
1

Chapter 15

Functional Programming

2Chapter 15: Functional Programming

Topics

Introduction
Functional programs
Mathematical functions
Functional forms
Lambda calculus
Eager and lazy evaluation
Haskell

3Chapter 15: Functional Programming

Introduction

Emerged in the early 1960s for Artificial
Intelligence and its subfields:
n Theorem proving
n Symbolic computation

n Rule-based systems
n Natural language processing

The original functional language was Lisp,
developed by John McCarthy (1960)

4Chapter 15: Functional Programming

Functional Programs

A program is a description of a specific
computations.
n A program can be seen as a “black box” for

obtaining outputs from inputs.

n From this point of view, a program is
equivalent to a mathematical function.

5Chapter 15: Functional Programming

Mathematical Functions

A function is a rule that associates to each
x from some set X of values a unique y
from another set Y of values.
n In mathematical terminology, if f is the name

of the function
y = f(X) or
f: X à Y

n The set X is called the domain of f.
n The set Y is called the range of f.

6Chapter 15: Functional Programming

Mathematical Functions

n The x in f(x), which represents any value from
X (domain), is called independent variable.

n The y from the set Y (range), defined by the
equation y = f(x) is called dependent variable.

n Sometimes f is not defined for all x in X, it is
called a partial function . Otherwise it is a total
function.

Example: square(x) = x * x

function
name parameters

mapping
expressions

2

7Chapter 15: Functional Programming

Mathematical Functions

Everything is represented as a mathematical
function:
n Program: x represents the input and y

represents the output.
n Procedure or function: x represents the

parameters and y represents the returned
values.

No distinction between a program, a
procedure, and a function. However, there is
a clear distinction between input an output
values.

8Chapter 15: Functional Programming

Mathematical Functions:
variables

In imperative programming languages,
variables refer to memory locations as well
as values.

x = x + 1

n Means “update the program state by adding 1 to the
value stored in the memory cell named x and then
storing that sum back into that memory cell”

n The name x is used to denote both a value (as in x+1),
often called an r-value, and a memory address, called
an l-value.

9Chapter 15: Functional Programming

Mathematical Functions:
variables

In mathematics, variables always stand for
actual values, there is no concept of
memory location (l-values of variables).
n Eliminates the concept of variable, except as

a name for a value.

n Eliminates assignment as an available
operation.

10Chapter 15: Functional Programming

Mathematical Functions:
variables

Consequences of the lack of variables
and assignment

1. No loops.
n The effect of a loop is modeled via recursion,

since there is no way to increment or decrement
the value of variables.

2. No notation of the internal state of a function.
l The value of any function depends only on the

values of its parameters, and not on any previous
computations, including calls to the function itself.

11Chapter 15: Functional Programming

Mathematical Functions:
variables

l The value of a function does not depend on the
order of evaluation of its parameters.

l The property of a function that its value depend
only on the values of its parameters is called
referential transparency.

3. No state.
n There is no concept of memory locations with

changing values.
n Names are associated to values which once the

value is set it never changes.

12Chapter 15: Functional Programming

Mathematical Functions

Functional Forms
n Def: A higher-order function, or functional

form, is one that either takes functions as
parameters or yields a function as its result,
or both

3

13Chapter 15: Functional Programming

Functional Forms

1. Function Composition
n A functional form that takes two functions as

parameters and yields a function whose value
is the first actual parameter function applied to
the application of the second

Form: h ≡ f ° g

which means h (x) ≡ f (g (x))

For f (x) ≡ x * x * x and
g (x) ≡ x + 3,

h ≡ f ° g yields (x + 3)* (x + 3)* (x + 3)
14Chapter 15: Functional Programming

Functional Forms

2. Construction
n A functional form that takes a list of

functions as parameters and yields a list of
the results of applying each of its parameter
functions to a given parameter

Form: [f, g]
For f (x) ≡ x * x * x and

g (x) ≡ x + 3,

[f, g] (4) yields (64, 7)

15Chapter 15: Functional Programming

Functional Forms

3. Apply-to-all
n A functional form that takes a single function

as a parameter and yields a list of values
obtained by applying the given function to
each element of a list of parameters

Form: α
For h (x) ≡ x * x * x

α(h, (3, 2, 4)) yields (27, 8, 64)

16Chapter 15: Functional Programming

Pure Functional Programming

In pure functional programming there are
no variables, only constants, parameters,
and values.
Most functional programming languages
retain some notation of variables and
assignment, and so are “impure”
n It is still possible to program effectively using

the pure approach.

17Chapter 15: Functional Programming

Lambda Calculus

The foundation of functional programming
developed by Church (1941).
A lambda expression specifies the parameters
and definition of a function, but not its name.
n Example: lambda expression that defined the

function square:
(λx⋅x*x)

n The identifier x is a parameter for the (unnamed)
function body x*x.

18Chapter 15: Functional Programming

Lambda Calculus

Application of a lambda expression to a
value: ((λx⋅x*x)2) which evaluates to 4
What is a lambda expression?

1. Any identifier is a lambda expression.
2. If M and N are lambda expressions, then the

application of M to N , written (MN) is a lambda
expression.

3. An abstraction, written (λx⋅M) where x is an
identifier and M is a lambda expression, is also
a lambda expression.

4

19Chapter 15: Functional Programming

Lambda Expressions: BNF

A simple BNF grammar for the syntax of
the lambda calculus

LambdaExpression à ident | (M N) | (λ ident ⋅ M)
M à LambdaExpression
N à LambdaExpression

Examples:
x

(λx⋅x)
((λx⋅x)(λy⋅y))

20Chapter 15: Functional Programming

Lambda Expressions: free and
bound variables

In the lambda expression (λx⋅M)
n The identifier x is said to be bound in the

subexpression M.
n Any identifier not bound in M is said to be free.
n Free variables are like globals and bound

variables are like locals.
n Free variables can be defined as:

free(x) = x
free(MN) = free(M) ∪ free(N)
free(λx⋅M) = free(M) – {x}

21Chapter 15: Functional Programming

Lambda Expressions:
substitution

A substitution of an expression N for a variable
x in M, written M[N/x], is defined:

1. If the free variable of N have no bound occurrences
in M, then the term M[N/x] is formed by replacing all
free occurrences of x in M by N.

2. Otherwise, assume that the variable y is free in N
and bound in M. Then consistently replace the
binding and corresponding bound occurrences of y
in M by a new variable, say u. Repeat this renaming
of bound variables in M until the condition in Step 1
applies, then proceed as in Step 1.

22Chapter 15: Functional Programming

Lambda Expressions:
substitution

Examples:
x[y/x] = y
(xx)[y/x] = (yy)
(zw)[y/x] = (zw)
(zx)[y/x] = (zy)
[λx⋅(zx))[y/x] = (λu ⋅(zu))[y/x] = (λu ⋅(zu))

23Chapter 15: Functional Programming

Lambda Expressions: beta-
reduction

The meaning of a lambda expression is
defined by the beta-reduction rule:

((λx⋅M)N) ⇒ M[N/x]

An evaluation of a lambda expression is a
sequence P ⇒ Q ⇒ R ⇒ …
n Each expression in the sequence is obtained by

the application of a beta-reduction to the
previous expression.
((λy⋅((λx ⋅xyz)a))b) ⇒ ((λy ⋅ayz)b) ⇒ (abz)

24Chapter 15: Functional Programming

Functional Programming vs.
Lambda Calculus

A functional programming languages is
essentially an applied lambda calculus
with constant values and functions build in.
n The pure lambda expression (xx) can be

written as (x times x) or (x*x) or (* x x)
n When constants, such as numbers, are added

(with their usual interpretation and definitions
for functions, such as *), then applied lambda
calculi is obtained

5

25Chapter 15: Functional Programming

Eager Evaluation

An important distinction in functional
languages is usually made in the way they
define function evaluation.
Eager Evaluation or call by value: In
languages such as Scheme, all arguments
to a function are normally evaluated at the
time of the call.
n Functions such as if and and cannot be

defined without potential run-time error

26Chapter 15: Functional Programming

Eager Evaluation

(if (= x 0) 1 (/ 1 x))

n Defined the value of the function to be 1 when
x is zero and 1/x otherwise.

n If all arguments to the if functions are
evaluated at the time of the call, division by
zero cannot be prevented.

