Chapter 15
 Functional Programming

Introduction

eEmerged in the early 1960s for Artificial Intelligence and its subfields:

- Theorem proving
- Symbolic computation
- Rule-based systems

Chapter 15: Functional Programming

- Natural language processing
-The original functional language was Lisp, developed by John McCarthy (1960)

Mathematical Functions

-A function is a rule that associates to each x from some set X of values a unique y from another set Y of values.

- In mathematical terminology, if f is the name of the function

$$
y=f(X) \quad \text { or }
$$

$\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$

- The set X is called the domain of f .
- The set Y is called the range of f .

Mathematical Functions

- The x in $f(x)$, which represents any value from x (domain), is called independent variable.
- The y from the set Y (range), defined by the equation $y=f(x)$ is called dependent variable.
- Sometimes f is not defined for all x in x, it is called a partial function. Otherwise it is a total function.
© Example:

Mathematical Functions

-Everything is represented as a mathematical function:

- Program: x represents the input and y represents the output.
- Procedure or function: x represents the parameters and y represents the returned values.
φ No distinction between a program, a procedure, and a function. However, there is a clear distinction between input an output values.

Chapter 15: Functional Programming

Mathematical Functions:

 variablesoln imperative programming languages, variables refer to memory locations as well as values.

```
x = x + 1
```

- Means "update the program state by adding 1 to the value stored in the memory cell named x and then storing that sum back into that memory cell"
- The name x is used to denote both a value (as in $\mathrm{x}+1$), often called an r-value, and a memory address, called an l-value.

Chapter 15: Functional Programming \qquad

Mathematical Functions: variables

Consequences of the lack of variables and assignment

1. No loops.

- The effect of a loop is modeled via recursion, since there is no way to increment or decrement the value of variables.

2. No notation of the internal state of a function.

- The value of any function depends only on the values of its parameters, and not on any previous computations, including calls to the function itself.

Mathematical Functions: variables

- The value of a function does not depend on the order of evaluation of its parameters.
- The property of a function that its value depend only on the values of its parameters is called referential transparency.

3. No state.

- There is no concept of memory locations with changing values.
- Names are associated to values which once the value is set it never changes.

Mathematical Functions

-Functional Forms

- Def: A higher-order function, or functional form, is one that either takes functions as parameters or yields a function as its result, or both

Functional Forms

1. Function Composition

- A functional form that takes two functions as parameters and yields a function whose value is the first actual parameter function applied to the application of the second
Form: $\mathrm{h} \equiv \mathrm{f} \circ \mathrm{g}$ which means h (x) $\equiv \mathrm{f}(\mathrm{g}(\mathrm{x}))$
For $\mathrm{f}(\mathrm{x}) \equiv \mathrm{x}$ * x * x and
$g(x) \equiv x+3$,
$h \equiv f \circ g$ yields $(x+3)^{*}(x+3)^{*}(x+3)$
Chapter 15: Functional Programming

Functional Forms

2. Construction

- A functional form that takes a list of functions as parameters and yields a list of the results of applying each of its parameter functions to a given parameter
Form: [f, g]
For $f(x) \equiv x * x * x$ and
$g(x) \equiv x+3$,
[f, g] (4) yields (64, 7)

Chapter 15: Functional Programming

Pure Functional Programming

-In pure functional programming there are no variables, only constants, parameters, and values.
©Most functional programming languages retain some notation of variables and assignment, and so are "impure"

- It is still possible to program effectively using the pure approach.

Lambda Calculus

-The foundation of functional programming developed by Church (1941).
-A lambda expression specifies the parameters and definition of a function, but not its name.

- Example: lambda expression that defined the function square:

$$
\left(\lambda x \cdot x^{*} x\right)
$$

- The identifier x is a parameter for the (unnamed) function body $\mathrm{x} * \mathrm{x}$.

Lambda Calculus

Application of a lambda expression to a value: $\left(\left(\lambda x \cdot x^{\star} x\right) 2\right)$ which evaluates to 4

- What is a lambda expression?

1. Any identifier is a lambda expression.
2. If M and N are lambda expressions, then the application of M to N , written (MN) is a lambda expression.
3. An abstraction, written ($\lambda \mathrm{x} \cdot \mathrm{M}$) where x is an identifier and M is a lambda expression, is also a lambda expression.

Lambda Expressions: BNF

\bullet A simple BNF grammar for the syntax of the lambda calculus

LambdaExpression \rightarrow ident $|(\mathrm{M} \mathrm{N})|(\lambda$ ident $\cdot \mathrm{M})$
$\mathrm{M} \rightarrow$ LambdaExpression
$\mathrm{N} \rightarrow$ LambdaExpression

- Examples:
x
($\lambda x \cdot x$)
$((\lambda x \cdot x)(\lambda y \cdot y))$

Lambda Expressions: substitution

- A substitution of an expression N for a variable x in M, written $M[N / x$], is defined:

1. If the free variable of N have no bound occurrences in M, then the term $M[N / x]$ is formed by replacing all free occurrences of x in M by N.
2. Otherwise, assume that the variable y is free in N and bound in M. Then consistently replace the binding and corresponding bound occurrences of y in mby a new variable, say u. Repeat this renaming of bound variables in muntil the condition in Step 1 applies, then proceed as in Step 1.

Lambda Expressions: beta-

 reduction-The meaning of a lambda expression is defined by the beta-reduction rule:

$$
((\lambda x \cdot M) N) \Rightarrow M[N / x]
$$

-An evaluation of a lambda expression is a sequence $P \Rightarrow Q \Rightarrow R \Rightarrow$...

- Each expression in the sequence is obtained by the application of a beta-reduction to the previous expression.
$((\lambda y \cdot((\lambda x \cdot x y z) a)) b) \Rightarrow((\lambda y \cdot a y z) b) \Rightarrow(a b z)$

Lambda Expressions: free and bound variables

oln the lambda expression ($\lambda x \cdot \mathrm{M}$)

- The identifier x is said to be bound in the subexpression m.
- Any identifier not bound in m is said to be free.
- Free variables are like globals and bound variables are like locals.
- Free variables can be defined as:

```
free(x) = x
```

free (MN) = free (M) \cup free (N)
free ($\lambda \mathrm{x} \cdot \mathrm{M}$) $=$ free (M) - $\{\mathrm{x}\}$

Functional Programming vs. Lambda Calculus

-A functional programming languages is essentially an applied lambda calculus with constant values and functions build in.

- The pure lambda expression (xx) can be written as (x times x) or ($\mathrm{x}^{*} \mathrm{x}$) or ($\mathrm{*}_{\mathrm{x}} \mathrm{x}$)
- When constants, such as numbers, are added (with their usual interpretation and definitions for functions, such as *), then applied lambda calculi is obtained

Eager Evaluation

- An important distinction in functional languages is usually made in the way they define function evaluation.
© Eager Evaluation or call by value: In languages such as Scheme, all arguments to a function are normally evaluated at the time of the call.
- Functions such as if and and cannot be defined without potential run-time error

Lazy Evaluation

©An alternative to the eager evaluation strategy is lazy evaluation or call by name, in which an argument to a function is not evaluated (it is deferred) until it is needed.

