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Chapter 15: Quantum Information Theory

In this lecture you will learn:

• Classical Information Theory and Entropy
• Classical Information Compression and Information Communication
• Von Neumann Entropy and Quantum Information Theory
• Holevo’s Theorem and Accessible Information
• HSW Theorem and Quantum Communication
• Classical Communication with Quantum States of Light
• Entanglement and Entropy
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Classical Coding Theory 

Consider the following possible values of a random variable X that is to be measured 
and the corresponding a-priori probabilities:

Value of X Probability Coding #1
a 1/32 000
b 132 001
c 1/8 010
d 1/4 011
e 1/8 100
f 1/8 101
g 1/16 110
h 1/4 111

Suppose you make the measurement 
N times

After you are done, you wish to tell 
your friend about ALL the 
measurement results

How many bits do you need to do 
this?

Coding Scheme #1: 
There are 8 possible outcomes of every measurement, so we need 3 bits to encode 
all the outcomes of a single measurement, and all N outcomes can be encoded 
using 3N bits
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Classical Coding Theory and Information Compression 

The coding scheme #1 does not take into account that some measurement outcomes 
are very unlikely and some are much more likely

Value of X Probability Coding #1 Coding #2
a 1/32 000 00000
b 1/32 001 00001
c 1/8 010 011
d 1/4 011 10
e 1/8 100 001
f 1/8 101 010
g 1/16 110 0001
h 1/4 111 11

Average number of bits required per outcome 
= 2x(1/32)x5 + 1x(1/16)x4 + 3x(1/8)x3 + 2x(1/4)x2 = 2.69 bits !

Bits required to transmit the results of N measurements is 2.69N < 3N bits !

Assign shorter codes to 
more likely outcomes and 
longer codes to less likely 
outcomes 

…..but such that any chain 
of bits representing the N
outcomes is uniquely 
decodable!
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Entropy and Information
Consider a random variable X with the following probability distribution:

X

p(x)

Question: If you were to find 
out the outcome of the random 
variable (say after making a 
measurement) then how much 
information did you acquire?  

X

p(x)

Answer should 
be zero!

X

p(x)

Answer should 
be NOT be 
zero!

Hint: How many bits do you 
need, on average, to convey the 
result of the measurement to 
your friend?
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Information and Asymptotic Equipartition Property
Consider a random variable X with the probability distribution P(x)

Suppose we measure X exactly N times (N is very large) and we plan to send the results 
to a friend

The results of these measurements is the sequence: 

The joint a-priori probability for this sequence is:    1 2 3
1

, , ,.......
N

N i
i

P x x x x P x


 

   2 1 2 3 2
1

1 1log , , ,....... log
N

N i
i

P x x x x P x
N N 

    

1 2 3, , ,....... Nx x x x

As N→∞ then:

       2 2
1

Limit 1 log log
N

i
i x

P x P x P x H X
N N 

    
 

Asymptotic 
Equipartition 
Property (AEP)

This means that as N→∞ ,

   
1 2 3, , ,....... 2 NH X

NP x x x x 

 , , , , , , ,X a b c d e f g h

●This means that as N→∞ there can only be 2NH(X) different result sequences that are 
probabilistically likely (and each one of them has the same a-priori probability)
●Therefore, we only need NH(X) bits to encode any result sequence that is likely  to occur 
●This means on average we need only H(X) bits per result to encode it 



ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Entropy and Information
Entropy:

The amount of information (in bits) that is gained by learning about the outcome of a 
measurement of a random variable is given by the entropy function:

Equivalently, entropy is the minimum number of bits required on average to transmit 
reliably the outcome of a measurement of the random variable

     2log
x

H X p x p x    

Case 1: Completely deterministic scenario!

  0H X 

Case 2; 

  1 , ,......
8

p x x a b h 

Completely random scenario!

  2log 8 3 bitsH X  
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Entropy and Information

     2log

         2.69  bits!
x

H X p x p x    



Value of X Probability Coding #1 Coding #2
a 1/32 000 00000
b 1/32 001 00001
c 1/8 010 011
d 1/4 011 10
e 1/8 100 001
f 1/8 101 010
g 1/16 110 0001
h 1/4 111 11
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Entropy and Data Compression

A classical message M consists of a very long sequence of letters yi :

in which each letter belongs to an alphabet A of k letters:

In the message, each letter ai occurs with an a-priori probability pi

The entropy of the message is then:

Shannon’s Source Coding Theorem:

A classical message of N letters, as described above, can be reliably compressed to 
just NH(C) bits and recovered with an error probability that approaches zero as the 
message length N becomes large 

 1 2 3, , ,........ kA a a a a

   2
1

log
k

i i
i

H C p p


  

C. Shannon, “A Mathematical Theory of Communication”, Bell System Technical 
Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948 

 1 2 3, , ,........ NM y y y y
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Entropy Maximizing Distributions
Continuous random variable:
What probability distribution maximizes H(X) subject to the constrains:

Answer: A Gaussian (or Normal) distribution 

   2 2
o ox x x x x      

 
 

 
2

2 22
2

1 ,
2

ox x

oP x e x 





  

Discrete random variable:
What probability distribution maximizes H(N) subject to the constrains:

Answer: A Thermal (or Bose-Einstein) distribution 

 0,1,2,3.........on n n  

  1
1 1

n
o

o o

nP n
n n

 
    

   2
2

1log 2
2

H X e 

   2 2
1log 1 log 1o o
o

H N n n
n

 
    

 



ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Conditional Entropy

How much information can be obtained on average from learning about the outcome of 
a measurement of a random variable Y if the outcome of the measurement of another 
random variable X is known?