27Chapter 15: Functional Programming

Lazy Evaluation

An alternative to the eager evaluation
strategy is lazy evaluation or call by name,
in which an argument to a function is not
evaluated (it is deferred) until it is needed.
n It is the default mechanism of Haskell.

28Chapter 15: Functional Programming

Eager vs. Lazy Evaluation

An advantage of eager evaluation is
efficiency in that each argument passed to
a function is only evaluated once,
n In lazy evaluation, an argument to a function

is reevaluated each time it is used, which can
be more than once.

An advantage of lazy evaluation is that it
permits certain interesting functions to be
defined that cannot be implemented as
eager languages

Haskell

30Chapter 15: Functional Programming

Haskell

The interactive use of a functional language is
provided by the HUGS (Haskell Users Gofer
System) environment developed by Mark Jones
of Nottingham University.

HUGS is available from

http://www.haskell.org/hugs/
The Haskell web page is
http://www.haskell.org/

6

31Chapter 15: Functional Programming

Haskell: sessions

Expressions can be typed directly into the
Hugs/Haskell screen.
n The computer will respond by displaying the

result of evaluating the expression, followed
by a new prompt on a new line, indicating that
the process can begin again with another
expression
? 6 * 7
42

This sequence of interactions between
user and computer is called a session.

32Chapter 15: Functional Programming

Haskell: scripts

Scripts are collections of definitions supplied
by the programmer.
square :: Integer à Integer
square x = x * x
smaller :: (Integer,Integer) à Integer
smaller (x,y)= if x ≤ y then x else y

Given the previous script, the following session is
now possible:
? square 3768 ? square(smaller(5,3+4))
14197824 25

33Chapter 15: Functional Programming

Haskell: scripts

The purpose of a definition of a function is
to introduce a binding associating a given
name with a given definition.
n A set of bindings is called an environment or

context.
Expressions are always evaluated in some context
and can contain occurrences of the names found
in that context.
The Haskell evaluator uses the definitions
associated with those names as rules for
simplifying expressions.

34Chapter 15: Functional Programming

Haskell: scripts

Some expressions can be evaluated
without having to provide a context.
n Those operations are called primitives (the

rules of simplification are build into the
evaluator).

Basic operations of arithmetic.
Other libraries can be loaded.

At any point, a script can be modified and
resubmitted to the evaluator.

35Chapter 15: Functional Programming

Haskell: first things to remember

Scripts are collections of definitions supplied by
the programmer.
Definitions are expressed as equations between
certain kinds of expressions and describe
mathematical functions.
n Definitions are accompanied by type signatures.

During a session, expressions are submitted for
evaluation
n These expressions can contain references to the

functions defined in the script, as well as references
to other functions defined in libraries.

36Chapter 15: Functional Programming

Haskell: evaluation

The computer evaluates an expression by
reducing it to its simplest equivalent form
and displaying the result.
n This process is called evaluation, simplification,

or reduction.
n Example: square(3+4)
n An expression is canonical or in normal form If

it cannot be further reduced.

7

37Chapter 15: Functional Programming

Haskell: evaluation

A characteristic feature of functional
programming is that if two different
reduction sequences terminate, they lead
to the same result.
n For some expressions some ways of

simplification will terminate while other do not.
n Example: three infinity
n Lazy evaluation guarantees termination

whenever termination is possible

38Chapter 15: Functional Programming

Getting Started with Hugs
% hugs
Type : ? for help
Prelude> 6*7
42
Prelude> square(smaller(6,9))
ERROR – Undefined variable “smaller”
Prelude> sqrt(16)
4.0
Prelude> :load example1.hs
Reading file “example1.hs”
Main> square(smaller(6,9))
36

39Chapter 15: Functional Programming

Getting Started with Hugs

Typing :? In Hugs will produce a list of possible
commands.

Typing :quit will exit Hugs
Typing :reload will repeat last load command
Typing :load will clear all files

40Chapter 15: Functional Programming

Topics

Values
Functions
Extensionality
Currying
Definitions

41Chapter 15: Functional Programming

Values

An expression is used to describe (or denote) a
value.
n Among the kinds of value are: numbers of various

kinds, truth values, characters, tuples, functions, and
lists.

n New kinds of value can be introduced.

The evaluator prints a value by printing its
canonical representation.
n Some values have no canonical representation (i.e.

function values).
n Other values are not finite (i.e. Π)

42Chapter 15: Functional Programming

Values

n For some expressions the process of
reduction never stops and never produces any
result (i.e. the expression infinity).

n Some expressions do not denote well-defined
values in the normal mathematical sense (i.e.
the expression 1/0).

Every syntactically well-formed expression
denotes a value.
n A special symbol ⊥ (bottom) stands for the

undefined value of a particular type

8

43Chapter 15: Functional Programming

Values

n The value of infinity is the undefined value ⊥ or
type Integer.

n 1/0 is the undefined value ⊥ or type Float
1/0 = ⊥

n The computer is not able to produce the value ⊥.
It generates an error message or it remains
perpetually silent.

n ⊥ is a special value that can be added to the
universe of values only if its properties and its
relationship with other values are precisely
stated.

44Chapter 15: Functional Programming

Values

n If f ⊥ = ⊥, then f is strict; otherwise it is
nonstrict.

n square is a strict function because the evaluation
of the undefined value goes into an infinite
reduction (i.e. ? square infinity)

n three is nonstrict because the evaluation of the
undefined value is 3 (i.e. ? three infinity)

45Chapter 15: Functional Programming

Functions

A function f is a rule of correspondence
that associates each element of given
type A (domain) with a unique element of
a second type B (range).
n The result of applying function f to an

element x of the domain is written as f(x)
or f x (when the parentheses are not
necessary).

Parentheses are necessary when the argument
is not a simple constant or variable.

46Chapter 15: Functional Programming

Functions

n Examples
square(3+4) vs. square3+4
n square3+4 means (square3)+4

square(square3) vs. square square 3
n square square 3 means (square square) 3

47Chapter 15: Functional Programming

Extensionality

Two functions are equal if they give equal
results for equal arguments.
n f = g if an only if f x = g x for all x
n This is called the principle of extensionality .
n Example:

double, double’ :: Integer à Integer
double x = x + x
double’ x = 2 * x

n double and double’ defines the same
functional value, double = double’

48Chapter 15: Functional Programming

Currying

Replacing a structure argument by a
sequence of simpler ones is a way to
reduce the number of parentheses in an
expression.

smaller :: (Integer,Integer) à Integer
smaller (x,y) = if x ≤ y then x else y

smallerc :: Integer à (Integer à Integer)
smallerc x y = if x ≤ y then x else y

9

49Chapter 15: Functional Programming

Currying: advantages

1. Currying can help to reduce the number
of parentheses that have to be written
in expressions.

2. Curried function can be applied to one
argument only, giving another function
that may be useful in its own right

50Chapter 15: Functional Programming

Definitions

There are definitions for different kinds of
values:
n Definitions of fixed values.

pi :: Float
pi = 3.14159

n Some definitions of functions use conditional
expressions
smaller :: (Integer, Integer) à Integer
smaller(x,y) = if x ≤ y then x else y

51Chapter 15: Functional Programming

Definitions

n The same expressions can be defined using
guarded equations.
smaller :: (Integer, Integer) à Integer
smaller(x,y)

| x ≤ y = x
| X > y = y

Each clause consists of a condition, or guard, and
an expression, which is separated from the guard
by an = sign.
The main advantage of guarded expressions is
when there are three or more clauses in a
definition.

