleans

There are not two but thee boolean
values: True, False, and ⊥.

Every datatype declaration introduces 
an extra anonymous value, the 
undefined value of the datatype.
More examples: conjunction, 
disjunction.
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Simple Data Types: booleans

This is how pattern matching works:
⊥ ∧ True = ⊥
⊥ ∧ False = ⊥
False ∧ ⊥ = False
True ∧ ⊥ = ⊥

n ∧ is strict in its LHS, but nonstrict in its 
RHS argument.
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Booleans: equality operators

There are two equality operators = = and 
≠

(==) :: Bool à Bool à Bool
x == y = (x∧y) ∨ (not x ∧ not y)
(≠) :: Bool à Bool à Bool
x ≠ y = not(x == y)

The symbol == is used to denote a 
computable test for equality.
The symbol = is used both in definitions 
and its normal mathematical sense.
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Booleans: equality operators

The main purpose of introducing an 
equality test is to be able to use it with a 
range of different types.
n (==) and (≠) are overloaded operations .

The proper way to introduce them is first 
to declare a type class Eq consisting of all 
those types for which (==) and (≠) are to 
be defined.
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Booleans: equality operators

class Eq α where 
(=),(≠) :: α à α à Bool

n To declare that a certain type is an instance 
of the type class Eq, an instance declaration is 
needed.
instance Eq Bool where
(x == y) = (x ∧ y) ∨ (not x ∧ not y)
(x ≠ y) = not(x == y)
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Booleans: comparison 
operators

Booleans can also be compared. 
n Comparison operations are also overloaded 

and make sense with elements from a 
number of different types.

class (Eq α) ⇒ Ord α where
(<),(≤),(≥),(>) :: α à α à Bool
(x ≤ y) = (x < y) ∨ (x == y)
(x ≥ y) = (x > y) ∨ (x == y)
(x > y) = not(x ≤ y)
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Booleans: comparison 
operators

Bool could be an instance of Ord:
instance Ord Bool where

False ≤ False = False
False ≤ True = True
True ≤ False = False
True ≤ True = False
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Example: leap years

Define a function to determine whether a 
year is a leap year or not.
n A leap year is divisible by 4, except that if it is 

divisible by 100, then it must also be divisible by 
400.
leapyear :: Int à Bool
leapyear y = (y mode 4 == 0) ∧

(y mode 100 ≠ 0 ∨ (y mode 400 == 0)  

n Using conditional expressions:
leapyear y = if (y mode 100==0) 

then (y mode 400 ==0) 
else (y mode 4 == 0)
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Characters

Characters are denoted by enclosing them 
in single quotation marks.
n Remember: the character ‘7’ is different from 

the decimal number 7.

Two primitive functions are provided for 
processing characters, ord and chr. 
n Their types are:

ord :: Char à Int
chr :: Int à Char
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Characters

n The function ord converts a character c to an 
integer ord c in the range 0 ≤ ord c ≤ 256

n The function chr does the reverse, converting 
an integer back into the character it 
represents.

n Thus chr (ord c) = c for all characters c.

? ord‘b’ ? chr98
98 ‘b’

? chr(ord’b’+1)
‘c’
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Characters

Characters can be compared and 
tested for equality.

instance Eq Char where
(x == y) = (ord x == ord y)

instance Ord Char where
(x < y) = (ord x < ord y)

? ‘0’ < ‘9’ ? ‘A’ < ‘Z’
True True
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Characters: simple functions

Three functions for determining whether a 
character is a digit, lower-case letter, or upper-case 
letter:

isDigit,isLower,isUpper :: Char à Bool
isDigit c = (‘0’ ≤ c) ∧ (c ≤ ‘9’)
isLower c = (‘a’ ≤ c) ∧ (c ≤ ‘z’)
isUpper c = (‘A’ ≤ c) ∧ (c ≤ ‘Z’)

A function for converting lower-case letter to upper-
case:

capitalise :: Char à Char
capitalise c = if isLower c then 

chr(offset+ord c) else c
where offset = ord ‘A’ – ord ‘a’
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Enumerations

They are user-defined types.
Example:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

n This definition binds the name Day to a new type 
that consists of eight distinct values, seven of 
which are represented by the given constants 
and the eight by the undefined value ⊥

The seven new constants are called the constructors 
of the datatype Day.
By convention, constructor names and the new name 
begin with an upper-case letter.
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Enumerations

It is possible to compare elements of type 
Day, so Day can be declared as an 
instance of the type classes Eq and Ord.
n A definition of (==) and (<) based on pattern 

matching would involve a large number of 
equations.