- It is the default mechanism of Haskell.

Eager vs. Lazy Evaluation

©An advantage of eager evaluation is efficiency in that each argument passed to a function is only evaluated once,

- In lazy evaluation, an argument to a function is reevaluated each time it is used, which can be more than once.
9 An advantage of lazy evaluation is that it permits certain interesting functions to be defined that cannot be implemented as eager languages

Haskell

-The interactive use of a functional language is provided by the HUGS (Haskell Users Gofer System) environment developed by Mark Jones of Nottingham University.

- HUGS is available from
http://www.haskell.org/hugs/
- The Haskell web page is
http://www.haskell.org/

Haskell: sessions

-Expressions can be typed directly into the Hugs/Haskell screen.

- The computer will respond by displaying the result of evaluating the expression, followed by a new prompt on a new line, indicating that the process can begin again with another expression
? 6 * 7
42
φ This sequence of interactions between user and computer is called a session.

Haskell: scripts

9 The purpose of a definition of a function is to introduce a binding associating a given name with a given definition.

- A set of bindings is called an environmentor context.
ϕ Expressions are always evaluated in some context and can contain occurrences of the names found in that context.
The Haskell evaluator uses the definitions associated with those names as rules for simplifying expressions.

Haskell: scripts

-Scripts are collections of definitions supplied by the programmer.

```
square :: Integer }->\mathrm{ Integer
square x = x * x
smaller :: (Integer,Integer) }->\mathrm{ Integer
smaller (x,y)= if x \leq y then x else y
```

9 Given the previous script, the following session is now possible:

```
? square 3768 ? square(smaller (5,3+4))
14197824 25
```

Chapter 15: Functional Programming 32

Haskell: scripts

eSome expressions can be evaluated without having to provide a context.

- Those operations are called primitives (the rules of simplification are build into the evaluator).
-Basic operations of arithmetic.
Other libraries can be loaded.
φ At any point, a script can be modified and resubmitted to the evaluator.

Haskell: first things to remember

Scripts are collections of definitions supplied by the programmer.

- Definitions are expressed as equations between certain kinds of expressions and describe mathematical functions.
- Definitions are accompanied by type signatures.
- During a session, expressions are submitted for evaluation
- These expressions can contain references to the functions defined in the script, as well as references to other functions defined in libraries.

Haskell: evaluation

-A characteristic feature of functional programming is that if two different reduction sequences terminate, they lead to the same result.

- For some expressions some ways of simplification will terminate while other do not.
- Example: three infinity
- Lazy evaluation guarantees termination whenever termination is possible

Getting Started with Hugs

```
% hugs
```

Type : ? for help
Prelude> 6*7
42
Prelude> square (smaller $(6,9)$)
ERROR - Undefined variable "smaller"
Prelude> sqrt(16)
4.0

Prelude> :load example1.hs
Reading file "example1.hs"
Main> square (smaller $(6,9)$)
36
Chapter 15: Functional Programming

Getting Started with Hugs

Typing : ? In Hugs will produce a list of possible commands.
Typing : quit will exit Hugs
Typing : reload will repeat last load command
Typing: load will clear all files

Values

- An expression is used to describe (or denote) a value.
- Among the kinds of value are: numbers of various kinds, truth values, characters, tuples, functions, and lists.
- New kinds of value can be introduced.
© The evaluator prints a value by printing its canonical representation.
- Some values have no canonical representation (i.e. function values).
- Other values are not finite (i.e. П)

Chapter 15: Functional Programming 41

Values

- For some expressions the process of reduction never stops and never produces any result (i.e. the expression infinity).
- Some expressions do not denote well-defined values in the normal mathematical sense (i.e. the expression 1/0).
- Every syntactically well-formed expression denotes a value.
- A special symbol \perp (bottom) stands for the undefined value of a particular type

Values

- The value of infinity is the undefined value \perp or type Integer.
- $1 / 0$ is the undefined value \perp or type Float

01/0 = \perp

- The computer is not able to produce the value \perp. olt generates an error message or it remains perpetually silent.
- \perp is a special value that can be added to the universe of values only if its properties and its relationship with other values are precisely stated.

Functions

ϕ A function f is a rule of correspondence that associates each element of given type a (domain) with a unique element of a second type в (range).

- The result of applying function f to an element x of the domain is written as $f(x)$ or $\mathrm{f} x$ (when the parentheses are not necessary).
©Parentheses are necessary when the argument is not a simple constant or variable.

Extensionality

©Two functions are equal if they give equal results for equal arguments.

- $f=g$ if an only if $f x=g x$ for all x
- This is called the principle of extensionality.
- Example:
double, double' :: Integer \rightarrow Integer
double $x=x+x$
double' $x=2$ * x
- double and double' defines the same functional value, double $=$ double'

Values

- If $f \perp=\perp$, then f is strict; otherwise it is nonstrict.
- square is a strict function because the evaluation of the undefined value goes into an infinite reduction (i.e. ? square infinity)
- three is nonstrict because the evaluation of the undefined value is 3 (i.e. ? three infinity)

Functions

- Examples

4square $(3+4)$ vs. square $3+4$

- square $3+4$ means (square 3) +4

Qsquare(square3) vs. square square 3 - square square 3 means (square square) 3

Currying

- Replacing a structure argument by a sequence of simpler ones is a way to reduce the number of parentheses in an expression.
smaller : : (Integer, Integer) \rightarrow Integer
smaller $(x, y)=$ if $x \leq y$ then x else y
smallerc : : Integer \rightarrow (Integer \rightarrow Integer)
smallerc $x y=$ if $x \leq y$ then x else y

Currying: advantages

1. Currying can help to reduce the number of parentheses that have to be written in expressions.
2. Curried function can be applied to one argument only, giving another function that may be useful in its own right
-There are definitions for different kinds of values:

- Definitions of fixed values.

```
pi :: Float
```

pi $=3.14159$

- Some definitions of functions use conditional expressions

```
smaller :: (Integer, Integer) }->\mathrm{ Integer
```

smaller (}\textrm{x},\textrm{y})=\mathrm{ if }\textrm{x}\leq\textrm{y}\mathrm{ then }\textrm{x}\mathrm{ else }\textrm{y

```
```

```
smaller ( }\textrm{x},\textrm{y})=\mathrm{ if }\textrm{x}\leq\textrm{y}\mathrm{ then }\textrm{x}\mathrm{ else }\textrm{y
```

```
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Topics \\
© Reduction and Currying \\
- Recursive definitions \\
- Local definitions \\
- Type Systems \\
- Strict typing \\
- Polymorphism \\
- Types Classes \\
© Types \\
- Booleans \\
- Characters \\
- Enumerations \\
- Tuples \\
- Strings
\end{tabular}} & \\
\hline & \\
\hline & 52 \\
\hline
\end{tabular}

\section*{Definitions}

\section*{Definitions}
- The same expressions can be defined using guarded equations.
smaller :: (Integer, Integer) \(\rightarrow\) Integer
smaller ( \(\mathrm{x}, \mathrm{y}\) )
\(x \leq y=x\)
| \(\mathrm{X}>\mathrm{y}=\mathrm{y}\)
EEach clause consists of a condition, or guard, and an expression, which is separated from the guard by an = sign.
The main advantage of guarded expressions is when there are three or more clauses in a definition.


\section*{Currying: example}
©The uncurried function times takes two numbers as inputs and return their multiplication.


\section*{Currying: example}
\(\varphi\) The curried function times takes a number \(x\) and return the function (times \(x\) ).
\(\varphi\) (times \(x\) ) takes a number \(y\) and returns the number ( x * y ).


\section*{Reduction Rules}
©There are two kinds of reduction rules:
- Build-in definitions
oFor example the arithmetic operations
- User supplied definitions

\section*{Recursive Definitions}
```