52Chapter 15: Functional Programming

Topics
Reduction and Currying
Recursive definitions
Local definitions
Type Systems
n Strict typing
n Polymorphism

Types Classes
Types
n Booleans
n Characters
n Enumerations
n Tuples
n Strings

53Chapter 15: Functional Programming

Currying

Viewing a function with two or more
arguments as a function that takes one
argument at a time.

f

x

y

result The function f

The curried function fx f f x

y resultf x The function f x

54Chapter 15: Functional Programming

Currying: example

The uncurried function times takes two
numbers as inputs and return their
multiplication.

times

x

y

x * y

10

55Chapter 15: Functional Programming

Currying: example

The curried function times takes a number
x and return the function (times x).
(times x) takes a number y and returns
the number (x * y).

y

x * ytimes x

x times

56Chapter 15: Functional Programming

Reduction

Reduction is the process of converting a
functional expression to its canonical form
by repeatedly applying reduction rules

Expression
Canonical

FormReduction

57Chapter 15: Functional Programming

Reduction Rules

There are two kinds of reduction rules:
n Build- in definitions

For example the arithmetic operations
n User supplied definitions

58Chapter 15: Functional Programming

Recursive Definitions

Definitions can also be recursive.
Example:

fact :: Integer à Integer
fact n = if n==0 then 1 else n*fact(n-1)

n This definition of fact is not completely satisfactory: if it
is applied to a negative integer, then the computation
never terminates.

n For negative numbers, fact x = ⊥.
It is better if the computation terminated with a suitable error
message rather than proceeding indefinitely with a futile
computation.

59Chapter 15: Functional Programming

Recursive Definitions
fact :: Integer à Integer
fact n

| n < 0 = error “negative argument”
| n == 0 = 1
| n > 0 = n * fact(n-1)

n The predefined function error takes a string as
argument; when evaluated it causes immediate
termination of the evaluator and displays the given
error message.
? fact (-1)
Program error: negative argument

60Chapter 15: Functional Programming

Local Definitions

In mathematical descriptions there are
expressions qualified by a phrase of the
form “where …”.
n f(x,y) = (a+1)(a+2),where a = (x+y)/2

Example:
f :: (Float,Float) à Float
f(x,y) = (a+1) * (a+2) where a = (x+y)/2

n The special word where is used to introduce a
local definition whose context (or scope) is the
expression on the RHS of the definition of f.

11

61Chapter 15: Functional Programming

Local Definitions

When there are two or more local
definitions, there are two styles:

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2
b = (x+y)/3

f :: (Float,Float) à Float
f(x,y) = (a+1) * (b+2)

where a = (x+y)/2; b = (x+y)/3

62Chapter 15: Functional Programming

Local Definitions

A local definition can be used in
conjunction with a definition that relies on
guarded equations.:

f :: Integer à Integer à Integer
f x y =

| x ≤ 10 = x + a
| x > 10 = x-a

where a = square(y+a)

n The where clause qualifies both guarded
equations.

63Chapter 15: Functional Programming

Type Systems

Programming languages have either:
n No type systems

Lisp, Prolog, Basic, etc

n A strict type system
Pascal, Modula2

n A polymorphic type systems
ML, Mirada, Haskell, Java, C++

64Chapter 15: Functional Programming

Strong Typing Principle

Every expression must have a type
n 3 has type Int
n ‘A’ has type Char

The type of a compound expression can
be deduced from its constituents alone.
n (‘A’,1+2) has type (Char, Int)

An expression which does not have a
sensible type is illegal.
n ‘A’+3 is illegal

65Chapter 15: Functional Programming

Strict Typing

Every expression has a unique concrete type.
n Although this system is good for trapping errors, it is too

restrictive.

What type should be given to id?
n Is it IntàInt?, CharàChar?, (Int,Bool)à(Int,Bool)

With strict typing we have to define separate
versions of id for each type.

id xx

66Chapter 15: Functional Programming

Polymorphism

Polymorphism allows the definition of
certain functions to be used with different
types.
Without polymorphism we would have to
write different versions of the function for
each possible type (type declaration is
different but the body is the same).
Polymorphism results in simpler, more
general, reusable and concise programs.

12

67Chapter 15: Functional Programming

Type Classes

A curried multiplication can be used with
two different type signatures:

(x) :: Integer à Integer à Integer
(x) :: Float à Float à Float

So, it can be assigned a polymorphic type:
(x) :: α à α à α

n This type is too general (two characters or two
booleans should not be multiplied).

68Chapter 15: Functional Programming

Type Classes

Group together kindred types into type
classes .
n Integer and Float belong to the same

class, the class of numbers.
(x) :: Num α ⇒ α à α à α

There are other kindred types apart from
numbers.
n The types whose value can be displayed, the

types whose value can be compared for
equality, the type whose value can be
enumerated, etc.

69Chapter 15: Functional Programming

Types

In addition to defining functions and
constants, functional languages allows to
define types to build new and useful types
from existing ones.
The universe of values is divided into
organized collections, called types.
n Integer, Float, Double, booleans, characters, lists,

trees, etc.
n An infinity variety of other types can be put

together: Integer à Float, (Float, Float), etc.

70Chapter 15: Functional Programming

Types

Each type has associated with it certain
operations which are not meaningful for
other types.

123

-123333

314159
Int

False

True

Bool

Int
addition +

multiplication *
Bool

conjunction and

disjunction or

71Chapter 15: Functional Programming

Type Declaration

The type of an expression is declared
using the following convention:

expression :: type
n Example: e :: t

Reads: “the expression e has the type t”

pi :: Double
Square :: Integer à Integer

72Chapter 15: Functional Programming

Types

Strong typing: the value of an expression
depends only on the values of its
component expressions, so does its type.
Consequence of strong typing
n Any expression which cannot be assigned a

sensible type is not well formed and is
rejected by the computer before evaluation
(illegal expressions).

13

73Chapter 15: Functional Programming

Types
quad :: Integer à Integer
quad x = square square x

Advantage of strong typing
n Enables a range of errors to be detected

before evaluation.

There are two stages of analysis when
a expression is submitted for
evaluation.

74Chapter 15: Functional Programming

Types

n The expression is checked to see whether
it conforms to the correct syntax laid down
for constructing expressions.
n No: the computer signals a syntax error
n Yes: perform the second stage of evaluation

n The expression is analysed to see if it
posses a sensible type
n Fails: the computer signals a type error.
n Yes: the expression is evaluated.