Better idea. Code elements of Day as 
integers, and use integer comparison 
instead.
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Enumerations

Since the same idea can be employed with other 
enumerated types, a new type class Enum is 
declared
n Enum describes types whose elements can be 

enumerated.
class Enum α where

fromEnum :: α à Int
toEnum   :: Int à α

n A type is declared an instance of Enum by giving 
definition of toEnum and fromEnum, functions that 
convert between elements of the type and Int.
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Enumerations: example

Day is a member of Enum:

instance Enum Day where
fromEnum Sun = 0
fromEnum Mon = 1
fromEnum Tue = 2
fromEnum Wed = 3
fromEnum Thu = 4
fromEnum Fri = 5
fromEnum Sat = 6
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Enumerations: example

Given fromEnum on Day:
instance Eq Day where
(x == y) = (fromEnum x == fromEnum y)

instance Ord Day where 
(x < y) = (fromEnum x < fromEnum y)
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Enumerations: example

workday :: Day à Bool
workday d = (Mon ≤ d) ∧ (d ≤ Fri)

restday :: Day à Bool
restday d = (d==Sat) ∨ (d==Sun)

dayafter   :: Day à Day
dayafter d = toEnum((fromEnum d+1) mod 7)  
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Automatic instance declarations

Haskell provides a mechanism for 
declaring a type as an instance of Eq, 
Ord, and Enum in one declaration.

data Day = Sun | Mon | Tue | Wed | 
Thu | Fri | Sat
deriving (Eq,Ord,Enum)

n The deriving clause causes the evaluator to 
generate instance declarations of the named 
type classes automatically.
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Tuples
One way of combining types to form new 
ones is by pairing them.
n Example: (Integer, Char) consists of all 

pairs of values (x,c) for which x is an 
arbitrary-precision integer, and c is a 
character.

Like other types, the type (α,β) contains 
an additional value ⊥
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Tuples: practical example

A function returns a pair of numbers, the 
two real roots of a quadratic equation with 
coefficients (a,b,c):

roots :: (Float, Float, Float) à (Float,Float)
roots (a,b,c)

| a == 0 = error “not quadratic”
| e < 0 = error “complex roots”
| otherwise = ((-b-r)/d,(-b+r)/d)
where r = sqrt e

d = 2*a
e = b*b-4*a*c
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Other Types

A type can be declared by typing its constants or 
with values that depend on those of other types.

data Either = Left Bool | Right Char

n This declares a type Either whose values are 
denoted by expressions of the form Left b, where b
is a boolean, and Right c, where c is a character.

n There are 3 boolean values (including ⊥) and 257
characters (including ⊥), so there are 261 distinct 
values of the type Either; these include Left ⊥, 
Right ⊥, and ⊥
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Other Types

In general:
data Either α β = Left α | Right β

The names Left and Right introduces 
two constructors for building values of type 
Either, these constructors are nonstrict
functions with types:

Left  :: α à Either α β
Right :: β à Either α β
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Other Types

Assuming that values of types α and β can be 
compared, comparison on that type Either α β
can be added as an instance declaration:

instance (Eq α,Eq β ) ⇒ Eq(Either α β) where
Left x == Left y = (x==y)
Left x == Right y = False
Right x == Left y = False
Right x == Right y  = (x==y)

instance (Ord α,Ord β ) ⇒ Ord(Either α β) where
Left x < Left y = (x<y)
Left x < Right y = True
Right x < Left y = False
Right x < Right y = (x<y)
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Type Synonyms

Type synonym declaration: a simple 
notation for giving alternative names to 
types.
Example:

roots :: (Float, Float, Float) à (Float,Float)

n As an alternative, two type synonyms could 
be used
type Coeffs = (Float, Float, Float)
type Roots  = (Float,Float)
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Type Synonyms

n This declarations do not introduce new types 
but merely alternative names for existing 
types.
roots :: Coeffs à Roots

n This new description is shorter and more 
informative.