fact :: Integer }->\mathrm{ Integer
fact n
| n 0 = error "negative argument"
| n == 0 = 1
| n > 0 = n * fact (n-1)

```
- The predefined function error takes a string as argument; when evaluated it causes immediate termination of the evaluator and displays the given error message.
? fact (-1)
Program error: negative argument

\section*{Local Definitions}
- In mathematical descriptions there are expressions qualified by a phrase of the form "where \(\qquad\) .".
- \(f(x, y)=(a+1)(a+2)\), where \(a=(x+y) / 2\)
-Example:
```

 f :: (Float,Float) }->\mathrm{ Float
 f(x,y) = (a+1) * (a+2) where a = (x+y)/2
    ```
- The special word where is used to introduce a local definition whose context (or scope) is the expression on the RHS of the definition of \(f\).

\section*{Local Definitions}
- When there are two or more local definitions, there are two styles:
\[
\begin{array}{r}
\mathrm{f}::(\text { Float,Float }) \rightarrow \text { Float } \\
\mathrm{f}(\mathrm{x}, \mathrm{y})=(\mathrm{a}+1) \star(\mathrm{b}+2) \\
\text { where } \mathrm{a}=(\mathrm{x}+\mathrm{y}) / 2 \\
\mathrm{~b}=
\end{array} \quad(\mathrm{x}+\mathrm{y}) / 3 \mathrm{l} .
\]
f : : (Float, Float) \(\rightarrow\) Float
\(\mathrm{f}(\mathrm{x}, \mathrm{y})=(\mathrm{a}+1) \quad\) * \((\mathrm{b}+2)\) where \(a=(x+y) / 2 ; b=(x+y) / 3\)

\section*{Type Systems}
©Programming languages have either:
- No type systems

छLisp, Prolog, Basic, etc
- A strict type system
@Pascal, Modula2
- A polymorphic type systems

कML, Mirada, Haskell, Java, C++

\section*{Strict Typing}
- Every expression has a unique concrete type.
- Although this system is good for trapping errors, it is too restrictive.

\(\oplus\) What type should be given to id?
- Is it Int \(\rightarrow\) Int?, Char \(\rightarrow\) Char?, (Int, Bool) \(\rightarrow\) (Int, Bool)

With strict typing we have to define separate versions of id for each type.

\section*{Local Definitions}
\(\varphi\) A local definition can be used in conjunction with a definition that relies on guarded equations.:
```

f :: Integer }->\mathrm{ Integer }->\mathrm{ Integer
f x y =
x \leq 10=x+a
x > 10 = x-a
where a = square (y+a)

```
- The where clause qualifies both guarded equations.

\section*{Strong Typing Principle}
©Every expression must have a type
- 3 has type Int
- 'A' has type Char
-The type of a compound expression can be deduced from its constituents alone.
- ( \({ }^{\prime} A^{\prime}, 1+2\) ) has type (Char, Int)
©An expression which does not have a sensible type is illegal.
- ' \(A^{\prime}+3\) is illegal

\section*{Polymorphism}
-Polymorphism allows the definition of certain functions to be used with different types.
eWithout polymorphism we would have to write different versions of the function for each possible type (type declaration is different but the body is the same).
-Polymorphism results in simpler, more general, reusable and concise programs.

\section*{Type Classes}
\(\bullet\) A curried multiplication can be used with two different type signatures:
\((x)::\) Integer \(\rightarrow\) Integer \(\rightarrow\) Integer
\((x)\) : : Float \(\rightarrow\) Float \(\rightarrow\) Float
\(\bullet\) So, it can be assigned a polymorphic type:
(x) : : \(\alpha \rightarrow \alpha \rightarrow \alpha\)
- This type is too general (two characters or two booleans should not be multiplied).

\section*{Types}
- In addition to defining functions and constants, functional languages allows to define types to build new and useful types from existing ones.
-The universe of values is divided into organized collections, called types.
- Integer, Float, Double, booleans, characters, lists, trees, etc.
- An infinity variety of other types can be put together: Integer \(\rightarrow\) Float, (Float, Float), etc.

\section*{Type Classes}

Group together kindred types into type classes.
- Integer and Float belong to the same class, the class of numbers.
(x) : : Num \(\alpha \Rightarrow \alpha \rightarrow \alpha \rightarrow \alpha\)
-There are other kindred types apart from numbers.
- The types whose value can be displayed, the types whose value can be compared for equality, the type whose value can be enumerated, etc.


\section*{Type Declaration}
- The type of an expression is declared using the following convention:
expression :: type
- Example: e : : t
¢Reads: "the expression e has the type t"

بpi :: Double
©Square : : Integer \(\rightarrow\) Integer

\section*{Types}
```

quad :: Integer }->\mathrm{ Integer

```
quad \(\mathrm{x}=\) square square x

Advantage of strong typing
- Enables a range of errors to be detected before evaluation.
- There are two stages of analysis when a expression is submitted for evaluation.

\section*{Classification of Types}
-Basic/Simple Types
- Contain primitive values
- User-defined Types
- Contain user-defined values
-Derived Types
- Contain more complex values

\section*{Simple Data Types: booleans}
- Having introduce bool, it is possible to define functions that take boolean arguments by pattern matching.
- Example: the negation function
not : : Bool \(\rightarrow\) Bool
not False \(=\) True
not True = False
- To simplify expressions of the form not \(e\) : first \(e\) is reduced to normal form.
- If e cannot be reduced to normal form then the value of not \(e\) is undefined
- not \(\perp=\perp\) then not is strict.

Chapter 15: Functional Programming 77

\section*{Types}
- The expression is checked to see whether it conforms to the correct syntax laid down for constructing expressions.
- No: the computer signals a syntax error
- Yes: perform the second stage of evaluation
- The expression is analysed to see if it posses a sensible type
- Fails: the computer signals a type error.
- Yes: the expression is evaluated.

\section*{Simple Data Types: booleans}
e Used to define the truth value of a conditional expression.
- There are two truth values, True and False.
- These two values comprise the datatype Bool of boolean values.
- True, False and Bool begin with a capital letter.
- The datatype bool can be introduce with a datatype declaration:
data Bool = False | True

\section*{Simple Data Types: booleans}
- There are not two but thee boolean values: True, False, and \(\perp\).
- Every datatype declaration introduces an extra anonymous value, the undefined value of the datatype.
- More examples: conjunction, disjunction.