75Chapter 15: Functional Programming

Classification of Types

Basic/Simple Types
n Contain primitive values

User-defined Types
n Contain user-defined values

Derived Types
n Contain more complex values

76Chapter 15: Functional Programming

Simple Data Types: booleans

Used to define the truth value of a
conditional expression.
n There are two truth values, True and False.
n These two values comprise the datatype Bool

of boolean values.

n True, False and Bool begin with a capital
letter.

n The datatype Bool can be introduce with a
datatype declaration:

data Bool = False | True

77Chapter 15: Functional Programming

Simple Data Types: booleans

Having introduce Bool, it is possible to
define functions that take boolean
arguments by pattern matching.
n Example: the negation function

not :: Bool à Bool
not False = True
not True = False

l To simplify expressions of the form not e: first e is
reduced to normal form.
n If e cannot be reduced to normal form then the value of

not e is undefined
n not ⊥ = ⊥ then not is strict.

78Chapter 15: Functional Programming

Simple Data Types: booleans

There are not two but thee boolean
values: True, False, and ⊥.

Every datatype declaration introduces
an extra anonymous value, the
undefined value of the datatype.
More examples: conjunction,
disjunction.

14

79Chapter 15: Functional Programming

Simple Data Types: booleans

This is how pattern matching works:
⊥ ∧ True = ⊥
⊥ ∧ False = ⊥
False ∧ ⊥ = False
True ∧ ⊥ = ⊥

n ∧ is strict in its LHS, but nonstrict in its
RHS argument.

80Chapter 15: Functional Programming

Booleans: equality operators

There are two equality operators = = and
≠

(==) :: Bool à Bool à Bool
x == y = (x∧y) ∨ (not x ∧ not y)
(≠) :: Bool à Bool à Bool
x ≠ y = not(x == y)

The symbol == is used to denote a
computable test for equality.
The symbol = is used both in definitions
and its normal mathematical sense.

81Chapter 15: Functional Programming

Booleans: equality operators

The main purpose of introducing an
equality test is to be able to use it with a
range of different types.
n (==) and (≠) are overloaded operations .

The proper way to introduce them is first
to declare a type class Eq consisting of all
those types for which (==) and (≠) are to
be defined.

82Chapter 15: Functional Programming

Booleans: equality operators

class Eq α where
(=),(≠) :: α à α à Bool

n To declare that a certain type is an instance
of the type class Eq, an instance declaration is
needed.
instance Eq Bool where
(x == y) = (x ∧ y) ∨ (not x ∧ not y)
(x ≠ y) = not(x == y)

83Chapter 15: Functional Programming

Booleans: comparison
operators

Booleans can also be compared.
n Comparison operations are also overloaded

and make sense with elements from a
number of different types.

class (Eq α) ⇒ Ord α where
(<),(≤),(≥),(>) :: α à α à Bool
(x ≤ y) = (x < y) ∨ (x == y)
(x ≥ y) = (x > y) ∨ (x == y)
(x > y) = not(x ≤ y)

84Chapter 15: Functional Programming

Booleans: comparison
operators

Bool could be an instance of Ord:
instance Ord Bool where

False ≤ False = False
False ≤ True = True
True ≤ False = False
True ≤ True = False

15

85Chapter 15: Functional Programming

Example: leap years

Define a function to determine whether a
year is a leap year or not.
n A leap year is divisible by 4, except that if it is

divisible by 100, then it must also be divisible by
400.
leapyear :: Int à Bool
leapyear y = (y mode 4 == 0) ∧

(y mode 100 ≠ 0 ∨ (y mode 400 == 0)

n Using conditional expressions:
leapyear y = if (y mode 100==0)

then (y mode 400 ==0)
else (y mode 4 == 0)

86Chapter 15: Functional Programming

Characters

Characters are denoted by enclosing them
in single quotation marks.
n Remember: the character ‘7’ is different from

the decimal number 7.

Two primitive functions are provided for
processing characters, ord and chr.
n Their types are:

ord :: Char à Int
chr :: Int à Char

87Chapter 15: Functional Programming

Characters

n The function ord converts a character c to an
integer ord c in the range 0 ≤ ord c ≤ 256

n The function chr does the reverse, converting
an integer back into the character it
represents.

n Thus chr (ord c) = c for all characters c.

? ord‘b’ ? chr98
98 ‘b’

? chr(ord’b’+1)
‘c’

88Chapter 15: Functional Programming

Characters

Characters can be compared and
tested for equality.

instance Eq Char where
(x == y) = (ord x == ord y)

instance Ord Char where
(x < y) = (ord x < ord y)

? ‘0’ < ‘9’ ? ‘A’ < ‘Z’
True True

89Chapter 15: Functional Programming

Characters: simple functions

Three functions for determining whether a
character is a digit, lower-case letter, or upper-case
letter:

isDigit,isLower,isUpper :: Char à Bool
isDigit c = (‘0’ ≤ c) ∧ (c ≤ ‘9’)
isLower c = (‘a’ ≤ c) ∧ (c ≤ ‘z’)
isUpper c = (‘A’ ≤ c) ∧ (c ≤ ‘Z’)

A function for converting lower-case letter to upper-
case:

capitalise :: Char à Char
capitalise c = if isLower c then

chr(offset+ord c) else c
where offset = ord ‘A’ – ord ‘a’

90Chapter 15: Functional Programming

Enumerations

They are user-defined types.
Example:
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

n This definition binds the name Day to a new type
that consists of eight distinct values, seven of
which are represented by the given constants
and the eight by the undefined value ⊥

The seven new constants are called the constructors
of the datatype Day.
By convention, constructor names and the new name
begin with an upper-case letter.

16

91Chapter 15: Functional Programming

Enumerations

It is possible to compare elements of type
Day, so Day can be declared as an
instance of the type classes Eq and Ord.
n A definition of (==) and (<) based on pattern

matching would involve a large number of
equations.

Better idea. Code elements of Day as
integers, and use integer comparison
instead.

92Chapter 15: Functional Programming

Enumerations

Since the same idea can be employed with other
enumerated types, a new type class Enum is
declared
n Enum describes types whose elements can be

enumerated.
class Enum α where

fromEnum :: α à Int
toEnum :: Int à α

n A type is declared an instance of Enum by giving
definition of toEnum and fromEnum, functions that
convert between elements of the type and Int.

93Chapter 15: Functional Programming

Enumerations: example

Day is a member of Enum:

instance Enum Day where
fromEnum Sun = 0
fromEnum Mon = 1
fromEnum Tue = 2
fromEnum Wed = 3
fromEnum Thu = 4
fromEnum Fri = 5
fromEnum Sat = 6

94Chapter 15: Functional Programming

Enumerations: example

Given fromEnum on Day:
instance Eq Day where
(x == y) = (fromEnum x == fromEnum y)

instance Ord Day where
(x < y) = (fromEnum x < fromEnum y)

95Chapter 15: Functional Programming

Enumerations: example

workday :: Day à Bool
workday d = (Mon ≤ d) ∧ (d ≤ Fri)

restday :: Day à Bool
restday d = (d==Sat) ∨ (d==Sun)

dayafter :: Day à Day
dayafter d = toEnum((fromEnum d+1) mod 7)

96Chapter 15: Functional Programming

Automatic instance declarations

Haskell provides a mechanism for
declaring a type as an instance of Eq,
Ord, and Enum in one declaration.

data Day = Sun | Mon | Tue | Wed |
Thu | Fri | Sat
deriving (Eq,Ord,Enum)

n The deriving clause causes the evaluator to
generate instance declarations of the named
type classes automatically.