Type synonyms can be general.
type Pairs α = (α,α)
type Automorph α = α à α
type Flag α = (α,Bool)

104Chapter 15: Functional Programming

Type Synonyms

Type synonyms cannot be declared in 
terms of each other since every synonym 
must be expressible in terms of existing 
types.
Synonyms can be declared in terms of 
another synonym.

type Bools = PairBool

Synonyms and declarations can be mixed
data OneTwo α = One α | Two(Pairs α)
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Strings

A list of characters is called a string.
The type String is a synonym type:

type String = [Char]

Syntax: the characters of a string are 
enclosed in double quotation marks.
‘a’ vs. “a”
n the former is a character
n the latter is a list of characters that happens to 

contain only one element.
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Strings

Strings cannot be declared separately as 
instances of Eq and Ord because they are just 
synonyms.
n They inherit whatever instances are declared for 

general lists.
Comparison on strings follow the normal 
lexicographic ordering.

? “hello” < “hallo”
False
? “Jo” < “Joanna”
True
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Strings

Haskell provides a primitive command for 
printing strings.

putStr :: String à IO() 
n Evaluating the command putStr causes the string to 

be printed literally.
? putStr “Hello World”
Hello World
? putStr “This sentence contains \n a newline”
This sentence contains
a newline
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The type class Show

Haskell provides a special type class Show
to display information of different kinds 
and formats.

class Show α where
showsPrec :: Int à α à String à String

n The function showsPrec is provided for 
displaying values of type α

n Using showsPrec it is possible to define a 
simpler function that takes a value and 
converts it to a string.

show :: Show α ⇒ α à String
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The type class Show

Example: if Bool is declares to be a member of 
Show and show is defined for booleans as

show False = "False"
show True  = "True"
? putStr(show True)
True

Some instances of Show are provided as 
primitive.

? putStr("The year is "++ show(3*667))
The year is 2001
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Topics

Numbers
n Natural numbers
n Haskell numbers

Lists
n List notation
n Lists as a data type
n List operations
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Numbers

Haskell provides a sophisticated 
hierarchy of type classes for describing 
various kinds of numbers.
Although (some) numbers are provided 
as primitives data types, it is 
theoretically possible to introduce them 
through suitable data type declarations.
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Natural Numbers
The natural numbers are the numbers 0, 1, 
2, and so on, used for counting.
Introduced by the declaration

data Nat = Zero | Succ Nat
n The constructor Succ (short for ‘successor’) 

has type Nat à Nat.

n Example: as an element of Nat the number 7
would be represented by
Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero))))))
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Natural Numbers

Every natural number is represented by a 
unique value of Nat.

On the other hand, not every value of Nat
represents a well-defined natural number.
n Example: ⊥, Succ ⊥, Succ(Succ ⊥)

Addition ca be defined by
(+) :: Nat à Nat à Nat
m + Zero = m
m + Succ n = Succ(m + n)
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Natural Numbers

Multiplication ca be defined by
(x) :: Nat à Nat à Nat
m x Zero = Zero
m x Succ n = (m x n) + m

Nat can be a member of the type class Eq
instance Eq Nat where
Zero == Zero = True
Zero == Succ n = False
Succ m == Zero = False
Succ m == Succ n = (m == n)
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Natural Numbers
Nat can be a member of the type class Ord

instance Ord Nat where
Zero < Zero = False
Zero < Succ n = True
Succ m < Zero = False
Succ m < Succ n = (m < n)

Elements of Nat can be printed by 
showNat :: Nat à String
showNatZero = “Zero”
showNat (Succ Zero) = “Succ Zero”
showNat (Succ(Succ n)) = “Succ (“ ++ 

showNat (Succ n) ++ “)” 116Chapter 15: Functional Programming

Haskell Numbers

Haskell provide, as primitives,  the following 
types:
n Int single-precision integers

n Integer arbitrary-precision integers
n Float singe-precision floating-point 

numbers

n Double double-precision gloating-point 
numbers

n Rational rational number
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The Numeric Type Classes

The same symbols, +, x, and so on, are 
used for arithmetic on each numeric type.
n Overloaded functions.

