CHAPTER 16: ACID-BASE EQUILIBRIA

Part One: Pure Solutions of Weak Acids, Bases (water plus a <u>single</u> electrolyte solute)

- A. Weak Monoprotic Acids. (Section 16.1)
 - 1. Solution of Acetic Acid: $HAc(aq) + H_2O \rightleftharpoons [H_3O^+] + [Ac^-]$

$$\mathbf{K}_{c} = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]\left[\mathbf{A}\mathbf{c}^{-}\right]}{\left[\mathbf{H}_{2}\mathbf{O}\right]\left[\mathbf{H}\mathbf{A}\mathbf{c}\right]}, \text{ but since } [\mathbf{H}_{2}\mathbf{O}] \text{ always} = 55.5 \text{ M}$$

$$\mathbf{K}_{c}[\mathbf{H}_{2}\mathbf{O}] = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]\left[\mathbf{A}\mathbf{c}^{-}\right]}{\left[\mathbf{H}\mathbf{A}\mathbf{c}\right]}, \quad \text{set } \mathbf{K}_{c}[\mathbf{H}_{2}\mathbf{O}] = \mathbf{K}_{a}$$

$$\mathbf{K}_{a} = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]\left[\mathbf{A}\mathbf{c}^{-}\right]}{\left[\mathbf{H}\mathbf{A}\mathbf{c}\right]} \qquad \qquad \mathbf{K}_{a} = \text{acid ionization constant}$$

 $pK_a = -\log K_a$

$pK_a \uparrow strength \downarrow$

2. See Table 16.1 K_a of weak acids:

TA	BLE 16.1	Acid-Ionizat	ion Constants at	25°C*
	Substance		Formula	Ka
	Acetic aci	d	$HC_2H_3O_2$	1.7×10^{-5}
ds:	Benzoic acid		$HC_7H_5O_2$	6.3×10^{-5}
u 5.	Boric acid	l	H_3BO_3	5.9×10^{-10}
	Carbonic	acid	H_2CO_3	4.3×10^{-7}
			HCO_3^-	4.8×10^{-11}
	Cyanic ac	id	HOCN	3.5×10^{-4}
	Formic ac	id	$HCHO_2$	1.7×10^{-4}
	Hydrocya	nic acid	HCN	4.9×10^{-10}
	Hydrofluo	Hydrofluoric acid		6.8×10^{-4}
	Hydrogen	sulfate ion	HSO_4^-	1.1×10^{-2}
	Hydrogen		H_2S	8.9×10^{-8}
			HS^{-}	$1.2 \times 10^{-13^{+}}$
	Hypochlo	rous acid	HCIO	3.5×10^{-8}
	Nitrous ac	cid	HNO_2	4.5×10^{-4}
	Oxalic act	id	$H_2C_2O_4$	5.6×10^{-2}
			$HC_2O_4^-$	5.1×10^{-5}
	Phosphori	c acid	H_3PO_4	6.9×10^{-3}
			$H_2PO_4^-$	6.2×10^{-8}
			HPO_4^{2-}	4.8×10^{-13}
	Phosphore	ous acid	H_2PHO_3	1.6×10^{-2}
			$HPHO_3^-$	7×10^{-7}
	Propionic		$HC_3H_5O_2$	1.3×10^{-5}
	Pyruvic a	cid	$HC_3H_3O_3$	1.4×10^{-4}
	Sulfurous	acid	H_2SO_3	1.3×10^{-2}
			HSO_3^-	6.3×10^{-8}

3. Calculation of equilibrium concentrations from K_a:

What is the pH of a 2.0 M aqueous solution of acetic acid?