\section*{Simple Data Types: booleans}
- This is how pattern matching works:
\(\perp \wedge\) True \(=\perp\)
\(\perp \wedge\) False \(=\perp\)
False \(\wedge \perp=\) False
True \(\wedge \perp=\perp\)
- \(\wedge\) is strict in its LHS, but nonstrict in its RHS argument.

\section*{Booleans: equality operators}
-There are two equality operators = = and \(\neq\)
\((==)\) : Bool \(\rightarrow\) Bool \(\rightarrow\) Bool
\(x==y=(x \wedge y) \vee(\operatorname{not} x \wedge \operatorname{not} y)\)
\((\neq):\) Bool \(\rightarrow\) Bool \(\rightarrow\) Bool
\(\mathrm{x} \neq \mathrm{y}=\operatorname{not}(\mathrm{x}==\mathrm{y})\)
-The symbol \(==\) is used to denote a computable test for equality.
-The symbol = is used both in definitions and its normal mathematical sense.

\section*{Booleans: equality operators}
class Eq \(\alpha\) where
\((=),(\neq):: \alpha \rightarrow \alpha \rightarrow\) Bool
- To declare that a certain type is an instance of the type class Eq, an instance declaration is needed.
instance Eq Bool where
\((x==y)=(x \wedge y) \vee(\) not \(x \wedge\) not \(y)\)
\((x \neq y)=\operatorname{not}(x==y)\)

\section*{Booleans: equality operators}
-The main purpose of introducing an equality test is to be able to use it with a range of different types.
- (==) and ( \(\neq\) ) are overloaded operations.
- The proper way to introduce them is first to declare a type class Eq consisting of all those types for which \((==)\) and \((\neq)\) are to
be defined.

\section*{Booleans: comparison operators}
-Booleans can also be compared.
- Comparison operations are also overloaded and make sense with elements from a number of different types.
class \((E q \alpha) \Rightarrow\) Ord \(\alpha\) where
\((<),(\leq),(\geq),(>):: \alpha \rightarrow \alpha \rightarrow\) Bool
\((x \leq y)=(x<y) \vee(x==y)\)
\((x \geq y)=(x>y) \vee(x==y)\)
\((x>y)=\operatorname{not}(x \leq y)\)

\section*{Booleans: comparison} operators
- Bool could be an instance of ord:
instance Ord Bool where
```

False \leq False = False

```
False \leq False = False
False \leq True = True
False \leq True = True
True \leq False = False
True \leq False = False
True \leq True = False
```

True \leq True = False

```

\section*{Example: leap years}
-Define a function to determine whether a year is a leap year or not.
- A leap year is divisible by 4 , except that if it is divisible by 100, then it must also be divisible by 400.
leapyear :: Int \(\rightarrow\) Bool
leapyear \(y=(y\) mode \(4==0) \wedge\)
( \(y\) mode \(100 \neq 0 \vee(y\) mode \(400==0)\)
- Using conditional expressions:
leapyear \(y=i f(y\) mode \(100==0\) )
then ( \(y\) mode \(400==0\) )
else ( \(y\) mode \(4==0\) )
Chapter 15: Functional Programming 85

\section*{Characters}
-Characters are denoted by enclosing them in single quotation marks.
- Remember: the character \({ }^{\prime}{ }^{7}\) ' is different from the decimal number 7 .
¢Two primitive functions are provided for processing characters, ord and chr.
- Their types are:
\[
\begin{aligned}
& \text { ord }:: \text { Char } \rightarrow \text { Int } \\
& \text { chr }:: \text { Int } \rightarrow \text { Char }
\end{aligned}
\]

\section*{Characters}
- The function ord converts a character c to an integer ord \(c\) in the range \(0 \leq\) ord \(c \leq 256\)
- The function chr does the reverse, converting an integer back into the character it represents.
- Thus chr (ord c) \(=c\) for all characters \(c\).
\begin{tabular}{ll}
\(? ~ o r d ' b '\) & \(? \operatorname{chr} 98\) \\
98 & ' \(b^{\prime}\)
\end{tabular}
? chr (ord'b' \({ }^{\prime} 1\) )
'C'

\section*{Characters: simple functions}
- Three functions for determining whether a character is a digit, lower-case letter, or upper-case letter:
isDigit,isLower,isUpper :: Char \(\rightarrow\) Bool
isDigit \(c=\left(` O^{\prime} \leq c\right) \wedge\left(c \leq ' g^{\prime}\right)\)
isLower \(c=(` a \prime \leq c) \wedge\left(c \leq ' z^{\prime}\right)\)
isupper \(c=\left('^{\prime} \leq c\right) \wedge\left(c \leq Z^{\prime}\right)\)
e A function for converting lower-case letter to uppercase:
capitalise :: Char \(\rightarrow\) Char
capitalise \(c=i f\) isLower \(c\) then
chr (offset+ord c) else c
where offset \(=\) ord ' \(A\) ' - ord ' \(a\) '

Chapter 15: Functional Programming

\section*{Enumerations}

They are user-defined types.
© Example:
data Day \(=\) Sun \(\mid\) Mon \(\mid\) Tue \(\mid\) Wed \(\mid\) Thu | Fri \(\mid\) Sat
- This definition binds the name Day to a new type that consists of eight distinct values, seven of which are represented by the given constants and the eight by the undefined value \(\perp\)
The seven new constants are called the constructors of the datatype Day.
*By convention, constructor names and the new name begin with an upper-case letter.

\section*{Enumerations}
-It is possible to compare elements of type Day, so Day can be declared as an instance of the type classes Eq and Ord.
- A definition of (==) and ( \(<\) ) based on pattern matching would involve a large number of equations.
-Better idea. Code elements of Day as integers, and use integer comparison instead.

\section*{Enumerations: example}
-Given fromEnum on Day:
```

instance Eq Day where
(x == y) = (fromEnum x == fromEnum y)
instance Ord Day where
(x<y) = (fromEnum x < fromEnum y)

```

\section*{Enumerations: example}
```

workday :: Day }->\mathrm{ Bool
workday d = (Mon \leq d) ^ (d \leq Fri)
restday :: Day }->\mathrm{ Bool
restday }d=(d==\mathrm{ Sat) }\vee (d==\mathrm{ Sun)
dayafter :: Day }->\mathrm{ Day
dayafter d = toEnum((fromEnum d+1) mod 7)

```

\section*{Automatic instance declarations}
- Haskell provides a mechanism for declaring a type as an instance of Eq, Ord, and Enum in one declaration.
- The deriving clause causes the evaluator to generate instance declarations of the named type classes automatically.
```

data Day = Sun | Mon | Tue | Wed |

```
data Day = Sun | Mon | Tue | Wed |
Thu | Fri | Sat
Thu | Fri | Sat
deriving (Eq,Ord,Enum)
```

deriving (Eq,Ord,Enum)