All Haskell number types are instances of 
the type class Num defined by 

class (Eq α, Show α) ⇒ Num α where
(+), (-), (x) :: α à α à α
negate :: α à α
fromInteger :: Integer à α
…
x – y = x + negate y
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Integral Types

The members of the Integral type are two 
primitive types Int and Integer.
The operators div and mod are provided 
as primitive.
n If x and y are integers, and y is not zero, then 
x div y = x / y.

13.8 = 13,  -13.8 = -14

n The value x mod y is defined by the equation
x = (x div y) * y + (x mod y)
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Lists

Lists can be used to fetch and carry data 
from one function to another.
Lists can be taken apart, rearranged, and 
combined with other lists.
Lists can be summed and multiplied.
Lists of characters can be read and 
printed.
…
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List Notation

A finite list is denoted using square brackets and 
commas.
n [1,2,3]
n [“hello”,”goodbye”]

All the elements of a list must have the same 
type.
The empty list is written as [].

A singleton list contains only one element
n [x]

n [[]] the empty list is its only member
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List Notation

If the elements of a list all have type α, 
then the list itself will be assigned the type 
[α].
n [1,2,3] :: [Int]
n [‘h’,’e’,’l’,’l’,’o’] :: [Char]
n [[1,2],[3]] :: [[Int]]
n [(+),(x)] :: [Int à Int à Int]

A list may contain the same value more 
than once.
Two lists are equal if and only if they 
contain the same value in the same order.
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Lists as a data type

A list can be constructed fro scratch by 
starting with an empty list and 
successively adding elements one by one.
n Elements can be added to the front of the list, 

or the rear, or to somewhere in the middle.

Data type declaration (list):
data List α = Nil | Cons α (List α)

n The constructor Cons (short for ‘construct’) 
add an element to the front of the list.

[1,2,3] Cons 1 (Cons 2 (Cons 3 Nil))
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Lists as a data type

In functional programming, lists are 
defined as elements of List α. 
n The syntax [α] is used instead of List α.

n The constructor Nil is written as []
n The constructor Cons is written as an infix 

operator (:)
(:) associates to the right
[1,2,3] = 1:(2:(3:[])) = 1:2:3:[]
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Lists as a data type

Like functions over data types, functions 
over lists can be defined by pattern 
matching.

instance (Eq α) ⇒ Eq [α] where
[] == [] = True
[] == (y:ys) = False
(x:xs) == [] = False
(x:xs) == (y:ys)= (x == y) ∧ (xs == ys)
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List Operations

Some of the most commonly used 
functions and operations on lists.

For each function: give the definition, 
illustrate its use, and state some of its 
properties.

126Chapter 15: Functional Programming

Concatenation

Two lists, both of the same type, can be 
concatenated to form one longer list.
This function is denoted by the binary 
operator ++.
? [1,2,3] ++ [4,5]
[1,2,3,4,5]
? [1,2] ++ [] ++ [1]
[1,2,1]



22

127Chapter 15: Functional Programming

Concatenation

The formal definition of ++ is
(++) :: [α] à [α] à [α]
[] ++ ys = ys
(x:xs) ++ ys = x:(xs++ys)

n The definition of ++ is by pattern matching 
on the left-hand argument.

n The two patterns are disjoint and cover all 
cases, apart from the undefined list ⊥.

n It follows by case exhaustion that 

⊥ ++ ys = ⊥
128Chapter 15: Functional Programming

Concatenation

n It is not the case that xs ++ ⊥ = ⊥

? [1,2,3] ++ undefined
[1,2,3{Interrupted!}

n The list [1,2,3] ++ ⊥ is a partial list; in full 
form it is the list 1:2:3:⊥.

The evaluator can compute the first three 
elements, but thereafter it goes into a 
nonterminating computation, so we interrupt it.

Some properties:
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
xs ++ [] = [] ++ xs = xs
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Reverse

This function reverses the order of 
elements in a finite list.