17

97Chapter 15: Functional Programming

Tuples
One way of combining types to form new
ones is by pairing them.
n Example: (Integer, Char) consists of all

pairs of values (x,c) for which x is an
arbitrary-precision integer, and c is a
character.

Like other types, the type (α,β) contains
an additional value ⊥

98Chapter 15: Functional Programming

Tuples: practical example

A function returns a pair of numbers, the
two real roots of a quadratic equation with
coefficients (a,b,c):

roots :: (Float, Float, Float) à (Float,Float)
roots (a,b,c)

| a == 0 = error “not quadratic”
| e < 0 = error “complex roots”
| otherwise = ((-b-r)/d,(-b+r)/d)
where r = sqrt e

d = 2*a
e = b*b-4*a*c

99Chapter 15: Functional Programming

Other Types

A type can be declared by typing its constants or
with values that depend on those of other types.

data Either = Left Bool | Right Char

n This declares a type Either whose values are
denoted by expressions of the form Left b, where b
is a boolean, and Right c, where c is a character.

n There are 3 boolean values (including ⊥) and 257
characters (including ⊥), so there are 261 distinct
values of the type Either; these include Left ⊥,
Right ⊥, and ⊥

100Chapter 15: Functional Programming

Other Types

In general:
data Either α β = Left α | Right β

The names Left and Right introduces
two constructors for building values of type
Either, these constructors are nonstrict
functions with types:

Left :: α à Either α β
Right :: β à Either α β

101Chapter 15: Functional Programming

Other Types

Assuming that values of types α and β can be
compared, comparison on that type Either α β
can be added as an instance declaration:

instance (Eq α,Eq β) ⇒ Eq(Either α β) where
Left x == Left y = (x==y)
Left x == Right y = False
Right x == Left y = False
Right x == Right y = (x==y)

instance (Ord α,Ord β) ⇒ Ord(Either α β) where
Left x < Left y = (x<y)
Left x < Right y = True
Right x < Left y = False
Right x < Right y = (x<y)

102Chapter 15: Functional Programming

Type Synonyms

Type synonym declaration: a simple
notation for giving alternative names to
types.
Example:

roots :: (Float, Float, Float) à (Float,Float)

n As an alternative, two type synonyms could
be used
type Coeffs = (Float, Float, Float)
type Roots = (Float,Float)

18

103Chapter 15: Functional Programming

Type Synonyms

n This declarations do not introduce new types
but merely alternative names for existing
types.
roots :: Coeffs à Roots

n This new description is shorter and more
informative.

Type synonyms can be general.
type Pairs α = (α,α)
type Automorph α = α à α
type Flag α = (α,Bool)

104Chapter 15: Functional Programming

Type Synonyms

Type synonyms cannot be declared in
terms of each other since every synonym
must be expressible in terms of existing
types.
Synonyms can be declared in terms of
another synonym.

type Bools = PairBool

Synonyms and declarations can be mixed
data OneTwo α = One α | Two(Pairs α)

105Chapter 15: Functional Programming

Strings

A list of characters is called a string.
The type String is a synonym type:

type String = [Char]

Syntax: the characters of a string are
enclosed in double quotation marks.
‘a’ vs. “a”
n the former is a character
n the latter is a list of characters that happens to

contain only one element.

106Chapter 15: Functional Programming

Strings

Strings cannot be declared separately as
instances of Eq and Ord because they are just
synonyms.
n They inherit whatever instances are declared for

general lists.
Comparison on strings follow the normal
lexicographic ordering.

? “hello” < “hallo”
False
? “Jo” < “Joanna”
True

107Chapter 15: Functional Programming

Strings

Haskell provides a primitive command for
printing strings.

putStr :: String à IO()
n Evaluating the command putStr causes the string to

be printed literally.
? putStr “Hello World”
Hello World
? putStr “This sentence contains \n a newline”
This sentence contains
a newline

108Chapter 15: Functional Programming

The type class Show

Haskell provides a special type class Show
to display information of different kinds
and formats.

class Show α where
showsPrec :: Int à α à String à String

n The function showsPrec is provided for
displaying values of type α

n Using showsPrec it is possible to define a
simpler function that takes a value and
converts it to a string.

show :: Show α ⇒ α à String

19

109Chapter 15: Functional Programming

The type class Show

Example: if Bool is declares to be a member of
Show and show is defined for booleans as

show False = "False"
show True = "True"
? putStr(show True)
True

Some instances of Show are provided as
primitive.

? putStr("The year is "++ show(3*667))
The year is 2001

110Chapter 15: Functional Programming

Topics

Numbers
n Natural numbers
n Haskell numbers

Lists
n List notation
n Lists as a data type
n List operations

111Chapter 15: Functional Programming

Numbers

Haskell provides a sophisticated
hierarchy of type classes for describing
various kinds of numbers.
Although (some) numbers are provided
as primitives data types, it is
theoretically possible to introduce them
through suitable data type declarations.

112Chapter 15: Functional Programming

Natural Numbers
The natural numbers are the numbers 0, 1,
2, and so on, used for counting.
Introduced by the declaration

data Nat = Zero | Succ Nat
n The constructor Succ (short for ‘successor’)

has type Nat à Nat.

n Example: as an element of Nat the number 7
would be represented by
Succ(Succ(Succ(Succ(Succ(Succ(Succ Zero))))))

113Chapter 15: Functional Programming

Natural Numbers

Every natural number is represented by a
unique value of Nat.

On the other hand, not every value of Nat
represents a well-defined natural number.
n Example: ⊥, Succ ⊥, Succ(Succ ⊥)

Addition ca be defined by
(+) :: Nat à Nat à Nat
m + Zero = m
m + Succ n = Succ(m + n)

114Chapter 15: Functional Programming

Natural Numbers

Multiplication ca be defined by
(x) :: Nat à Nat à Nat
m x Zero = Zero
m x Succ n = (m x n) + m

Nat can be a member of the type class Eq
instance Eq Nat where
Zero == Zero = True
Zero == Succ n = False
Succ m == Zero = False
Succ m == Succ n = (m == n)

20

115

Natural Numbers
Nat can be a member of the type class Ord

instance Ord Nat where
Zero < Zero = False
Zero < Succ n = True
Succ m < Zero = False
Succ m < Succ n = (m < n)

Elements of Nat can be printed by
showNat :: Nat à String
showNatZero = “Zero”
showNat (Succ Zero) = “Succ Zero”
showNat (Succ(Succ n)) = “Succ (“ ++

showNat (Succ n) ++ “)” 116Chapter 15: Functional Programming

Haskell Numbers

Haskell provide, as primitives, the following
types:
n Int single-precision integers

n Integer arbitrary-precision integers
n Float singe-precision floating-point

numbers

n Double double-precision gloating-point
numbers

n Rational rational number

117Chapter 15: Functional Programming

The Numeric Type Classes

The same symbols, +, x, and so on, are
used for arithmetic on each numeric type.
n Overloaded functions.

All Haskell number types are instances of
the type class Num defined by

class (Eq α, Show α) ⇒ Num α where
(+), (-), (x) :: α à α à α
negate :: α à α
fromInteger :: Integer à α
…
x – y = x + negate y

118Chapter 15: Functional Programming

Integral Types

The members of the Integral type are two
primitive types Int and Integer.
The operators div and mod are provided
as primitive.
n If x and y are integers, and y is not zero, then
x div y = x / y.