       

   

   

2

2
,

| | log |

              |

              , log |

x y

x

x y

H Y X p x p y x p y x

p x H Y X x

p x y p y x

     

 

     

Cases:

   |H Y X H Y Iff X and Y are independent random variables

 | 0H Y X  iff X completely determines Y 
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Mutual Information

Difference between the information obtained on average from learning about the 
outcome of a measurement of a random variable Y  and the information obtained on 
average from learning about the outcome of a measurement of a random variable Y if 
the outcome of the measurement of another random variable X is known

           : | : |I Y X H Y H Y X I X Y H X H X Y    

Mutual information quantifies how much information one random variable conveys 
about another random variable

Cases:

       : |I Y X H Y H Y X H Y  

Iff X and Y are independent random 
variables

iff X completely determines Y 

     : | 0I Y X H Y H Y X  

   
   2

,

,, log
x y

p x y
p x y

p x p y
 

   
 
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Classical Signals and Degrees of Freedom
How many degrees of freedom do bandwidth-limited real classical signals have?

2B 

 x 

t

 x t

Answer: 2B real degrees of freedom per second (Nyquist Theorem) where B is the 
single-sided signal bandwidth in Hertz (not radians)

Recall from Chapter 5 that real narrowband signals can always be written as:

    Re oi tx t a t e 

2B

oo

     1 2a t x t ix t 

So each time-domain sample of the signal carries information on two real degrees 
of freedom

And by Nyquist theorem, a band-limited signal can have at max B independent 
samples per second (where B is the single-sided bandwidth in Hertz)

         1 2cos sino ox t x t t x t t  
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Classical Signals and Degrees of Freedom

t

 x t

One can sample the signal as follows and 
then reconstruct the signal with these 
samples

  nx n x t
B

   
 

 x t

2cos ot

2sin ot

2B 

1

2B 

1

 1 1
nx n x t
B

   
 

 2 2
nx n x t
B

   
 

         1 2cos sino ox t x t t x t t  

LPF

LPF

1 B

1 B
 1x t

 2x t

1

1



ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Classical Signals and Degrees of Freedom
 1 1

nx n x t
B

   
 

 2 2
nx n x t
B

   
 

2B 

2B 

LPF

LPF

1 B

1 B

   
   1 1

sin
n

B t n B
x n x t

B t n B








   


   
   2 2

sin
n

B t n B
x n x t

B t n B








   


cos ot

sin ot

 1x t

 2x t  x t    
   

   
   

1

2

sin
cos

sin
               sin

o
n

o
n

B t n B
x n t

B t n B

B t n B
x n t

B t n B



















   


   


Construction of x1(t):

1T
B





ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Time Domain Basis

     
   

   
   

1

2

sin
cos

sin
               sin

o
n

o
n

B t n B
x t x n t

B t n B

B t n B
x n t

B t n B



















   


   


Note that the signal can be expended in an orthogonal time-domain basis set:

The time-domain and time-localized functions,

form a complete orthogonal set that can be used to expand any band-limited signal 
centered at frequencies ±

 
     

   
sin sin

cos sino o
B t n B B t n B

t t
B t n B B t n B
 

 
 
       

 
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Classical Signals and Degrees of Freedom

Power of a narrowband signal:

    Re oi tx t a t e       1 2a t x t ix t 

        22 2
1 2

1 1 1
2 2 2

P t x t x t a t  

         1 2cos sino ox t x t t x t t  

Total energy of a narrowband signal:

     

   

2 2
1 2

2 2
1 2

1 1
2 2

1 1 1                   
2 n n

E dt P t dt x t dt x t

x n x n
B B

  

  
 

 

    

 
   

 

Total energy is just half the energy of all the orthogonal sinc pulses in the signal: 

     
       

   1 2
sin sin

cos sino o
n n

B t n B B t n B
x t x n t x n t

B t n B B t n B
 

 
 

 

 

         
 
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Classical Communication and Channel Capacity: AWGN Channel

Suppose one needs to send a message over a narrowband communication channel 

● One can map the message to the amplitudes of the two quadratures

● Note that one can send only 2B different quadrature values per second 

2B 2B

oo
1 1

     
       

   1 2
sin sin

cos sino o
n n

B t n B B t n B
x t x n t x n t

B t n B B t n B
 

 
 

 

 

         
 

ChannelTransmitter ReceiverEncoder Decoder
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Classical Communication and Channel Capacity: AWGN Channel

Suppose one sends N different quadratures through the channel in time N/2B: 

         1 , 2 , 3 , 4 .............y y y y y N

The data to be transmitted and the mapping process will impart an a-priori probability 
distribution P(y) for the quadrature amplitudes

ChannelTransmitter ReceiverEncoder Decoder

We assume there is also an energy/power constrain on the input:

   2 2
1

1 N
in

n
y n y p y dy BE P

N


 
    = average power
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Classical Communication and Channel Capacity: AWGN Channel

The channel adds noise so that the received quadrature is:

Where f[n] represents zero-mean white Gaussian noise:

     z n y n f n  

      ,0 n mf n f n f m M    

Question: how much information (in bits) can be communicated over this channel 
using these N quadratures?

 f f oM S B 

ChannelTransmitter ReceiverEncoder Decoder

AWGN Noise

   0,P f M  
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Classical Communication and Channel Capacity: AWGN Channel

     
   2 2 2

2

[ ]

[ ]

z n y n f n

z n y n f n

z n P M

  

   

  

Now consider an N-dimensional space

Represent each possible value of the received 
quadrature as a point in an N-dimensional 
space of radius:

The noise is represented by an error region of 
radius:

around each quadrature value that can be 
received

 1 2P M

 1 2M

 1 2P M

 1 2M

ChannelTransmitter ReceiverEncoder Decoder
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Classical Communication and Channel Capacity: AWGN Channel

 1 2P M

 1 2M

The number of distinct quadratures that can be 
received and distinguished from each other in the 
presence of noise is equal to the number of non-
overlapping N-spheres of radius         that can be 
packed in a N-sphere of radius P M

M

Which equals =  
 

2 2

2 1
N N

N
P M P

MM
    

 

So the information in bits that can be transferred 
using N-quadratures is:

2

2 2log 1 log 1
2

NP N P
M M

        
   

ChannelTransmitter ReceiverEncoder Decoder
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Classical Communication and Channel Capacity: AWGN Channel

 1 2P M

 1 2M

● So the information in bits that can be transferred 
using N-quadratures is:

2

2 2log 1 log 1
2

NP N P
M M

        
   

● Then the information in bits that can be transferred 
using one quadrature is:

2
1log 1
2

P
M

   
 

● Since we can send 2B quadratures per second 
through the channel, the information in bits that can 
be transferred per second is:

2log 1 PC B
M

   
 

C is called the capacity of the classical AWGN channel

C. Shannon, “A Mathematical Theory of 
Communication”, Bell System Technical 
Journal, vol. 27, pp. 379–423 and 623–656, 
July and October 1948 

ChannelTransmitter ReceiverEncoder Decoder
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ChannelTransmitter ReceiverEncoder

Mutual Information and Channel Capacity

The channel capacity (per usage) with input Y and output Z is defined as the maximal of 
the mutual information over all possible input distributions taking into account all 
realistic constrains (such as the power/energy constrain):

         
max max

: |
in in

C I Z Y H Z H Z Y
p y p y

  

Shannon’s Noisy Channel Coding Theorem

Any amount of information (in bits) less than or equal to C can be reliably transmitted 
and recovered per usage of a noisy channel with an error probability that approaches 
zero as the number of uses of the channel becomes large

C. Shannon, “A Mathematical Theory of Communication”, Bell System 
Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948 

Decoder

Y Z
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Mutual Information and Channel Capacity: AWGN Channel

The channel capacity (per usage) is more formally defined as the maximal of the mutual 
information over all possible input distributions taking into account the power/energy 
constrain:

For AWGN Channel:  
    ,

0

n m

f n

f n f m M

 

  

             2
max max 1| log 2

2in
in in

C H Z dy p y H Z Y y H Z eM
p y p y





    

AWGN

Mutual information will be maximized if the output Z is Gaussian, and Z will be Gaussian 
if the input Y is Gaussian

 2
iny p y dy P






ChannelTransmitter ReceiverEncoder Decoder

     z n y n f n  

         
max max

: |
in in

C I Z Y H Z H Z Y
p y p y

  
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Mutual Information and Channel Capacity: AWGN Channel

ChannelTransmitter ReceiverEncoder Decoder

     2
max 1log 2

2in
C H Z eM

p y
 

Mutual information will be maximized if the output Z is Gaussian, and Z will be Gaussian 
if the input Y is Gaussian

If:

Then: 

And then if:

Then: 

     z n y n f n  

   0,p f M  

   | ,outp z y y M 

       | 0,out out inp z dy p z y p y P M



   

   0,outp y P 
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Mutual Information and Channel Capacity: AWGN Channel

For AWGN Channel:

     2
max 1log 2

2in
C H Z eM

p y
 

So if we assume for input Y the a-priori probability distribution:

   
2

21 0,
2

y
Pinp y e P

P


  

Then the output Z will have the probability distribution:

 
 

   

2

21 0,
2

z
P M

outp z e P M
P M


  




And the channel capacity (per quadrature) becomes: 

    2 2 2
1 1 1log 2 log 2 log 1
2 2 2

PC e P M eM
M

        
 

Same as before!!