? reverse [1,2,3,4,5]
[5,4,3,2,1]

The definition is
reverse :: [α] à [α]
reverse [] =[]
reverse (x:xs)   = reverse xs ++ [x]

In words, to reverse a list (x:xs) one reverses xs
and then adds x to the end.
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Length

The length of a list is the number of 
elements it contains.
The definition is
length :: [α] à Int
length [] = 0
length (x:xs) = 1 + length(xs)

The nature of the list elements is 
irrelevant when computing the length:
? length [undefined,undefined]
2
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Length
Not every list has a well-defined length.
n The partial lists have an undefined length

⊥, x:⊥, x:y:⊥
n Only finite lists have well-defined lengths.

The list [⊥,⊥] is a finite list, not a partial list 
because it is the list ⊥:⊥:[], which ends in []
not ⊥. The computer cannot produce the 
elements, but it can produce the length of the list.

The function length satisfies a distribution 
property:
length(xs ++ ys) = length xs + length ys
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Head and Tail

The function head selects the first 
element of a nonempty list, and tail
selects the rest:
head :: [α] à α
head [] = error “empty list”
head (x:xs) = x
tail :: [α] à [α]
tail [] = error “empty list”
tail (x:xs) = xs

n These are constant-time operations, since 
they deliver their result in one reduction step.
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Init and last

The function last and init select the last 
element of a nonempty list and what 
remains after the last element has been 
removed.
? last [1,2,3,4,5]
5
? init [1,2,3,4,5]
[1,2,3,4]
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Init and last

First attempt (definition):
last :: [α] à α
last = head ⋅ reverse

init :: [α] à α
init = reverse ⋅ tail ⋅ reverse

Problem?
n init xs = ⊥ for all partial and infinite lists xs
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Init and last

Second attempt (definition):
last (x:xs) = if null xs then x else last xs

init (x:xs) = if null xs then [] else x:init xs

With this definition
n init xs = xs for all partial and infinite lists 
xs
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Init and last

Third attempt (definition):
n Since [x] is an abbreviation for x:[]
last [x] = x
last (x:xs) = last xs
init [x] = []
init (x:xs) = x:init xs

Problem?
n There is a serious danger of confusion because 

the patterns [x] and (x:xs) are not disjoint.
The second includes the first as a special case.
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Init and last

n If the order of the equations are reversed:

last’ (x:xs) = last’ xs
last’ [x] = x

n The definition of last’ would simply be 
incorrect.

last’ xs = ⊥

n It is not a good practice to write definition that 
depend critically on the order of the 
equations.
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Init and last

Definition
last :: [α] à α
last [] = error “empty list”
last [x] = x
last (x:y:ys) = last(y:ys)

init :: [α] à [α]
init [] = error “empty list”
init [x] = []
init [x:y:xs) = x:init(y:xs)
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Topics

Lists Operations

Trees

Lazy Evaluation
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Concat

The function concat concatenates a list of 
lists into one long list.
? concat [[1,2],[3,2,1]]
[1,2,3,2,1]

Definition
concat :: [[α]] → [α]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Basic property:
concat (xss ++ yss) = concat xss ++ concat yss
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Take and drop

The function take and drop each take a 
nonnegative integer n and a list xs as 
arguments. 
n The value take n xs consists of the first n

elements of xs
n The value drop n xs is what remains
? take 3 “functional”
“fun”
? drop 3 “functional”
“ctional”

? take 3 [1,2]
[1,2]
? drop 3 [1,2]
[]
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Take and drop

Definitions:
take :: Int à [α] à [α]
take 0 xs = []
take n [] = []
take (n+1)(x:xs) = x:take n xs

drop :: Int à [α] à [α]
drop 0 xs = xs
drop n [] = []
drop (n+1)(x:xs) = drop n xs

143Chapter 15: Functional Programming

Take and drop

These definitions use a combination of 
pattern matching with natural numbers 
and lists.
Patterns are disjoint and cover all 
possible cases.
n Every natural number is either zero (first 

equation) or 
n The successor of a natural number

Distinguish between an empty list (second 
equation) and
A nonempty list (third equation).
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Take and drop

There are two arguments on which pattern 
matching is performed
n Pattern matching is performed on the clauses of a 

definition in order from the first to the last.
n Within a clause, pattern matching is performed from 

left to right.
? take 0 ⊥
[]
? take ⊥ []
⊥
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Take and drop

The functions take and drop satisfy a 
number of useful laws:

take n xs ++ drop n xs = xs

for all (finite) natural numbers n and all 
lists xs.