13.8 = 13, -13.8 = -14

n The value x mod y is defined by the equation
x = (x div y) * y + (x mod y)

119Chapter 15: Functional Programming

Lists

Lists can be used to fetch and carry data
from one function to another.
Lists can be taken apart, rearranged, and
combined with other lists.
Lists can be summed and multiplied.
Lists of characters can be read and
printed.
…

120Chapter 15: Functional Programming

List Notation

A finite list is denoted using square brackets and
commas.
n [1,2,3]
n [“hello”,”goodbye”]

All the elements of a list must have the same
type.
The empty list is written as [].

A singleton list contains only one element
n [x]

n [[]] the empty list is its only member

21

121Chapter 15: Functional Programming

List Notation

If the elements of a list all have type α,
then the list itself will be assigned the type
[α].
n [1,2,3] :: [Int]
n [‘h’,’e’,’l’,’l’,’o’] :: [Char]
n [[1,2],[3]] :: [[Int]]
n [(+),(x)] :: [Int à Int à Int]

A list may contain the same value more
than once.
Two lists are equal if and only if they
contain the same value in the same order.

122Chapter 15: Functional Programming

Lists as a data type

A list can be constructed fro scratch by
starting with an empty list and
successively adding elements one by one.
n Elements can be added to the front of the list,

or the rear, or to somewhere in the middle.

Data type declaration (list):
data List α = Nil | Cons α (List α)

n The constructor Cons (short for ‘construct’)
add an element to the front of the list.

[1,2,3] Cons 1 (Cons 2 (Cons 3 Nil))

123Chapter 15: Functional Programming

Lists as a data type

In functional programming, lists are
defined as elements of List α.
n The syntax [α] is used instead of List α.

n The constructor Nil is written as []
n The constructor Cons is written as an infix

operator (:)
(:) associates to the right
[1,2,3] = 1:(2:(3:[])) = 1:2:3:[]

124Chapter 15: Functional Programming

Lists as a data type

Like functions over data types, functions
over lists can be defined by pattern
matching.

instance (Eq α) ⇒ Eq [α] where
[] == [] = True
[] == (y:ys) = False
(x:xs) == [] = False
(x:xs) == (y:ys)= (x == y) ∧ (xs == ys)

125Chapter 15: Functional Programming

List Operations

Some of the most commonly used
functions and operations on lists.

For each function: give the definition,
illustrate its use, and state some of its
properties.

126Chapter 15: Functional Programming

Concatenation

Two lists, both of the same type, can be
concatenated to form one longer list.
This function is denoted by the binary
operator ++.
? [1,2,3] ++ [4,5]
[1,2,3,4,5]
? [1,2] ++ [] ++ [1]
[1,2,1]

22

127Chapter 15: Functional Programming

Concatenation

The formal definition of ++ is
(++) :: [α] à [α] à [α]
[] ++ ys = ys
(x:xs) ++ ys = x:(xs++ys)

n The definition of ++ is by pattern matching
on the left-hand argument.

n The two patterns are disjoint and cover all
cases, apart from the undefined list ⊥.

n It follows by case exhaustion that

⊥ ++ ys = ⊥
128Chapter 15: Functional Programming

Concatenation

n It is not the case that xs ++ ⊥ = ⊥

? [1,2,3] ++ undefined
[1,2,3{Interrupted!}

n The list [1,2,3] ++ ⊥ is a partial list; in full
form it is the list 1:2:3:⊥.

The evaluator can compute the first three
elements, but thereafter it goes into a
nonterminating computation, so we interrupt it.

Some properties:
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
xs ++ [] = [] ++ xs = xs

129Chapter 15: Functional Programming

Reverse

This function reverses the order of
elements in a finite list.

? reverse [1,2,3,4,5]
[5,4,3,2,1]

The definition is
reverse :: [α] à [α]
reverse [] =[]
reverse (x:xs) = reverse xs ++ [x]

In words, to reverse a list (x:xs) one reverses xs
and then adds x to the end.

130Chapter 15: Functional Programming

Length

The length of a list is the number of
elements it contains.
The definition is
length :: [α] à Int
length [] = 0
length (x:xs) = 1 + length(xs)

The nature of the list elements is
irrelevant when computing the length:
? length [undefined,undefined]
2

131Chapter 15: Functional Programming

Length
Not every list has a well-defined length.
n The partial lists have an undefined length

⊥, x:⊥, x:y:⊥
n Only finite lists have well-defined lengths.

The list [⊥,⊥] is a finite list, not a partial list
because it is the list ⊥:⊥:[], which ends in []
not ⊥. The computer cannot produce the
elements, but it can produce the length of the list.

The function length satisfies a distribution
property:
length(xs ++ ys) = length xs + length ys

132Chapter 15: Functional Programming

Head and Tail

The function head selects the first
element of a nonempty list, and tail
selects the rest:
head :: [α] à α
head [] = error “empty list”
head (x:xs) = x
tail :: [α] à [α]
tail [] = error “empty list”
tail (x:xs) = xs

n These are constant-time operations, since
they deliver their result in one reduction step.

23

133Chapter 15: Functional Programming

Init and last

The function last and init select the last
element of a nonempty list and what
remains after the last element has been
removed.
? last [1,2,3,4,5]
5
? init [1,2,3,4,5]
[1,2,3,4]

134Chapter 15: Functional Programming

Init and last

First attempt (definition):
last :: [α] à α
last = head ⋅ reverse

init :: [α] à α
init = reverse ⋅ tail ⋅ reverse

Problem?
n init xs = ⊥ for all partial and infinite lists xs

135Chapter 15: Functional Programming

Init and last

Second attempt (definition):
last (x:xs) = if null xs then x else last xs

init (x:xs) = if null xs then [] else x:init xs

With this definition
n init xs = xs for all partial and infinite lists
xs

136Chapter 15: Functional Programming

Init and last

Third attempt (definition):
n Since [x] is an abbreviation for x:[]
last [x] = x
last (x:xs) = last xs
init [x] = []
init (x:xs) = x:init xs

Problem?
n There is a serious danger of confusion because

the patterns [x] and (x:xs) are not disjoint.
The second includes the first as a special case.

137Chapter 15: Functional Programming

Init and last

n If the order of the equations are reversed:

last’ (x:xs) = last’ xs
last’ [x] = x

n The definition of last’ would simply be
incorrect.

last’ xs = ⊥

n It is not a good practice to write definition that
depend critically on the order of the
equations.

138Chapter 15: Functional Programming

Init and last

Definition
last :: [α] à α
last [] = error “empty list”
last [x] = x
last (x:y:ys) = last(y:ys)

init :: [α] à [α]
init [] = error “empty list”
init [x] = []
init [x:y:xs) = x:init(y:xs)

24

139Chapter 15: Functional Programming

Topics

Lists Operations

Trees

Lazy Evaluation

140Chapter 15: Functional Programming

Concat

The function concat concatenates a list of
lists into one long list.
? concat [[1,2],[3,2,1]]
[1,2,3,2,1]

Definition
concat :: [[α]] → [α]
concat [] = []
concat (xs:xss) = xs ++ concat xss

Basic property:
concat (xss ++ yss) = concat xss ++ concat yss

141Chapter 15: Functional Programming

Take and drop

The function take and drop each take a
nonnegative integer n and a list xs as
arguments.
n The value take n xs consists of the first n

elements of xs
n The value drop n xs is what remains
? take 3 “functional”
“fun”
? drop 3 “functional”
“ctional”

? take 3 [1,2]
[1,2]
? drop 3 [1,2]
[]

142Chapter 15: Functional Programming

Take and drop

Definitions:
take :: Int à [α] à [α]
take 0 xs = []
take n [] = []
take (n+1)(x:xs) = x:take n xs

drop :: Int à [α] à [α]
drop 0 xs = xs
drop n [] = []
drop (n+1)(x:xs) = drop n xs

143Chapter 15: Functional Programming

Take and drop

These definitions use a combination of
pattern matching with natural numbers
and lists.
Patterns are disjoint and cover all
possible cases.
n Every natural number is either zero (first

equation) or
n The successor of a natural number

Distinguish between an empty list (second
equation) and
A nonempty list (third equation).