 2
iny p y dy P






ChannelTransmitter ReceiverEncoder Decoder

Satisfies the constrain:
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Quantum Information: The Basics

The unit of quantum information is a “qubit” (not a bit):

0 1   

Unlike the classical bit, a qubit can be in a superposition of the two logical states at 
the same time

The density operator:

The state of a quantum system is represented by a density operator      ̂

Density operator for a pure state:

Density operator for a mixed state (i.e. an ensemble of pure states):

Density operator for an ensemble of mixed states:

̂  

ˆ i i i
i

p   

ˆ ˆi i
i

p  
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Quantum Information: Von Neumann Entropy

The “information” content of a quantum state is related to the Von Neumann entropy:

   2ˆ ˆ ˆTr logS       

The Von Neumann entropy plays three roles (that we know of so far):

1) It quantifies the quantum information content in qubits of a quantum state (i.e. the 
minimum number of qubits needed to reliably encode the quantum state)

2) It also quantifies the classical information in bits that can be gained about the 
quantum state by making the best possible measurement

3) It also quantifies the amount of entanglement in bipartite pure states

As you will see, the Von Neumann entropy will not always give the answer to the 
question we will ask!
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Von Neumann Entropy: Some Properties

   2ˆ ˆ ˆTr logS       
1) Suppose:

̂   A pure state

 ˆ 0S  

2) Suppose:

ˆ i i i
i

p    An ensemble of pure ORTHOGONAL states

  2ˆ logi i
i

S p p H       = Shannon entropy of the ensemble

If the states in the ensemble were not all completely orthogonal then:  ˆS H 

3) Suppose:

ˆ ˆi i
i

p   An ensemble of mixed states but the mixed states in 
the ensemble have support on ORTHOGONAL 
spaces
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   

   

       

 

2 2

2

2 2

2

ˆ ˆ ˆ ˆ ˆTr log Tr log

ˆ ˆ             Tr log

ˆ ˆ ˆ             Tr log log

ˆ             log

i i j j
i j

i i i i
i

i i i i i i
i

i i i i
i i i

S p p

p p

p p p

p p p S H

    

 

  



   
           

    
       
       

         ˆi ip S 

Von Neumann Entropy: Some Properties
3) Suppose:

ˆ ˆi i
i

p   An ensemble of mixed states but the mixed states in 
the ensemble have support on ORTHOGONAL 
spaces

4) Change of basis:

Entropy is invariant under a unitary transformation (or change of basis)

   ˆ ˆS U U S  
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Quantum Messages
A quantum message M consists of a very long sequence of letters (or quantum 
states) :

in which each letter belongs to an alphabet A of k letters:

In the message, each letter occurs with an a-priori probability pi

The density operator for each letter in the message is then:

The density operator for the entire message of N letters is then:

 1 2 3ˆ ˆ ˆ ˆ, , ,........ kA    

1
ˆˆ

k
i i

i
p 


 

 1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    
ˆi

ˆi

ˆ ˆ ˆ ˆ ˆ..........N        

Question: is it possible to compress this long message to a smaller Hilbert space 
requiring fewer qubits without comprising the fidelity of the message?
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Quantum Fidelity

How can we tell if two quantum states are identical, similar, not so similar, etc?

Example: in classical information theory we can judge the similarity or difference 
between random variables Y and X by the mean square difference:

     2 2 ,x y dx dy x y P x y  

Quantum Fidelity:

This is not the only 
measure used

Given two quantum states,      and      , the fidelity F, a measure of the closeness
between them, is generally defined as the quantity:     

̂ ̂

     
2

ˆ ˆ ˆ ˆˆ ˆ ˆ, Tr ,F F         
 

Example: Suppose,

  2

ˆ
ˆ

ˆ ˆ,F

  

  

   







This is not the only 
measure used
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Quantum Messages and Quantum Data Compression

 1 2 3ˆ ˆ ˆ ˆ, , ,........ kA    
1

ˆˆ
k

i i
i

p 


  1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    

A quantum message M consisting of a very long sequence of letters (or quantum 
states) :

can be compressed to NC qubits, in the limit of large N, without loss of fidelity,  
where:

 1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    
ˆi

       
1

ˆˆ ˆ ˆ
k

i i
i

S C I S p S   


    

B. Schumacher, Phys. Rev. A 51, 2738 (1995)
M. Horodecki, Phys. Rev. A 57, 3364 (1998)

The lower limit is achievable if the alphabet C represents pure states (not necessarily 
orthogonal), or if the different letters in the alphabet commute
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Classical Information from Quantum Messages
Question: How much classical information in bits can be obtained from a quantum 
message by making the best possible measurement?

Generalized quantum measurements and POVMs:

The most general measurements to obtain classical information from quantum states 
can be described in terms of a complete set of positive Hermitian operators       which 
provide a resolution of the identity operator,

ˆ
jF

ˆ 1̂j
j

F 

These generalized measurements constitute a positive operator valued measure 
(POVM). The probability pk that the outcome of a measurement on a quantum 
state      will be k is given as,̂

 ˆˆTrk kp F

Example: For a photon number measurement on a quantum state of light in a 
cavity, the POVM is formed by the operators              and the probabilities are 
given as:

n n

   ˆTrp n n n
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Classical Information from Quantum Messages

Suppose a quantum message is made up of qubits:

0 1   

The quantum state is specified by two complex numbers and each can take an value

But the classical information that can be extracted from the above qubit is just one bit!!