take ⊥ xs ++ drop ⊥ xs = ⊥ ++ ⊥ = ⊥

not xs.
take m ⋅ take n = take (m min n)
drop m ⋅ drop n = drop (m + n)
take m ⋅ drop n = drop n ⋅ take(m + n)
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List index

A list xs can be indexed by a natural 
number n to find the element appearing at 
position n.
This operation is denoted by xs !! n
? [1,2,3,4]!!2
3
? [1,2,3,4]!!0
1

n Indexing begins at 0.
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List index

Definition
(!!) :: [α] à Int à α
(x:xs)!!0 = x
(x:xs)!!(n+1) = xs!!n

Indexing is an expensive operation since 
xs!!n takes a number of reduction steps 
proportional to n.
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Map

The function map applies a function to each 
element of a list.
? map square [9,3]
[81,9]

? map (<3) [1,2,3]
[True,True,False]

? map nextLetter “HAL”
“IBM”
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Map: definition

The definition is
map :: (α→β)→[α]→[β]
map f [] = []
map f (x:xs) = f x:map f xs

The use of map is illustrated by the 
following example: 
n “the sum of the squares of the integers from 1 up to 

100”

n The function sum and upto can be defined by
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Map: example

sum :: (Num α)⇒[α]→α
sum [] = 0
sum (x:xs) = x + sum xs
upto :: (Integral α)⇒α→α→[α]
upto m n = if m > n then [] 

else m:upto(m+1)n

? sum(map square(upto 1 100))
338700

[m..n] = upto m n
[m..] = from m
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Map: laws

map id = id
n Applying the identity function to every element of a 

list leaves the list unchanged.
The two occurrences of id have different types; on the left 
id :: α → α, and on the right id :: [α] → [α]

map (f ⋅ g) = map f ⋅ map g
n Applying g to every element of a list, and the 

applying f to each element of the result gives the 
same result as applying f ⋅ g to the original list.
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Map: laws
f ⋅ head = head ⋅ map f
map f ⋅ tail = tail ⋅ map f
map f ⋅ reverse = reverse ⋅ map f
map f ⋅ concat = concat ⋅ map(map f)
map f (xs ++ ys) = map f xs ++ map f ys

The common theme behind each of these equations 
concern the types of the functions involved:

head :: [α] → α
tail :: [α] → [α]
reverse :: [α] → [α]
concat :: [[α]] → [α]
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Map: laws

Those functions do not depend in any way on 
the nature of the list elements.
n They are simply combinators that shuffle, rearrange, 

or extract elements from lists.
n This is why they have polymorphic types.

We can either ‘rename’ the list elements (via 
map f) and then do the operation, or do the 
operation and then rename the elements.
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Filter

The function filter takes a boolean
function p and a list xs and return that 
sublist of xs whose elements satisfy p.

? filter even [1,2,4,5,32]
[2,4,32]

? (sum ⋅ map square ⋅ filter even) [1..10]
220
n The sum of the squares of the even integers in the range 1 to 10
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Filter: definition

filter :: (α→Bool)→[α]→[α] 
filter p [] = []
filter p (x:xs) = if p x then x:filter p xs

else filter p xs

Some laws
filter p ⋅ filter q = filter (p and q)
Filter p ⋅ concat = concat ⋅ map(filter p)

156Chapter 15: Functional Programming

Zip

The function zip takes two lists and 
returns a list of pairs of corresponding 
elements.

? zip [0..4] “hello”
[(0,’h’),(1,’e’),(2,’l’),(3,’l’),(4,’o’)]

? zip [0,1] “hello”
[(0,’h’),(1,’e’)]
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Zip: definition

If two lists do not have the same length, 
then the length of the zipped list is the 
shorter of the lengths of the two 
arguments.
zip :: [α]→[β]→[(α,β)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys 
n What would happen if we just defined zip [] []

instead of the two basic cases.
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Unzip

The function unzip takes a list of pairs and 
unzips it into two lists.
? unzip [(1,True),(2,True),(3,False)]
([1,2,3],[True,True,False])

Definition
unzip :: [(α,β)]→([α],[β])
unzip = pair(map fst, map snd)