144Chapter 15: Functional Programming

Take and drop

There are two arguments on which pattern
matching is performed
n Pattern matching is performed on the clauses of a

definition in order from the first to the last.
n Within a clause, pattern matching is performed from

left to right.
? take 0 ⊥
[]
? take ⊥ []
⊥

25

145Chapter 15: Functional Programming

Take and drop

The functions take and drop satisfy a
number of useful laws:

take n xs ++ drop n xs = xs

for all (finite) natural numbers n and all
lists xs.

take ⊥ xs ++ drop ⊥ xs = ⊥ ++ ⊥ = ⊥

not xs.
take m ⋅ take n = take (m min n)
drop m ⋅ drop n = drop (m + n)
take m ⋅ drop n = drop n ⋅ take(m + n)

146Chapter 15: Functional Programming

List index

A list xs can be indexed by a natural
number n to find the element appearing at
position n.
This operation is denoted by xs !! n
? [1,2,3,4]!!2
3
? [1,2,3,4]!!0
1

n Indexing begins at 0.

147Chapter 15: Functional Programming

List index

Definition
(!!) :: [α] à Int à α
(x:xs)!!0 = x
(x:xs)!!(n+1) = xs!!n

Indexing is an expensive operation since
xs!!n takes a number of reduction steps
proportional to n.

148Chapter 15: Functional Programming

Map

The function map applies a function to each
element of a list.
? map square [9,3]
[81,9]

? map (<3) [1,2,3]
[True,True,False]

? map nextLetter “HAL”
“IBM”

149Chapter 15: Functional Programming

Map: definition

The definition is
map :: (α→β)→[α]→[β]
map f [] = []
map f (x:xs) = f x:map f xs

The use of map is illustrated by the
following example:
n “the sum of the squares of the integers from 1 up to

100”

n The function sum and upto can be defined by

150Chapter 15: Functional Programming

Map: example

sum :: (Num α)⇒[α]→α
sum [] = 0
sum (x:xs) = x + sum xs
upto :: (Integral α)⇒α→α→[α]
upto m n = if m > n then []

else m:upto(m+1)n

? sum(map square(upto 1 100))
338700

[m..n] = upto m n
[m..] = from m

26

151Chapter 15: Functional Programming

Map: laws

map id = id
n Applying the identity function to every element of a

list leaves the list unchanged.
The two occurrences of id have different types; on the left
id :: α → α, and on the right id :: [α] → [α]

map (f ⋅ g) = map f ⋅ map g
n Applying g to every element of a list, and the

applying f to each element of the result gives the
same result as applying f ⋅ g to the original list.

152Chapter 15: Functional Programming

Map: laws
f ⋅ head = head ⋅ map f
map f ⋅ tail = tail ⋅ map f
map f ⋅ reverse = reverse ⋅ map f
map f ⋅ concat = concat ⋅ map(map f)
map f (xs ++ ys) = map f xs ++ map f ys

The common theme behind each of these equations
concern the types of the functions involved:

head :: [α] → α
tail :: [α] → [α]
reverse :: [α] → [α]
concat :: [[α]] → [α]

153Chapter 15: Functional Programming

Map: laws

Those functions do not depend in any way on
the nature of the list elements.
n They are simply combinators that shuffle, rearrange,

or extract elements from lists.
n This is why they have polymorphic types.

We can either ‘rename’ the list elements (via
map f) and then do the operation, or do the
operation and then rename the elements.

154Chapter 15: Functional Programming

Filter

The function filter takes a boolean
function p and a list xs and return that
sublist of xs whose elements satisfy p.

? filter even [1,2,4,5,32]
[2,4,32]

? (sum ⋅ map square ⋅ filter even) [1..10]
220
n The sum of the squares of the even integers in the range 1 to 10

155Chapter 15: Functional Programming

Filter: definition

filter :: (α→Bool)→[α]→[α]
filter p [] = []
filter p (x:xs) = if p x then x:filter p xs

else filter p xs

Some laws
filter p ⋅ filter q = filter (p and q)
Filter p ⋅ concat = concat ⋅ map(filter p)

156Chapter 15: Functional Programming

Zip

The function zip takes two lists and
returns a list of pairs of corresponding
elements.

? zip [0..4] “hello”
[(0,’h’),(1,’e’),(2,’l’),(3,’l’),(4,’o’)]

? zip [0,1] “hello”
[(0,’h’),(1,’e’)]

27

157Chapter 15: Functional Programming

Zip: definition

If two lists do not have the same length,
then the length of the zipped list is the
shorter of the lengths of the two
arguments.
zip :: [α]→[β]→[(α,β)]
zip [] ys = []
zip xs [] = []
zip (x:xs) (y:ys) = (x,y):zip xs ys
n What would happen if we just defined zip [] []

instead of the two basic cases.

158Chapter 15: Functional Programming

Unzip

The function unzip takes a list of pairs and
unzips it into two lists.
? unzip [(1,True),(2,True),(3,False)]
([1,2,3],[True,True,False])

Definition
unzip :: [(α,β)]→([α],[β])
unzip = pair(map fst, map snd)

159Chapter 15: Functional Programming

Unzip

Two basic functions on pairs are fst and snd,
defined by:
fst :: (α,β) → α
fst (x,y) = x
snd :: (α,β) → β
snd (x,y) = y

A basic function that takes pairs of functions as
arguments:
pair :: (α→β,α→γ)→α→(β,γ)
pair (f,g) x = (f x, g x)

160Chapter 15: Functional Programming

Insertion Sort

sort [] = []

sort (x : xs) = insert x (sort xs)

161Chapter 15: Functional Programming

Insertion

insert x (y : ys)

| x<=y = x : y : ys

| x>y = y : insert x ys

insert x [] = [x]

y z ...uw

x

162Chapter 15: Functional Programming

Sorting: example

sort [3,1,2]

insert 3 (sort [1,2])

insert 3 (insert 1 (sort [2]))

insert 3 (insert 1 (insert 2 (sort [])))

insert 3 (insert 1 (insert 2 [])))

insert 3 (insert 1 [2])

insert 3 [1, 2]

1 : insert 3 [2]

1 : 2 : insert 3 []

1 : 2 : [3]

[1, 2, 3]

28

163Chapter 15: Functional Programming

What is the type of sort?

Can sort many
different types of

data.
But not all!

Consider a list of functions, for example...

The Type of Sort

sort :: [a] -> [a]

164Chapter 15: Functional Programming

sort :: Ord a => [a] -> [a]

If a has an
ordering...

…then sort has
this type.

Sort has this type because

(<=) :: Ord a => a -> a -> Bool

Overloaded, rather than
polymorphic.

The Correct Type of Sort

165Chapter 15: Functional Programming

Polymorphism vs. Overloading

A polymorphic function works in the same
way for every type
n Example: length, ++

An overloaded function works in different
ways for different types
n Example: ==, <=

166Chapter 15: Functional Programming

A Better Way of Sorting

Divide the list into two roughly equal
halves.

Sort each half.

Merge the sorted halves together.