```

\section*{Tuples}
-One way of combining types to form new ones is by pairing them.
- Example: (Integer, Char) consists of all pairs of values \((x, c)\) for which \(x\) is an arbitrary-precision integer, and \(c\) is a character.
\(\rho\) Like other types, the type \((\alpha, \beta)\) contains an additional value \(\perp\)

\section*{Tuples: practical example}
-A function returns a pair of numbers, the two real roots of a quadratic equation with coefficients ( \(a, b, c\) ):
```

roots :: (Float, Float, Float) }->\mathrm{ (Float,Float)
roots (a,b,c)
| a == 0 = error "not quadratic"
| e < = error "complex roots"
| otherwise = ((-b-r)/d,(-b+r)/d)
where r = sqrt e
d = 2*a
e = b*b-4*a*c
Chapter 15: Functional Programming

Other Types

eln general:
data Either $\alpha \beta=$ Left $\alpha \mid$ Right β
©The names Left and Right introduces two constructors for building values of type Either, these constructors are nonstrict functions with types:

Left $:=\alpha \rightarrow$ Either $\alpha \beta$
Right : : $\beta \rightarrow$ Either $\alpha \beta$

Other Types

- Assuming that values of types α and β can be compared, comparison on that type Either $\alpha \beta$ can be added as an instance declaration:
instance (Eq $\alpha, E q \beta) \Rightarrow E q(E i t h e r \alpha \beta)$ where

$$
\begin{aligned}
\text { Left } x==\text { Left } y & =(x==y) \\
\text { Left } x==\text { Right } y & =\text { False } \\
\text { Right } x==\text { Left } y & =\text { False }
\end{aligned}
$$

Right $\mathrm{x}==$ Right $\mathrm{y}=(\mathrm{x}==\mathrm{y})$
instance (Ord α,Ord β) $\Rightarrow \operatorname{Ord}(E i t h e r ~ \alpha \beta$) where
Left $x<$ Left $y=(x<y)$
Left $\mathrm{x}<$ Right $\mathrm{y}=$ True
Right $\mathrm{x}<\operatorname{Left} \mathrm{y} \quad=$ False
Right $\mathrm{x}<$ Right $\mathrm{y}=(\mathrm{x}<\mathrm{y})$
Chapter 15: Functional Programming

Type Synonyms

-Type synonym declaration: a simple notation for giving alternative names to types.
-Example:
roots :: (Float, Float, Float) \rightarrow (Float, Float)

- As an alternative, two type synonyms could be used

```
type Coeffs = (Float, Float, Float)
```

type Roots $=$ (Float,Float)

Type Synonyms

- This declarations do not introduce new types but merely alternative names for existing types.

```
roots :: Coeffs }->\mathrm{ Roots
```

- This new description is shorter and more informative.
-Type synonyms can be general.
type Pairs $\alpha=(\alpha, \alpha)$
type Automorph $\alpha=\alpha \rightarrow \alpha$
type Flag $\alpha=(\alpha$, Bool $)$

Chapter 15: Functional Programming
103

Type Synonyms

-Type synonyms cannot be declared in terms of each other since every synonym must be expressible in terms of existing types.
©Synonyms can be declared in terms of another synonym.
type Bools = PairBool
\oplus Synonyms and declarations can be mixed data OneTwo $\alpha=$ One $\alpha \mid$ Two (Pairs α)

Strings

©A list of characters is called a string.
φ The type String is a synonym type:
type String = [Char]
©Syntax: the characters of a string are enclosed in double quotation marks.

- 'a' vs. "a"
- the former is a character
- the latter is a list of characters that happens to contain only one element.

Strings

- Haskell provides a primitive command for printing strings.
putStr :: String \rightarrow IO()
- Evaluating the command putStr causes the string to be printed literally.
? putStr "Hello World"
Hello World
? putStr "This sentence contains \n a newline"
This sentence contains
a newline

The type class Show

eHaskell provides a special type class Show to display information of different kinds and formats.