Suppose the sender send the following two states with a-priori probability 1/2 each:

One can use the following POVM:

ˆ 1̂j
j

F 0 1ˆ ˆ0 0 1 1F F 

 ˆ 1 bitS  

0 1 1 2 0
ˆ

0 1 2


 
  
 

And

Accessible information is only 1 bit!
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Quantum Cryptography: The BB84 Protocol
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The Holevo Bound: Case of Separate Measurements
A theorem, stated by Jim Gordon (without proof in 1964), and proved by Holevo (1973), 
gives an upper bound on the amount of classical information (in bits) that can be 
gained from a quantum message of N letters by making the best possible measurement 
on each letter individually: 

J. P. Gordon, in Quantum Electronics and Coherent Light, edited by P. A. Miles, 
Academic Press (1964).
A. S. Kholevo, Probl. Peredachi Inf. 9, 177 (1973).

 1 2 3ˆ ˆ ˆ ˆ, , ,........ kA    
1

ˆˆ
k

i i
i

p 


  1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    

ˆ ˆ ˆ ˆ ˆ..........N        

N terms

For the above quantum message, the obtained classical information                 per letter 
about the preparation of the message, using the optimal measurement scheme, is 
bounded as follows:

       
1

max
ˆˆ ˆ:ˆ

k
i i

i
I M P I S p S

F
  


   

 :I M P

The upper limit in Holevo’s theorem can be achieved if and only if the quantum states 
of all the letters in the alphabet C commute, i.e. ˆ ˆ, 0i k    
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Proof of the Holevo Bound: Case of Separate Measurements
If all the letters in the alphabet commute then they can all be diagonalized using a 
common orthonormal basis            , and:

,ˆi if   


   

 

So if we choose the POVM to be:

Then the probability p of measuring  is:

F̂   

  , ,
,

ˆ ˆTr Tr Tri i i i i i
i i i

p F p p f p f         


       
                

      

The entropy comes out to be:

     2ˆ logS p p H M 


   

   , 2 ,ˆ logi i iS f f 


  

What this means is that even if the 
quantum letter or state is known, 
there is still entropy related to the 
outcome of measurements 
performed on it since it is not a 
pure state
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The Holevo Bound: Case of Separate Measurements
The maximum classical information is the mutual information between the measurement 
result and the preparation of the quantum state of each letter in the message:

     

   

   

2 , 2 ,

1

max
: |ˆ

                     log log

ˆˆ                     

i i i
i

k
i i

i

I M P H M H M P
F

p p p f f

S p S

   
 

 


 

 
       

  
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The Holevo Bound: Case of Block Measurements

 1 2 3ˆ ˆ ˆ ˆ, , ,........ kA    
1

ˆˆ
k

i i
i

p 


  1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    

ˆ ˆ ˆ ˆ ˆ..........N        

N terms

If instead of separate measurements on each letter of the message, if one is allowed to 
make optimal measurements on all N letters of the message at the same time then the 
upper limit in Holevo’s theorem can be achieved even if the letters in the alphabet C do 
not commute, i.e. ˆ ˆ, 0i k    
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Classical Information Over Quantum Channel

Channel

The channel is described by a trace preserving linear quantum operation E such that 
the density operator of each letter at the output of the channel is related to the density 
operator at the input of the channel by the relation:

̂   ˆ ˆˆ ˆj j
j

E E E   

  ˆ ˆˆ ˆ ˆj j
j

E E E     
ˆ ˆ 1̂j j

j
E E 

Noise sources Loss
Bath

What is really happening is the following:

initial 0 0ˆ ˆ B B  Initial state of the channel input and the bath

final 0 0ˆ ˆˆ ˆU B B U     After propagation through the 
channel; unitary time evolution

ˆ
ˆ

Hi t
U e


 

 output Bath 0 0ˆ ˆˆ ˆTr U B B U     After trace over all bath degrees the 
channel output is:

ˆ ˆˆj j
j

E E  
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Classical Information Over Quantum Channel

Channel

The channel is described by a trace preserving linear quantum operation E such that 
the density operator of each letter at the output of the channel is related to the density 
operator at the input of the channel by the relation:

̂   ˆ ˆˆ ˆj j
j

E E E   

  ˆ ˆˆ ˆ ˆj j
j

E E E     
ˆ ˆ 1̂j j

j
E E 

Classical information over the channel is encoded in a quantum message M consists 
of a very long sequence of letters (or quantum states) :

in which each letter belongs to an alphabet A of k letters:

In the message, each letter occurs with an a-priori probability pi

The density operators for each letter in the message and of the full message are then:

 1 2 3ˆ ˆ ˆ ˆ, , ,........ kA    

1
ˆˆ

k
i i

i
p 


 

 1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    

ˆi

ˆi

ˆ ˆ ˆ ˆ ˆ..........N        

Question: How much classical information in bits can be communicated over the 
channel per letter?
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Classical Information Over Quantum Channel: Channel Capacity

Channel̂   ˆ ˆˆ ˆj j
j

E E E   

The classical capacity of this quantum channel per letter is:

     
1

max
ˆˆ

k
i i

ii
C S E p S E

p
 


  

The classical capacity of the quantum channel is achievable (even for non-commuting 
letters in the message) if the receiver is allowed to make block measurements on all 
received letters

Note: 
This capacity is also called the fixed-alphabet product-state capacity, since 1) the 
optimization is not performed over the choice of input letters , and 2) the input 
letters are not assumed to be entangled over multiple uses of the channel and 
therefore the input density operator is in a tensor product form