167Chapter 15: Functional Programming

Merge Sort: definition

mergeSort xs = merge (mergeSort front)

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs

But when are front and back smaller than xs?

168Chapter 15: Functional Programming

MergeSort with Base Cases

mergeSort [] = []

mergeSort [x] = [x]

mergeSort xs | size > 0 =

merge (mergeSort front)

(mergeSort back)

where size = length xs `div` 2

front = take size xs

back = drop size xs

29

169Chapter 15: Functional Programming

Merging: example

x

y

x <= y?

merge [1, 3] [2, 4] 1 : merge [3] [2, 4]

1 : 2 : merge [3] [4]

1 : 2 : 3 : merge [] [4]

1 : 2 : 3 : [4] [1,2,3,4]

170Chapter 15: Functional Programming

Defining Merge

merge :: Ord a => [a] -> [a] -> [a]

merge (x : xs) (y : ys)

| x <= y = x : merge xs (y : ys)

| x > y = y : merge (x : xs) ys

merge [] ys = ys

merge xs [] = xs

One list gets
smaller.

Two possible
base cases.

Requires an
ordering.

171Chapter 15: Functional Programming

Insertion Sort
Sorting n elements

takes n*n/2 comparisons.

Merge Sort
Sorting n elements

takes n*log2 n comparisons.

Num elements Cost by insertion Cost by merging

10 50 40

1000 500000 10000

1000000 500000000000 20000000

The Cost of Sorting

172Chapter 15: Functional Programming

Summary: List Recursion

Recursive case: expresses the results in
terms of the same function on a shorter
list.
n f (x:xs) = … f xs …

Base case(s): handles the shortest
possible list.
n f [] = …

173Chapter 15: Functional Programming

Input

A string representing a text containing many words.
For example

“hello clouds hello sky”

clouds: 1
hello: 2
sky: 1

Example: Counting Words

Output
A string listing the words in order, along with how
many times each word occurred.

“ clouds: 1\nhello: 2\nsky: 1“

174Chapter 15: Functional Programming

Step 1: Breaking Input into
Words

“hello clouds hello sky”

[“hello”, “clouds”, “hello”, “sky”]

words

30

175Chapter 15: Functional Programming

Step 2: Sorting the Words

[“clouds”, “hello”, “hello”, “sky”]

sort

[“hello”, “clouds”, “hello”, “sky”]

176Chapter 15: Functional Programming

The groupBy Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

groupBy p xs -- breaks xs into segments [x1,x2…], such
that p xi is True for each xi in the
segment.

groupBy (<) [3,2,4,1,5] = [[3], [2,4], [1,5]]

groupBy (==) “hello” = [“h”, “e”, “ll”, “o”]

177Chapter 15: Functional Programming

Step 3: Grouping Equal Words

[[“clouds”], [“hello”, “hello”], [“sky”]]

groupBy (==)

[“clouds”, “hello”, “hello”, “sky”]

178Chapter 15: Functional Programming

Step 4: Counting Each Group

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

map (λws -> (head ws, length ws))

[[“clouds”], [“hello”, “hello”], [“sky”]]

179Chapter 15: Functional Programming

Step 5: Formatting Each Group

[“clouds: 1”, “hello: 2”, “sky: 1”]

map (λ(w,n) -> w++show n)

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

180Chapter 15: Functional Programming

Step 6: Combining the Lines

“clouds: 1\nhello: 2\nsky: 1\n”

unlines

[“clouds: 1”, “hello: 2”, “sky: 1”]

clouds: 1
hello: 2
sky: 1

31

181Chapter 15: Functional Programming

The Complete Definition

countWords :: String -> String

countWords s =

unlines .

map (λ(w,n) -> w++show n) .

map (λws -> (head ws, length ws)) .

groupBy (==) .

sort .

words s

182Chapter 15: Functional Programming

Trees

Any recursive data type that exhibits a
nonlinear structure is generically called a
tree.
The syntactic structure of arithmetic or
functional expressions can also be
modeled by a tree.
There are numerous species and
subspecies of tree.

183Chapter 15: Functional Programming

Trees

Trees can be classified according to
n The precise form of the branching structure
n The location of information within the tree

n The relationship between the information
stored in different parts of the tree

184Chapter 15: Functional Programming

Binary Trees

A binary tree is a tree with a simple two-way
branching structure.

data Btree α = Leaf α | Fork(Btree α)(Btree α)
n A value of Btree α is either a leaf node, which contains

a value of type α, or a fork node , which consists of two
further trees, called the left and right subtrees of the
node.

n A leaf is sometimes called an external node, or tip, and a
fork node is sometimes called an internal node.

185Chapter 15: Functional Programming

Binary Trees

Example:
Fork(Leaf 1)(Fork(Leaf 2)(Leaf 3))
n Consists of a node with a left subtree Leaf 1 and a

right subtree which consists of a left subtree Leaf 2
and a right subtree Leaf 3.

Fork(Fork(Leaf 1)(Leaf 2))(Leaf 3)
n Contains the same sequence of numbers in its leaves

but the way the information is organized is different.
n The two expressions denote different values.

186Chapter 15: Functional Programming

Trees: size

The size of a tree is the number of its leaf
nodes.
size :: Btree α → Int
size (Leaf x) = 1
size (Fork xt yt) = size xt + size yt
n The function size plays the same role for trees as
length does for lists.

size = length ⋅ flatten , where
Flatten :: Btree α → [α]
Flatten (Leaf x) = [x]
Flatten (Fork xt yt) = flatten xt ++ flatten yt

32

187Chapter 15: Functional Programming

Trees: height

The height of a tree measures how far away
the furthest leaf is.
height :: Btree α → Int
height (Leaf x) = 0
height (Fork xt yt) = 1 +

(height xt max height yt)

188Chapter 15: Functional Programming

Reductions

Reduction sequence: square (3+4)
Two reduction policies
n Innermost reduction : a reduction that

contains no other reduction.

n Outermost reduction: a reduction that is
contained in no other reduction.

Other example: fst (square 4, square 2)

189Chapter 15: Functional Programming

Outermost Reduction

Sometimes outermost reduction will give
an answer when innermost fails to
terminate.
If both methods terminate, then they give
the same result.
Outermost reduction has the important
property that if an expression has a normal
form then the outermost reduction will
compute it.

190Chapter 15: Functional Programming

Outermost Reduction

Is outermost reduction a better choice than
innermost reduction?
Problem: outermost reduction can
sometimes require most steps than
innermost reductions.
n The problem arises with any function whose

definition contains repeated occurrences of an
argument.

191Chapter 15: Functional Programming

Outermost Reduction

The problem can be solved by representing
expressions as graphs rather than trees.
n Unlike trees, graphs can share subexpressions.

Example: the expression (3+4) * (3+4)

n Each occurrence of 3+4 is represented by an arrow,
called a pointer, to a single instance of (3+4)

(*) (3 + 4)

192Chapter 15: Functional Programming

Outermost Reduction

Using outermost graph reduction has only
three steps.
n The representation of expressions as graphs

means that duplicated subexpressions can be
shared and reduced at most once.

With graph reduction, outermost reduction
never takes more steps than innermost
reduction.

33

193Chapter 15: Functional Programming

Lazy vs. Eager Evaluation

Outermost graph reduction is called lazy
evaluation.
Innermost graph reduction is called
eager evaluation.
Lazy evaluation is adopted by Haskell:

1. It terminates whenever any reduction order
terminates.

2. It requires no more (and possibly fewer)
steps than eager evaluation.