```
            class Show \alpha where
```

 showsPrec : : Int \(\rightarrow \alpha \rightarrow\) String \(\rightarrow\) String
 - The function showsPrec is provided for displaying values of type α
- Using showsPrec it is possible to define a simpler function that takes a value and converts it to a string.
show : : Show $\alpha \Rightarrow \alpha \rightarrow$ String

The type class Show

Example: if Bool is declares to be a member of Show and show is defined for booleans as
show False $=$ "False"
show True = "True"
? putStr(show True)
True

- Some instances of Show are provided as primitive.
? putStr("The year is "++ show(3*667))
The year is 2001

Numbers

φ Haskell provides a sophisticated hierarchy of type classes for describing various kinds of numbers.
-Although (some) numbers are provided as primitives data types, it is theoretically possible to introduce them through suitable data type declarations.

Natural Numbers

© Every natural number is represented by a unique value of Nat.
-On the other hand, not every value of Nat represents a well-defined natural number.

- Example: \perp, Succ \perp, Succ (Succ \perp)
φ Addition ca be defined by

$$
\begin{array}{ll}
(+) & :: \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
m+\text { Zero } & =m \\
m+\operatorname{Succ} n & =\operatorname{Succ}(m+n)
\end{array}
$$

$$
\text { Zero }==\text { Succ } n \quad=\text { False }
$$

$$
\text { Succ } m==\text { Zero } \quad=\text { False }
$$

Natural Numbers

\oplus Multiplication ca be defined by

| (x) | $::$ Nat \rightarrow Nat \rightarrow Nat |
| ---: | :--- |
| $m \times$ Zero | $=$ Zero |
| $m \times$ Succ n | $=(m x n)+m$ |

\$ Nat can be a member of the type class Eq
instance Eq Nat where

$$
\text { Zero == Zero } \quad=\text { True }
$$

$$
\text { Succ } m==\text { Succ } n=(m==n)
$$

Natural Numbers

9 Nat can be a member of the type class ord

eElements of Nat can be printed by

| showNat | $::$ Nat \rightarrow String |
| ---: | :--- |
| showNatZero | $=$ "Zero" |
| showNat (Succ Zero) | $=$ "Succ Zero" |
| showNat (Succ (Succ n)) | $=$ "Succ (" ++ |
| showNat | $($ Succ $n)++\quad$ mp" |

The Numeric Type Classes

©The same symbols, +, x, and so on, are used for arithmetic on each numeric type.

- Overloaded functions.
©All Haskell number types are instances of the type class num defined by
class (Eq α, Show α) \Rightarrow Num α where
$(+),(-),(x) \quad:: \alpha \rightarrow \alpha \rightarrow \alpha$
negate $:: \alpha \rightarrow \alpha$
fromInteger $::$ Integer $\rightarrow \alpha$
$x-y$
$=x+$ negate y
Chapter 15: Functional Programming
The members of the Integral type are two primitive types Int and Integer.
9 The operators div and mod are provided as primitive.
- If x and y are integers, and y is not zero, then $\mathrm{x} \operatorname{div} \mathrm{y}=\lfloor\mathrm{x} / \mathrm{y}\rfloor$.

$$
\lfloor 13.8\rfloor=13,\lfloor-13.8\rfloor=-14
$$

- The value $\mathrm{x} \bmod \mathrm{y}$ is defined by the equation $\mathrm{x}=(\mathrm{x} \operatorname{div} \mathrm{y})$ * $\mathrm{y}+(\mathrm{x} \bmod \mathrm{y})$

Lists

-Lists can be used to fetch and carry data from one function to another.
-Lists can be taken apart, rearranged, and combined with other lists.
φ Lists can be summed and multiplied.
ρ Lists of characters can be read and printed.

9...

List Notation

- A finite list is denoted using square brackets and commas.
- [1,2,3]
- ["hello","goodbye"]
- All the elements of a list must have the same type.
- The empty list is written as [].

A singleton list contains only one element

- [x]
- [[]] the empty list is its only member

List Notation

elf the elements of a list all have type α, then the list itself will be assigned the type [α].
: $[1,2,3] \quad::$ [Int]

- [[1,2],[3]] :: [[Int]]
- [(+),(x)] :: [Int \rightarrow Int \rightarrow Int]
© A list may contain the same value more than once.
©Two lists are equal if and only if they contain the same value in the same order.

Lists as a data type

-A list can be constructed fro scratch by starting with an empty list and successively adding elements one by one.

- Elements can be added to the front of the list, or the rear, or to somewhere in the middle.
-Data type declaration (list):
data List $\alpha=$ Nil \mid Cons α (List α)
- The constructor Cons (short for 'construct') add an element to the front of the list.

Lists as a data type

© In functional programming, lists are defined as elements of List α.

- The syntax $[\alpha]$ is used instead of List α.
- The constructor Nil is written as []
- The constructor Cons is written as an infix operator (:)
(:) associates to the right
- [1,2,3] = 1:(2:(3:[])) = 1:2:3:[]

List Operations

- Some of the most commonly used functions and operations on lists.
- For each function: give the definition, illustrate its use, and state some of its properties.

Concatenation

- The formal definition of ++ is

| $(++)$ | $::[\alpha] \rightarrow[\alpha] \rightarrow[\alpha]$ |
| :--- | :--- |
| []$++y s$ | $=y s$ |
| $(x: x s)++$ ys | $=x:(x s++y s)$ |

(x:xs) ++ ys = x:(xs++ys)

- The definition of ++ is by pattern matching on the left-hand argument.
- The two patterns are disjoint and cover all cases, apart from the undefined list \perp.
- It follows by case exhaustion that

$$
\perp++y s=\perp
$$

Concatenation

- It is not the case that xs $++\perp=\perp$
? $[1,2,3]++$ undefined
[1,2,3\{Interrupted!\}
- The list $[1,2,3]++\perp$ is a partial list, in full form it is the list $1: 2: 3: \perp$.
© The evaluator can compute the first three elements, but thereafter it goes into a nonterminating computation, so we interrupt it.
- Some properties:
$(\mathrm{xs}++\mathrm{ys})++\mathrm{zs}=\mathrm{xs}++(\mathrm{ys}++\mathrm{zs})$
$\mathrm{xs}++[]=[]++\mathrm{xs}=\mathrm{xs}$
$\mathrm{XS}++[]=\underset{\text { Chapter 15: Functional Programming }}{[]}$

Reverse

φ This function reverses the order of elements in a finite list.
? reverse [1, 2, 3, 4, 5]
[5,4,3,2,1]
φ The definition is

| reverse | $::[\alpha] \rightarrow[\alpha]$ |
| :--- | :--- |
| reverse [] | $=[]$ |
| reverse (x:xs) | $=$ reverse xs ++ [x] |

- In words, to reverse a list (x:xs) one reverses xs and then adds x to the end.

Length

- The length of a list is the number of elements it contains.
- The definition is

| length | $::[\alpha] \rightarrow$ Int |
| :--- | :--- |
| length [] | $=0$ |
| length (x:xs) | $=1+$ length(xs) |

- The nature of the list elements is irrelevant when computing the length:
? length [undefined, undefined] 2

Length

Not every list has a well-defined length.

- The partial lists have an undefined length
- $\perp, x: \perp, x: y: \perp$
- Only finite lists have well-defined lengths.
- The list $[\perp, \perp]$ is a finite list, not a partial list because it is the list $\perp: \perp:[]$, which ends in [] not \perp. The computer cannot produce the elements, but it can produce the length of the list.
- The function length satisfies a distribution property:
length(xs $++y s)=$ length $x s+$ length ys

Head and Tail

- The function head selects the first element of a nonempty list, and tail selects the rest:

| head | $::[\alpha] \rightarrow \alpha$ |
| ---: | :--- |
| head [] | $=$ error "empty list" |
| head (x:xs) | $=x$ |
| tail | $::[\alpha] \rightarrow[\alpha]$ |
| tail [] | $=$ error "empty list" |
| tail (x:xs) | $=x s$ |

- These are constant-time operations, since they deliver their result in one reduction step.

Init and last

9 The function last and init select the last element of a nonempty list and what remains after the last element has been removed.

```
? last [1,2,3,4,5]
5
? init [1,2,3,4,5]
[1,2,3,4]
```


Init and last

-Second attempt (definition):

last (x:xs) $=$ if null $x s$ then x else last $x s$
init (x:xs) $=$ if null $x s$ then [] else $x: i n i t ~ x s$
-With this definition

- init $\mathrm{xs}=\mathrm{xs}$ for all partial and infinite lists xs

Init and last

- If the order of the equations are reversed:

| last' (x:xs) | $=$ last' $x s$ |
| :--- | :--- |
| last' $[\mathrm{x}]$ | $=\mathrm{x}$ |

- The definition of last' would simply be incorrect.
elast' xs = \perp
- It is not a good practice to write definition that depend critically on the order of the equations.

Init and last

©First attempt (definition):

| last | $::[\alpha] \rightarrow \alpha$ |
| :--- | :--- |
| last | $=$ head \cdot reverse |
| init | $::[\alpha] \rightarrow \alpha$ |
| init | $=$ reverse tail reverse |

\oplus Problem?

- init $\mathrm{xs}=\perp$ for all partial and infinite lists xs

Init and last

φ Third attempt (definition):

- Since [x] is an abbreviation for x : []
last [x$]=\mathrm{x}$
last (x:xs) $=$ last $x s$ init [x] $=$ []
init (x:xs) $=x: i n i t ~ x s$
φ Problem?
- There is a serious danger of confusion because the patterns [x] and (x:xs) are not disjoint. The second includes the first as a special case.

Init and last

-Definition

| last | $::[\alpha] \rightarrow \alpha$ |
| :--- | :--- |
| last [] | $=$ error "empty list" |
| last $[x]$ | $=x$ |
| last $(x: y: y s)$ | $=$ last (y:ys) |
| init | $::[\alpha] \rightarrow[\alpha]$ |
| init [] | $=$ error "empty list" |
| init $[x]$ | $=[]$ |
| init $[x: y: x s)$ | $=x: i n i t(y: x s)$ |

last $::[\alpha] \rightarrow \alpha$
last [] = error "empty list"
last [x] = x
last (x:y:ys) = last(y:ys)
init $::[\alpha] \rightarrow[\alpha]$
init [] = error "empty list"
init $[x: y: x s)=x: i n i t(y: x s)$
Chapter 15: Functional Programming
138

| Topics | |
| :---: | :---: |
| -Lists Operations | |
| ¢Trees | |
| -Lazy Evaluation | |
| Chaperes. FFinuecomatiogamme | ${ }^{139}$ |

Concat

-The function concat concatenates a list of lists into one long list.
? concat [[1,2],[3,2,1]]
$[1,2,3,2,1]$
\bullet Definition
concat $::[[\alpha]] \rightarrow[\alpha]$
concat [] = []
concat (xs:xss) = xs ++ concat xss
-Basic property:
concat (xss ++ yss) = concat xss ++ concat yss

Take and drop

The function take and drop each take a nonnegative integer n and a list xs as arguments.

- The value take n xs consists of the first n elements of xs
- The value drop n xs is what remains
? take 3 "functional" ? take 3 [1,2]
"fun" [1,2]
? drop 3 "functional" ? drop 3 [1,2]
"ctional" []

Take and drop

©Definitions:

```
take :: Int }->\mathrm{ [ 人] }->\mathrm{ [ 人]
take 0 xs = []
take n [] = []
take (n+1)(x:xs) = x:take n xs
drop :: Int }->[\alpha]->[\alpha
drop 0 xs = xs
drop n [] = []
drop (n+1) (x:xs) = drop n xs
```


Take and drop

φ These definitions use a combination of pattern matching with natural numbers and lists.
φ Patterns are disjoint and cover all possible cases.

- Every natural number is either zero (first equation) or
- The successor of a natural number
©Distinguish between an empty list (second equation) and
*A nonempty list (third equation).
Chapter 15: Functional Programming
ning

Take and drop

- There are two arguments on which pattern matching is performed
- Pattern matching is performed on the clauses of a definition in order from the first to the last.
- Within a clause, pattern matching is performed from left to right.
? take $0 \perp$
[]
? take \perp []
\perp
(10
.

Take and drop

- The functions take and drop satisfy a number of useful laws:
take n xs ++ drop n xs = xs
for all (finite) natural numbers n and all lists xs.

```
take \perp xs ++ drop \perp xs = \perp ++ \perp = \perp
```

 not xs.
    ```
take m . take n = take (m min n)
drop m . drop n = drop (m + n)
take m . drop n = drop n . take (m + n)
    Chapter 15: Functional Programming
```


List index

©A list xs can be indexed by a natural number n to find the element appearing at position n.
©This operation is denoted by xs !! n

$$
?[1,2,3,4]!!2
$$

3
? $[1,2,3,4]!!0$
1

- Indexing begins at 0 .

List index

©Definition

$$
\begin{array}{ll}
(!!) & ::[\alpha] \rightarrow \text { Int } \rightarrow \alpha \\
(x: x s)!!0 & =x \\
(x: x s)!!(n+1) & =x s!!n
\end{array}
$$

elndexing is an expensive operation since xs!!n takes a number of reduction steps proportional to n.
φ The function map applies a function to each element of a list.
? map square $[9,3]$
$[81,9]$
$? \operatorname{map}(<3) \quad[1,2,3]$
[True, True,False]
? map nextLetter "HAL"
"IBM"

Map: definition

φ The definition is

$$
\begin{array}{ll}
\operatorname{map} & ::(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta] \\
\operatorname{map} f[] & =[] \\
\operatorname{map} f(x: x s) & =f x: \operatorname{map} f x s
\end{array}
$$

©The use of map is illustrated by the following example:

- "the sum of the squares of the integers from 1 up to 100"
- The function sum and upto can be defined by

Map: example

$$
\begin{aligned}
& \text { sum } \quad::(\text { Num } \alpha) \Rightarrow[\alpha] \rightarrow \alpha \\
& \text { sum [] }=0 \\
& \operatorname{sum}(x: x s)=x+\operatorname{sum} x s \\
& \text { upto } \quad: \text { (Integral } \alpha \text {) } \Rightarrow \alpha \rightarrow \alpha \rightarrow[\alpha] \\
& \text { upto } m \mathrm{n} \quad=\text { if } \mathrm{m}>\mathrm{n} \text { then [] } \\
& \text { else m:upto }(m+1) n \\
& \text { ? sum(map square(upto } 1 \text { 100)) } \\
& 338700 \\
& \text { [m..n] }=\text { upto } \mathrm{m} \mathrm{n} \\
& \text { [m..] = from } \mathrm{m} \\
& \text { Chapter 15: Functional Programming }
\end{aligned}
$$

Map: laws

map id = id

- Applying the identity function to every element of a list leaves the list unchanged.
The two occurrences of id have different types; on the left id :: $\alpha \rightarrow \alpha$, and on the right id $::[\alpha] \rightarrow[\alpha]$
map (f $\cdot \mathrm{g}$) $=\operatorname{map} \mathrm{f} \cdot \operatorname{map} \mathrm{g}$
- Applying g to every element of a list, and the applying f to each element of the result gives the same result as applying $f \cdot g$ to the original list.

Map: laws

```
f \cdot head = head . map f
map f \cdot tail = tail . map f
map f . reverse = reverse . map f
map f . concat = concat \cdot map(map f)
map f (xs ++ ys) = map f xs ++ map f ys
```

- The common theme behind each of these equations
concern the types of the functions involved:
head $\quad::[\alpha] \rightarrow \alpha$
tail $::[\alpha] \rightarrow[\alpha]$
reverse $::[\alpha] \rightarrow[\alpha]$
concat $::[[\alpha]] \rightarrow[\alpha]$

Map: laws

- Those functions do not depend in any way on the nature of the list elements.
- They are simply combinators that shuffle, rearrange, or extract elements from lists.
- This is why they have polymorphic types.
-We can either 'rename' the list elements (via map f) and then do the operation, or do the operation and then rename the elements.

Filter

oThe function filter takes a boolean function p and a list x s and return that sublist of $x s$ whose elements satisfy p.

```
? filter even [1,2,4,5,32]
[2,4,32]
? (sum · map square · filter even) [1..10]
220
```

- The sum of the squares of the even integers in the range 1 to 10

Filter: definition

$$
\begin{array}{ll}
\text { filter } & ::(\alpha \rightarrow \text { Bool }) \rightarrow[\alpha] \rightarrow[\alpha] \\
\text { filter } p[] & =[] \\
\text { filter } p(x: x s)= & \text { if } p x \text { then } x: \text { filter } p \text { xs } \\
& \text { else filter } p x s
\end{array}
$$

- Some laws
filter p. filter q = filter (p and q)
Filter $p \cdot$ concat $=$ concat $\cdot \operatorname{map}(f i l t e r p)$

Zip: definition

olf two lists do not have the same length, then the length of the zipped list is the shorter of the lengths of the two arguments.

zip	$::[\alpha] \rightarrow[\beta] \rightarrow[(\alpha, \beta)]$
zip [] ys	$=[]$
zip xs []	$=[]$
zip (x:xs) (y:ys)	$=(x, y):$ zip xs ys
- What would happen if we just defined zip [] []	

- What would happen if we just defined zip [] [] instead of the two basic cases.