The Holevo-Schumacher-Westmoreland (HSW) Theorem:

ˆi
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Classical Information Over a Photonic Channel: Photon Number 
States and Photon Number Detection

Channel

 0 0 , 1 1 , 2 2 ,......... .........A n n

 
0

ˆ in
n

p n n n



 

 1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    

ˆ ˆ ˆ ˆ ˆ..........N        

N terms

Power Constrain:

 
0

in o
n

p n nB P



 

● The channel is bandlimited

2B 2B

oo
1 1● Optical pulses are used and the classical 

information is encoded in the number of 
photons in each optical pulse 

From previous discussion, at max B such 
pulses can be sent per second 

 
0

in o
n o

Pp n n n
B 




 


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Channel

The maximum classical information transmitted over the channel per letter is then:

     

   

       

   

1

1

0 0

0

max
ˆˆ

max
ˆˆ  

max
  

max
  

i i
ii

i i
ii

in in
n nin

in
nin

C S E p S E
p

S p S
p

S p n n n p n S n n
p n

S p n n n
p n

 

 





 

 





  

  

 
   

 
 

  
 

The entropy is maximized for a thermal distribution of 
photons in every pulse!

  1
1 1

n
o

in
o o

np n
n n

 
    

2 2log 1 log 1 o

o o

BP PC
B B P


 

         
  


 

 
0

in o
n o

Pp n n n
B 




 



The ideal POVM is:

n̂F n n

ˆ 1̂n
n

F 

Classical Information Over a Photonic Channel: Photon Number 
States and Photon Number Detection

 
0

ˆ in
n

p n n n



   

0
ˆ in

n
p n n n




 
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2 2log 1 log 1 o

o o

BP PC
B B P


 

         
  


 

The capacity in bits per letter is:

The capacity in bits per second is:

2 2log 1 log 1 o

o o

BP PC B
B P


 

         
  


 

Classical Information Over a Photonic Channel: Photon Number 
States and Photon Number Detection

C

2log 1
o

P
B 

 
 

 

2log 1 o

o

BP
B P




  
 




(b
its

)

Channel 
0

ˆ in
n

p n n n



   

0
ˆ in

n
p n n n




 
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In the limit                        the capacity (bits/s) becomes:oP B  

Classical Information Over a Photonic Channel: Photon Number 
States and Photon Number Detection

The High Power Limit:

2log 1
o

PC B
B 

 
  

 

Compare the above to the classical AWGN channel result:

 2log 1
f f o

PC B
BS  

 
   

 

In the limit                      , the quantum channel result is as if it were a classical AWGN 
channel with added white noise with a noise power spectral density of o

oP B  

WHY???

Channel 
0

ˆ in
n

p n n n



   

0
ˆ in

n
p n n n




 
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2log o

o

BPC
P



   
 




Classical Information Over a Photonic Channel: Photon Number 
States and Photon Number Detection

In the limit                        the capacity 
(bits/s) becomes:

oP B  

The Low Power Limit:

How do we understand the above result?

For small signal powers P, choose a transmission time 
T long enough such that one photon gets transmitted 
in time T . Then: oP

T





 2
2

log log o

o

BT BPC
T P




    
 




If the channel bandwidth is B then the transmission time T can be divided into BT
time slots.

The transmitted photon can occupy any one of these time slots. The information in 
bits transmitted per second by that one photon, and therefore the channel capacity,  
becomes:



ECE 407 – Spring 2009 – Farhan Rana – Cornell University

Classical Information Over a Photonic Channel: Coherent States 
and Photon Number Detection

Channel

 A  

 2ˆ ind p     

 1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    

ˆ ˆ ˆ ˆ ˆ..........N        

N terms

Power Constrain:

● The channel is bandlimited

2B 2B

oo
1 1

● Optical pulses are used and the classical 
information is encoded in the amplitude 
quadrature of each optical pulse 

From previous discussion, at max B such 
pulses can be sent per second 

  22
o inB d p P    

n̂F n n

ˆ 1̂n
n

F 

POVM

 2ˆ ind p       2ˆ ind p     
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Classical Information Over a Photonic Channel: Coherent States 
and Photon Number Detection

n̂F n n ˆ 1̂n
n

F 

The chosen POVM, given below, for detection is (possibly) not the optimal POVM 
for the coherent state alphabet (as we will see later)

Since channel capacity definition includes use of the optimal POVM, which we are 
(possibly) not using, we just calculate the mutual information between channel input 
and the detector output

The conditional probability of detecting n photons, given the input       , is:

    2 2
ˆ| Tr

!

n

out np n F e
n

 
    



     
2 2

2ˆˆTr
!

n

out n inp n F d p e
n

 
     

The optimal mutual information between the channel input I and the detector 
output O is:

       

           2
2 2

0 0

max
: |

max
             log | log |

in

out out in out out
n nin

I O I H O H O I
p

p n p n d p p n p n
p



   


 

 

 

         

Channel 2ˆ ind p       2ˆ ind p     
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Classical Information Over a Photonic Channel: Coherent States 
and Photon Number Detection

             2
2 2

0 0

max
: log | log |out out in out out

n nin
I O I p n p n d p p n p n

p
   


 

 
         

The above needs to be maximized over p() under the power constrain:

  22
o inB d p P    

The maximizing procedure turns out to be analytically cumbersome, but results in 
the low power and high power limits are known

The Low Power Limit:

  2: log o

o

BPI O I
P



   
 




oP B  
Same as in the case of using 
photon number states

The High Power Limit: oP B  
One half of the result in the case 
of using photon number states  2: log

2 o

B PI O I
B 

 
  

  WHY?!?

