Chapter 15

Functional Programming

Topics

Chapter 15: Functional Programming

Introduction
Functional programs
Mathematical functions
Functional forms
Lambda calculus
Eager and lazy evaluation
Haskell

Mathematical Functions • The x in f (x), which represents any value from x (domain), is called *independent variable*. • The y from the set Y (range), defined by the equation y = f(x) is called *dependent variable*. • Sometimes f is not defined for all x in X, it is called a partial function. Otherwise it is a total function. •Example: _square(x) = x * x mapping expressions function parameters name Chapter 15: Functional Programming

Mathematical Functions: variables

 In imperative programming languages, variables refer to memory locations as well as values.

x = x + 1

- Means "update the program state by adding 1 to the value stored in the memory cell named x and then storing that sum back into that memory cell"
- The name x is used to denote both a value (as in x+1), often called an *r-value*, and a memory address, called an *l-value*.

Chapter 15: Functional Programming

Mathematical Functions: variables

 In mathematics, variables always stand for actual values, there is no concept of memory location (I-values of variables).

- Eliminates the concept of variable, except as a name for a value.
- Eliminates assignment as an available operation.

Chapter 15: Functional Programming

Mathematical Functions: variables

- Consequences of the lack of variables and assignment
 - 1. No loops.
 - The effect of a loop is modeled via recursion, since there is no way to increment or decrement the value of variables.
 - 2 No notation of the internal state of a function.
 - The value of any function depends only on the values of its parameters, and not on any previous computations, including calls to the function itself.

Chapter 15: Functional Programming

Mathematical Functions: variables

- The value of a function does not depend on the order of evaluation of its parameters.
- The property of a function that its value depend only on the values of its parameters is called *referential transparency*.
- No state.
 - There is no concept of memory locations with changing values.
 - Names are associated to values which once the value is set it never changes.

Chapter 15: Functional Programming

Mathematical Functions

Functional Forms

• Def: A higher-order function, or functional form, is one that either takes functions as parameters or yields a function as its result, or both

- The identifier x is said to be *bound* in the subexpression M.
- Any identifier not bound in M is said to be *free*.
- Free variables are like globals and bound variables are like locals.

• Free variables can be defined as: free(x) = x free(MN) = free(M) \cup free(N) free($\lambda x \cdot M$) = free(M) - {x} Chapter 15: Functional Programming

Lambda Expressions: substitution

- A substitution of an expression N for a variable x in M, written M[N/x], is defined:
 - If the free variable of N have no bound occurrences in M, then the term M[N/x] is formed by replacing all free occurrences of x in M by N.
 - 2. Otherwise, assume that the variable y is free in N and bound in M. Then consistently replace the binding and corresponding bound occurrences of y in M by a new variable, say u. Repeat this renaming of bound variables in M until the condition in Step 1 applies, then proceed as in Step 1.

Chapter 15: Functional Programming

21

Lambda Expressions: substitution

Examples:

$$\begin{split} x[y/x] &= y \\ (xx)[y/x] &= (yy) \\ (zw)[y/x] &= (zw) \\ (zx)[y/x] &= (zy) \\ [\lambda x \cdot (zx))[y/x] &= (\lambda u \cdot (zu))[y/x] &= (\lambda u \cdot (zu)) \end{split}$$

Chapter 15: Functional Programming

22

Lambda Expressions: betareduction

```
• The meaning of a lambda expression is
defined by the beta-reduction rule:
((\lambda x M)N) \Rightarrow M[N/x]
```

•An *evaluation* of a lambda expression is a

 $\textbf{sequence } \mathtt{P} \ \Rightarrow \ \mathtt{Q} \ \Rightarrow \ \mathtt{R} \ \Rightarrow \ ...$

• Each expression in the sequence is obtained by the application of a beta-reduction to the previous expression.

 $(\,(\lambda y \cdot (\,(\lambda x \cdot xyz\,)a\,)\,)b) \ \Rightarrow \ (\,(\lambda y \cdot ayz\,)b\,) \ \Rightarrow \ (\,abz\,)$

Chapter 15: Functional Programming

Functional Programming vs. Lambda Calculus

 A functional programming languages is essentially an applied lambda calculus with constant values and functions build in.