9 The function unzip takes a list of pairs and unzips it into two lists.

```
? unzip [(1,True),(2,True),(3,False)]
([1,2,3],[True,True,False])
```

©Definition

```
unzip :: [(\alpha,\beta)]->([\alpha],[\beta])
unzip = pair(map fst, map snd)
```


Unzip

Sorting: example

sort [3,1,2]
'ihsert 3 (sort [1,2])
rihsert 3 (insert 1 (sort [2]))
vihsert 3 (insert 1 (insert 2 (sort [])))
ripsert 3 (insert 1 (insert 2 [])))
"insert 3 (insert 1 [2])

insert $\mathrm{x}[\mathrm{l}=[\mathrm{x}]$

The Type of Sort

What is the type of sort?

Consider a list of functions, for example...

The Correct Type of Sort

Sort has this type because

Polymorphism vs. Overloading

φ A polymorphic function works in the same way for every type

- Example: length, ++
-An overloaded function works in different ways for different types
- Example: ==, <=

A Better Way of Sorting

- Divide the list into two roughly equal halves.
-Sort each half.
- Merge the sorted halves together.

MergeSort with Base Cases

```
mergeSort [] = [ ]
mergeSort [x] = [x]
mergeSort xs | size > 0 =
```

 merge (mergeSort front)
 (mergeSort back)
 where size \(=\) length xs ‘div` 2
 front \(=\) take size xs
 back = drop size xs

Requires an
orderin
merge :: Ord a => [a] -> [a] -> [a]
merge (x:xs) (y : ys)
$\mid \mathrm{x}<=\mathrm{y} \quad=\mathrm{x}: \operatorname{merge} \mathrm{xs}(\mathrm{y}: \mathrm{ys})$

$\mid x>y \quad=y: \operatorname{merge}(x: x s) y s$
merge [] ys
merge xs []
$=\mathrm{ys}$

The Cost of Sorting		
Insertion Sort Sorting n elements takes $\mathrm{n} * \mathrm{n} / 2$ comparisons.		
Num elements	Cost by insertion	Cost by merging
10	50	40
1000	500000	10000
1000000	500000000000	20000000
		17

Summary: List Recursion

©Recursive case: expresses the results in terms of the same function on a shorter list.

- $\mathrm{f}(\mathrm{x}: \mathrm{XS})=\ldots \mathrm{f}$ XS ...
- Base case(s): handles the shortest possible list.
- f [] = ...

Example: Counting Words

Input

A string representing a text containing many words.
For example

```
                                    "hello clouds hello sky"
```

Output
A string listing the words in order, along with how many times each word occurred.
"clouds: 1 \nhello: $2 \backslash$ nsky: 1 "

Step 1: Breaking Input into Words

["hello", "clouds", "hello", "sky"]

The groupBy Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
groupBy p xs -- breaks xs into segments [$\mathrm{x} 1, \mathrm{x} 2 \ldots$], such that p xi is True for each $x i$ in the segment.
groupBy (<) $[3,2,4,1,5]=[[3],[2,4],[1,5]]$ groupBy (==) "hello" = ["h", "e", "ll", "o"]

Step 3: Grouping Equal Words
["clouds", "hello", "hello", "sky"] |

[["clouds"], ["hello", "hello"], ["sky"]]

Step 5: Formatting Each Group

["clouds: 1", "hello: 2", "sky: 1"]

Step 6: Combining the Lines

"clouds: 1 \nhello: $2 \backslash$ nsky: $1 \backslash n "$

The Complete Definition

countWords : : String -> String
countWords $s=$
unlines.
map ($\lambda(\mathrm{w}, \mathrm{n})$-> w++show n$)$.
map ($\lambda w s ~->~(h e a d ~ w s, ~ l e n g t h ~ w s)) ~ . ~$
groupBy (==) .
sort
words s
©Any recursive data type that exhibits a nonlinear structure is generically called a tree.

The syntactic structure of arithmetic or functional expressions can also be modeled by a tree.
-There are numerous species and subspecies of tree.

Trees

Trees

eTrees can be classified according to

- The precise form of the branching structure
- The location of information within the tree
- The relationship between the information stored in different parts of the tree

Binary Trees

©A binary tree is a tree with a simple two-way branching structure.
data Btree $\alpha=$ Leaf $\alpha \mid$ Fork (Btree α)(Btree α)

- A value of Btree α is either a leaf node, which contains a value of type α, or a fork node, which consists of two further trees, called the left and right subtrees of the node.
- A leaf is sometimes called an external node, or tip, and a fork node is sometimes called an internal node.

Binary Trees

-Example:

Fork (Leaf 1) (Fork (Leaf 2) (Leaf 3))

- Consists of a node with a left subtree Leaf 1 and a right subtree which consists of a left subtree Leaf 2 and a right subtree Leaf 3 .

Fork (Fork (Leaf 1) (Leaf 2)) (Leaf 3)

- Contains the same sequence of numbers in its leaves but the way the information is organized is different.
- The two expressions denote different values.

Trees: size

-The size of a tree is the number of its leaf nodes.

$$
\begin{aligned}
& \text { size } \quad: \quad \text { Btree } \alpha \rightarrow \text { Int } \\
& \text { size (Leaf } x) \quad=1 \\
& \text { size (Fork xt yt) }
\end{aligned}=\text { size xt }+ \text { size yt } \quad \begin{aligned}
\text { - The function size plays the same role for trees as } \\
\text { length does for lists. }
\end{aligned}
$$

Trees: height

©The height of a tree measures how far away the furthest leaf is.

```
height :: Btree \alpha -> Int
height (Leaf x) = 0
height (Fork xt yt) = 1 +
```

 (height xt max height yt)
 ©Reduction sequence: square (3+4)
eTwo reduction policies

- Innermost reduction: a reduction that contains no other reduction.
- Outermost reduction: a reduction that is contained in no other reduction.
©Other example: fst (square 4, square 2)

Outermost Reduction

φ Sometimes outermost reduction will give an answer when innermost fails to terminate.
-If both methods terminate, then they give the same result.
©Outermost reduction has the important property that if an expression has a normal form then the outermost reduction will compute it.

Outermost Reduction

- The problem can be solved by representing expressions as graphs rather than trees.
- Unlike trees, graphs can share subexpressions.

Example: the expression (3+4) * (3+4)

- Each occurrence of $3+4$ is represented by an arrow, called a pointer, to a single instance of $(3+4)$

Lazy vs. Eager Evaluation

- Outermost graph reduction is called lazy evaluation.
- Innermost graph reduction is called eager evaluation.
- Lazy evaluation is adopted by Haskell:

1. It terminates whenever any reduction order terminates.
2 It requires no more (and possibly fewer) steps than eager evaluation.