159Chapter 15: Functional Programming

Unzip

Two basic functions on pairs are fst and snd, 
defined by:
fst :: (α,β) → α
fst (x,y) = x
snd :: (α,β) → β
snd (x,y) = y

A basic function that takes pairs of functions as 
arguments:
pair :: (α→β,α→γ)→α→(β,γ)
pair (f,g) x = (f x, g x)
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Insertion Sort

sort [] = []

sort (x : xs) = insert x (sort xs)
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Insertion

insert x (y : ys) 

| x<=y = x : y : ys

| x>y   = y : insert x ys

insert x [] = [x]

y z ...uw

x
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Sorting: example

sort [3,1,2]

insert 3 (sort [1,2])

insert 3 (insert 1 (sort [2]))

insert 3 (insert 1 (insert 2 (sort [])))

insert 3 (insert 1 (insert 2 [])))

insert 3 (insert 1 [2])

insert 3 [1, 2]

1 : insert 3 [2]

1 : 2 : insert 3 []

1 : 2 : [3]

[1, 2, 3]
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What is the type of sort?

Can sort many
different types of

data.
But not all!

Consider a list of functions, for example...

The Type of Sort

sort :: [a] -> [a]
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sort :: Ord a => [a] -> [a]

If a has an
ordering...

…then sort has
this type.

Sort has this type because

(<=) :: Ord a => a -> a -> Bool

Overloaded, rather than
polymorphic.

The Correct Type of Sort
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Polymorphism vs. Overloading

A polymorphic function works in the same 
way for every type 
n Example: length, ++

An overloaded function works in different 
ways for different types
n Example: ==, <=

166Chapter 15: Functional Programming

A Better Way of Sorting

Divide the list into two roughly equal 
halves.

Sort each half.

Merge the sorted halves together.
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Merge Sort: definition

mergeSort xs = merge (mergeSort front) 

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs

But when are front and back smaller than xs?
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MergeSort with Base Cases

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs | size > 0 = 

merge (mergeSort front) 

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs
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Merging: example

x

y

x <= y?

merge [1, 3] [2, 4] 1 : merge [3] [2, 4]

1 : 2 : merge [3] [4]

1 : 2 : 3 : merge [] [4]

1 : 2 : 3 : [4] [1,2,3,4]
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Defining Merge

merge :: Ord a => [a] -> [a] -> [a]

merge (x : xs) (y : ys)

| x <= y = x : merge xs (y : ys)

| x > y = y : merge (x : xs) ys

merge [] ys = ys

merge xs [] = xs

One list gets
smaller.

Two possible
base cases.

Requires an
ordering.
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Insertion Sort
Sorting n elements

takes n*n/2 comparisons.

Merge Sort
Sorting n elements

takes n*log2 n comparisons.

Num elements Cost by insertion Cost by merging

10 50 40

1000 500000 10000

1000000 500000000000 20000000

The Cost of Sorting
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Summary: List Recursion

Recursive case: expresses the results in 
terms of the same function on a shorter 
list.
n f (x:xs) = … f xs …

Base case(s): handles the shortest 
possible list. 
n f [] = …
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Input

A string representing a text containing many words. 
For example

“hello clouds hello sky”

clouds: 1
hello: 2
sky: 1

Example: Counting Words

Output
A string listing the words in order, along with how 
many times each word occurred.

“ clouds: 1\nhello: 2\nsky: 1“
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Step 1: Breaking Input into 
Words

“hello clouds hello sky”

[“hello”, “clouds”, “hello”, “sky”]

words
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Step 2: Sorting the Words

[“clouds”, “hello”, “hello”, “sky”]

sort

[“hello”, “clouds”, “hello”, “sky”]
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The groupBy Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

groupBy p xs -- breaks xs into segments [x1,x2…], such 
that p xi is True for each xi in the 
segment.

groupBy (<) [3,2,4,1,5] = [[3], [2,4], [1,5]]

groupBy (==) “hello” = [“h”, “e”, “ll”, “o”]
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Step 3: Grouping Equal Words

[[“clouds”], [“hello”, “hello”], [“sky”]]

groupBy (==)

[“clouds”, “hello”, “hello”, “sky”]
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Step 4: Counting Each Group

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

map (λws -> (head ws, length ws))