- The pure lambda expression (xx) can be written as (x times x) or (x*x) or (* x x)
- When constants, such as numbers, are added (with their usual interpretation and definitions for functions, such as *), then *applied lambda calculi* is obtained

33

Chapter 15: Functional Programming

Haskell: first things to remember

- Scripts are collections of definitions supplied by the programmer.
- Definitions are expressed as equations between certain kinds of expressions and describe mathematical functions.
 - Definitions are accompanied by type signatures.
- During a session, expressions are submitted for evaluation
 - These expressions can contain references to the functions defined in the script, as well as references to other functions defined in libraries.

Chapter 15: Functional Programming

Haskell: evaluation

- The computer evaluates an expression by reducing it to its simplest equivalent form and displaying the result.
 - This process is called *evaluation*, *simplification*, or *reduction*.
 - Example: square(3+4)
 - An expression is *canonical* or in *normal form* If it cannot be further reduced.

Getting Started with Hugs

% hugs Type : ? for help Prelude> 6*7 42 Prelude> square(smaller(6,9)) ERROR - Undefined variable "smaller" Prelude> sqrt(16) 4.0 Prelude> :load example1.hs Reading file "example1.hs" Main> square(smaller(6,9)) 36 Chapter 15: Functional Programming 38

Values

- An expression is used to describe (or denote) a value.
 - Among the kinds of value are: numbers of various kinds, truth values, characters, tuples, functions, and lists.
 - New kinds of value can be introduced.
- The evaluator prints a value by printing its canonical representation.
 - Some values have no canonical representation (i.e. function values).
 - Other values are not finite (i.e. Π)

```
Chapter 15: Functional Programming
```


■ A special symbol ⊥ (bottom) stands for the undefined value of a particular type

47

Booleans: comparison operators

Booleans can also be compared.

 Comparison operations are also overloaded and make sense with elements from a number of different types.

class (Eq α) \Rightarrow Ord α where (<),(\leq),(\geq),(>) :: $\alpha \rightarrow \alpha \rightarrow$ Bool (x \leq y) = (x < y) \vee (x == y) (x \geq y) = (x > y) \vee (x == y) (x > y) = not(x \leq y)

Chapter 15: Functional Programming

83

Booleans: comparison operators

• Bool could be an instance of Ord:

instance Ord Bool where
False ≤ False = False
False ≤ True = True
True ≤ False = False
True ≤ True = False

Chapter 15: Functional Programming

14

Enumerations: example	
•Day is a member of Enum:	
<pre>instance Enum Day where fromEnum Sun = 0 fromEnum Mon = 1 fromEnum Tue = 2 fromEnum Wed = 3 fromEnum Thu = 4 fromEnum Fri = 5 fromEnum Sat = 6</pre>	
Chapter 15: Functional Programming	9

Enumerations: example workday :: Day → Bool workday d = (Mon ≤ d) ∧ (d ≤ Fri) restday d = (d==Sat) ∨ (d==Sun) dayafter :: Day → Day dayafter d = toEnum((fromEnum d+1) mod 7)

<section-header><section-header><text><code-block><list-item><list-item><list-item><code-block></code></code>

•...

Concatenation
 Two lists, both of the same type, can be concatenated to form one longer list.
 This function is denoted by the binary operator ++.

 [1,2,3] ++ [4,5]
 [1,2] ++ [] ++ [1]
 [1,2,1]

Init and last

The function *last* and *init* select the last element of a nonempty list and what remains after the last element has been removed.

```
? last [1,2,3,4,5]
5
? init [1,2,3,4,5]
[1, 2, 3, 4]
```

Chapter 15: Functional Programming

133

Take and drop			
Definitions:			
take	:: Int \rightarrow $[\alpha] \rightarrow$ $[\alpha]$		
take 0 xs	= []		
take n []	= []		
<pre>take (n+1)(x:xs)</pre>	= x:take n xs		
drop	:: Int \rightarrow $[\alpha] \rightarrow$ $[\alpha]$		
drop 0 xs	= xs		
drop n []	= []		
drop (n+1)(x:xs)	= drop n xs		
Chapter 15: Function	nal Programming 142		

Zip	
The function zip takes two lists and returns a list of pairs of corresponding elements.	
<pre>? zip [04] "hello" [(0,'h'),(1,'e'),(2,'l'),(3,'l'),(4,'o')]</pre>	
? zip [0,1] "hello" [(0,'h'),(1,'e')]	
Chapter 15: Functional Programming 156	

The Complete Definition

```
countWords :: String -> String
countWords s =
    unlines .
    map (λ(w,n) -> w++show n) .
    map (λws -> (head ws, length ws)) .
    groupBy (==) .
    sort .
    words s
    Chapter 15: Functional Programming 181
```


Chapter 15: Functional Programming