Channel 2ˆ ind p       2ˆ ind p     
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Classical Information Over a Photonic Channel: Coherent States 
and Balanced Heterodyne Detection

 A  

 2ˆ ind p     

 1 2 3ˆ ˆ ˆ ˆ, , ,........ NM    

ˆ ˆ ˆ ˆ ˆ..........N        

N terms

Power Constrain:

● The channel is bandlimited

2B 2B

oo
1 1

● Optical pulses are used and the classical 
information is encoded in the two 
quadratures of each optical pulse 

From previous discussion, at max B such 
pulses can be sent per second 

  22
o inB d p P    

1F̂  




2 ˆ 1̂d F 

POVM
Channel
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The chosen POVM implies that both the field quadratures are measured simultaneously!

Classical Information Over a Photonic Channel: Coherent States 
and Balanced Heterodyne Detection

POVM: 1F̂  


 2 ˆ 1̂d F 

Channel 2ˆ ind p       2ˆ ind p     

Since channel capacity definition includes use of the optimal POVM, which we are 
(possibly) not using, we just calculate the mutual information between channel input 
and the detector output

The conditional probability of detecting , given the input       , is:

       2ˆˆTr |out in outp F d p p       



    21ˆ| Troutp F     


 

The optimal mutual information between the channel input I and the heterodyne detector 
output O is:

       

           2 2 2
2 2

max
: |

max
          log | log |

in

out out in out out
in

I O I H O H O I
p

d p p d p d p p
p



         


 

          
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The maximizing yields (just like in the case of AWGN) the capacity per letter 
(consisting of two quadratures):

2 2
2 1 212 log log 1

2 1 2
o

o

P B PC x
B




  
    

   




Classical Information Over a Photonic Channel: Coherent States 
and Balanced Heterodyne Detection

 
221 1|outp e     

 
  

     2 |out in outp d p p     

 
 

 
 

 

 
 

2 2

2 1 2 2 1 21 1|
2 1 2 2 1 2

r r i i

outp e e
   

 
 

 
 



Gaussian!! 
With added noise 
having a variance 
of 1/2 in each 
quadrature!! 

To maximize I(O:I), we need pout() to be 
Gaussian as well, and this is possible if pin() is 
Gaussian and satisfies the power constrain:

  22
in

o

Pd p
B

  


 

Channel 2ˆ ind p       2ˆ ind p     
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The max information per letter (consisting of two quadratures) is:

2log 1
o

PC
B 

 
  

 

Classical Information Over a Photonic Channel: Coherent States 
and Balanced Heterodyne Detection

And since one can send B letters per second, the capacity in bits/s is: 

2log 1
o

PC B
B 

 
  

 

The result, although identical to the one obtained using photon number states and 
photon number detection (in the high power limit), has more similarities with the 
classical AWGN result if: 

1) each quadrature of the input coherent state is assumed to be a classical 
variable and, 
2) the channel adds white Gaussian noise to each quadrature and,
3) the power spectral density of the added white Gaussian noise is 
assumed to be 1/2(ħo)

Channel 2ˆ ind p       2ˆ ind p     
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Classical Information Over a Lossy Photonic Channel: Number 
States and Photon Number Detection

Channel

How do we model photon loss in the channel?
  ˆ ˆˆ ˆ ˆj j

j
E E E     

̂   ˆ ˆˆ ˆj j
j

E E E   

We know how a photon number state behaves in the presence of loss

     

     

0

0

!0 1
! !

! 1
! !

n m n m
B Bm

n n mm

m

nn T T m n m
m n m

nn n E n n T T m m
m n m









   


  


Loss
Bath 

0
ˆ in

n
p n n n




     

0
ˆ out

n
E p n n n




 

Input Power Constrain:

 
0

in o in
n

p n nB P



   

0
in

in in
n o

Pp n n n
B 




 



Channel Power Transmissivity: T Channel Power Loss: 1-T

Binomial distribution of photons

n̂F n n

POVM
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Classical Information Over a Lossy Photonic Channel: Number 
States and Photon Number Detection

Channel̂   ˆ ˆˆ ˆj j
j

E E E   
Loss

Bath 
0

ˆ in
n

p n n n



     

0
ˆ out

n
E p n n n




 

The conditional probability of detecting m photons at the output, given the input       , is:

       !| 1 ,  0   otherwise
! !

n mm
out

np m n T T m n
m n m

  

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|out out in
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outin
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B B 




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 

Output photon number and power:

Input and output states:
   
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Classical Information Over a Lossy Photonic Channel: Number 
States and Photon Number Detection

Channel̂   ˆ ˆˆ ˆj j
j

E E E   
Loss

Bath

       2 2
0 0

1| | log | log 1 2 1
2

n n
out out

m m
S p m n m m p m n p m n enT T

 

 
             

 