[[“clouds”], [“hello”, “hello”], [“sky”]]
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Step 5: Formatting Each Group

[“clouds: 1”, “hello: 2”, “sky: 1”]

map (λ(w,n) -> w++show n)

[(“clouds”,1), (“hello”, 2), (“sky”,1)]
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Step 6: Combining the Lines

“clouds: 1\nhello: 2\nsky: 1\n”

unlines

[“clouds: 1”, “hello: 2”, “sky: 1”]

clouds: 1
hello: 2
sky: 1
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The Complete Definition

countWords :: String -> String

countWords s =

unlines .

map (λ(w,n) -> w++show n) .

map (λws -> (head ws, length ws)) .

groupBy (==) .

sort .

words s
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Trees

Any recursive data type that exhibits a 
nonlinear structure is generically called a 
tree.
The syntactic structure of arithmetic or 
functional expressions can also be 
modeled by a tree.
There are numerous species and 
subspecies of tree.
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Trees

Trees can be classified according to
n The precise form of the branching structure
n The location of information within the tree

n The relationship between the information 
stored in different parts of the tree
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Binary Trees

A binary tree is a tree with a simple two-way 
branching structure.

data Btree α = Leaf α | Fork(Btree α)(Btree α)
n A value of Btree α is either a leaf node, which contains 

a value of type α, or a fork node , which consists of two 
further trees, called the left and right subtrees of the 
node.

n A leaf is sometimes called an external node, or tip, and a 
fork node is sometimes called an internal node.
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Binary Trees

Example:
Fork(Leaf 1)(Fork(Leaf 2)(Leaf 3))
n Consists of a node with a left subtree Leaf 1 and a 

right subtree which consists of a left subtree Leaf 2
and a right subtree Leaf 3.

Fork(Fork(Leaf 1)(Leaf 2))(Leaf 3)
n Contains the same sequence of numbers in its leaves 

but the way the information is organized is different.
n The two expressions denote different values.
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Trees: size

The size of a tree is the number of its leaf 
nodes.
size :: Btree α → Int
size (Leaf x) = 1
size (Fork xt yt) = size xt + size yt
n The function size plays the same role for trees as 
length does for lists.

size = length ⋅ flatten , where
Flatten :: Btree α → [α]
Flatten (Leaf x) = [x]
Flatten (Fork xt yt) = flatten xt ++ flatten yt
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Trees: height

The height of a tree measures how far away 
the furthest leaf is.
height :: Btree α → Int
height (Leaf x) = 0
height (Fork xt yt) = 1 +

(height xt max height yt)
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Reductions

Reduction sequence: square (3+4)
Two reduction policies
n Innermost reduction : a reduction that 

contains no other reduction.

n Outermost reduction: a reduction that is 
contained in no other reduction.

Other example: fst (square 4, square 2)
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Outermost Reduction

Sometimes outermost reduction will give 
an answer when innermost fails to 
terminate.
If both methods terminate, then they give 
the same result.
Outermost reduction has the important 
property that if an expression has a normal 
form then the outermost reduction will 
compute it.
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Outermost Reduction

Is outermost reduction a better choice than 
innermost reduction?
Problem: outermost reduction can 
sometimes require most steps than 
innermost reductions.
n The problem arises with any function whose 

definition contains repeated occurrences of an 
argument.
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Outermost Reduction

The problem can be solved by representing 
expressions as graphs rather than trees.
n Unlike trees, graphs can share subexpressions.

Example: the expression (3+4) * (3+4)

n Each occurrence of 3+4 is represented by an arrow, 
called a pointer, to a single instance of (3+4)

(  *  ) ( 3 + 4 )
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Outermost Reduction

Using outermost graph reduction has only 
three steps.
n The representation of expressions as graphs 

means that duplicated subexpressions can be 
shared and reduced at most once.

With graph reduction, outermost reduction 
never takes more steps than innermost 
reduction.
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Lazy vs. Eager Evaluation

Outermost graph reduction is called lazy 
evaluation.
Innermost graph reduction is called 
eager evaluation.
Lazy evaluation is adopted by Haskell:

1. It terminates whenever any reduction order 
terminates.

2. It requires no more (and possibly fewer) 
steps than eager evaluation.