The channel capacity becomes:
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2out out in
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 
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
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0
ˆ out
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 

The channel capacity is (the POVM is optimal):

It is not difficult to evaluate:

     

       
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Classical Information Over a Lossy Photonic Channel: Number 
States and Photon Number Detection

Channel̂   ˆ ˆˆ ˆj j
j

E E E   
Loss

Bath 
0
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
     

0
ˆ out
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E p n n n




 

We want to maximize the capacity             we want output distribution to be thermal 

The output distribution can be thermal if the input distribution is also thermal
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Classical Information Over a Lossy Photonic Channel: Number 
States and Photon Number Detection

Channel̂   ˆ ˆˆ ˆj j
j

E E E   
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Bath 
0
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
     
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ˆ out
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


 

The optimal mutual information (bits per use) between the input I and the output O is:

         

   

2 2
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2 2 2

2 2 2
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          

 
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o
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B 
 

 
 

Here,  is a number with values between 1 and 2 and depends on the value of T

The Low Power Limit:
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WHY?!?
(Now bits/s) (Now bits/s)
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Classical Information Over a Lossy Photonic Channel: Capacity

Channel  ˆE 
Loss

Bath

The capacity of this quantum channel per letter is:
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Classical Information Over a Lossy Photonic Channel: Capacity
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Quantum Information: Von Neumann Entropy

The “information” content of a quantum state is related to the Von Neumann entropy:

   2ˆ ˆ ˆTr logS       

The Von Neumann entropy plays three roles (that we know of so far):

1) It quantifies the quantum information content in qubits of a quantum state (i.e. the 
minimum number of qubits needed to reliably encode the quantum state)

2) It also quantifies the classical information in bits that can be gained about the 
quantum state by making the best possible measurement

3) It also quantifies the amount of entanglement in bipartite states

As you will see, the Von Neumann entropy will not always give the answer to the 
question we will ask!
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Quantifying Entanglement of Bipartite Pure States 

Consider the following two states of two 2-level systems:

1 0 1 1 0
2

1 3 0 0 1 1
2

a A B A B

b A B A B





   

   

They are both entangled

But which one is more entangled??

How can we quantify the level of entanglement of states?

The answer for at least pure states of bipartite systems seems to be available 
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Entanglement as a Resource
1 0 1 1 0
2a A B A B    

Alice Bob

Entanglement between qubits possessed by Alice and Bob cannot be generated by 
any local operations or measurements or performed by Alice or Bob on their 
respective qubit or by classical communications between Alice and Bob (LOCC)

Entanglement can only be generated by a joint operation on both the qubits

Entanglement is a resource 

Bell States: 
1 0 1 1 0
2
1 0 1 1 0
2

a A B A B

b A B A B





   

   

1 0 0 1 1
2
1 0 0 1 1
2

c A B A B

d A B A B





   

   
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Quantifying Entanglement of Bipartite Pure States

Suppose Alice and Bob would like to prepare n copies of an entangled state: 

0 0 0 1 1 0 1 1A B A B A B A B       
Alice Bob

But what they already have in their possession are multiple copies of a Bell state 
(doesn’t matter which one)

Suppose Alice and Bob use a minimum of kmin Bell states in their possession, and lots 
of local operations on their respective qubits and classical communication between 
each other (LOCC), and are able to generate n copies of the desired state  

Then can we use the ratio   kmin/n as a measure of entanglement in the state       ??

i.e. how many Bell states does one need to use to generate one copy?
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Quantifying Entanglement of Bipartite Pure States

Suppose Alice and Bob have n copies of an entangled state: 

0 0 0 1 1 0 1 1A B A B A B A B       

Alice Bob

But what they want are multiple copies of a Bell state (doesn’t matter which one)

Suppose Alice and Bob are able to prepare a maximum of kmax Bell states from the n
copies of the state       in their possession, with only local operations on their 
respective qubits and classical communication between each other (LOCC)



Then can we use the ratio   kmax/n as a measure of entanglement in the state       ??

i.e. how many Bell states does one generate per one copy?
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Quantifying Entanglement of Bipartite Pure States

0 0 0 1 1 0 1 1A B A B A B A B       

Alice Bob

It can be shown that in the limit n→∞,  

     max minlimit
ˆ ˆA B

k k S S E
n n n

     
 

Where:

 
 

ˆ Tr

ˆ Tr
A B

B A

  

  





The above expression for bipartite entanglement works even when the qubits 
involved are not 2-level systems but any arbitrary multilevel systems

This many Bell states 
go into or come out 
of the above state
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Quantifying Entanglement of Bipartite Pure States 

Consider the following two states of two 2-level systems:

1 0 1 1 0
2

1 3 0 0 1 1
2

a A B A B

b A B A B





   

   

They are both entangled

But which one is more entangled??

 

 

1.0

0.81

a

b

E

E









Answer:

All four Bell states are 
maximally entangled
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Quantifying Entanglement of Bipartite Mixed States

ˆAB

Alice Bob

What is Alice and Bob share a mixed entangled state?

What is the entanglement of this state?

How many Bell states can Alice and Bob distill from          ?  

How many Bell states are needed to prepare          ?

ˆAB

ˆAB

We don’t know the general answers to the above questions!!!
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The Last Slide 