	$HAc + H_2O$	\rightleftharpoons H ₃ O ⁺ +	Ac
initial	2.0 M	$10^{-7} \approx 0$	0
change	-X	+X	+X
at equilib	2.0-x	Х	X

$$K_a = \frac{x^2}{2.0 - x} = 1.8 \times 10^{-5}$$

Could solve the quadratic equation, but there is a simplifying approximation that is very accurate:

2.0 - x ≈ 2.0, since x << 2.0 M

$$\frac{x^2}{2.0} \approx 1.8 \times 10^{-5} \text{ so } x^2 \approx 3.6 \times 10^{-5} \text{ so } x \approx \sqrt{3.6 \times 10^{-5}} = 0.0060 \text{ M}$$

 $[H_3O^+] = x = 0.0060 \text{ M}$

$$pH = -log (6.0 \times 10^{-3}) = 02.2$$

Check your approximation:

Is
$$2.0 - x \approx 2.0$$

 $x \ll 2.0$ and $0.006 \ll 2.0$ yes!!

4. General formula:

pure solution of weak monoprotic acid $[H_3O^+] = \sqrt{C_A K_a}$

where C_A = formal concentration of the weak acid

5. Example: Calculate pH of 1.0 M HF(aq).

	$HF(aq) + H_2O$	H_3O^+	+ F⁻
initial	1.0 <i>M</i>	0	0
at equilib	1.0 - x	Х	Х

$$K_{a} = \frac{x^{2}}{1.0 - x} = 7.2 \times 10^{-4}$$
Assume x << 1.0
$$\frac{x^{2}}{1.0} = 7.2 \times 10^{-4}$$

$$x = \sqrt{7.2 \times 10^{-4}} = 2.68 \times 10^{-2} = 0.0268 M$$

Now, is x << 1.0 *M* ?

0.0268 << 1.00 borderline!

Could do a successive approximation: x^2

$$\frac{x}{1.0 - 0.0268} = 7.2 \times 10^{-4}, \text{ where } 0.0268 \text{ is trial solution}$$
$$\frac{x^2}{0.9732} = 7.2 \times 10^{-4}$$
$$x^2 = 7.01 \times 10^{-4}$$
$$x = \sqrt{7.01 \times 10^{-4}} = 0.0265 M \text{ (not much change, really unnecessary)}$$
$$[F^-] = [H_3O^+] = x = 0.0265 M$$
$$pH = 1.58$$

6. Percent ionization calculation of weak acid:

% ionization =
$$\frac{[HAc]_{ionized}}{[HAc]_{total}} \times 100\%$$

% ionization =
$$\frac{[Ac^{-}]}{[HAc] + [Ac^{-}]} \times 100\%$$

Chapter 16

7. Example: Calculate % ionization in a 2.0 M solution of HCN(*aq*).

HCN(aq) + H₂O
$$\implies$$
 H₃O⁺(aq) + CN
initial 2.0 M 10⁻⁷ \approx 0 0
at equilib 2.0-x x x x

$$\frac{x^2}{2.0 - x} = 4.0 \times 10^{-10}$$

$$\frac{x^2}{2.0} \approx 4.0 \times 10^{-10}$$

$$x^2 = 8.0 \times 10^{-10}$$

$$x = 2.8 \times 10^{-5} = [H_3O^+] = [CN^-]$$
% ioniz = $\frac{2.8 \times 10^{-5} M}{2.0M} \times 100\%$
= 1.4 × 10⁻³% = 0.0014% (very small percent)
pH = -log(2.8 × 10^{-5}) = 4.55

B. Polyprotic Acids. (Section 16.2)

1. Consider H_3PO_4 : Have three simultaneous equilibria!!

$$H_{3}PO_{4} + H_{2}O \rightleftharpoons H_{3}O^{+} + H_{2}PO_{4}^{-}$$

$$K_{1} = \frac{\left[H^{+}\right]\left[H_{2}PO_{4}^{-}\right]}{\left[H_{3}PO_{4}\right]} = 7.5 \times 10^{-3}$$

$$H_{2}PO_{4}^{-} + H_{2}O \rightleftharpoons H_{3}O^{+} + HPO_{4}^{2-}$$

$$K_{2} = \frac{\left[H^{+}\right]\left[HPO_{4}^{2-}\right]}{\left[H_{2}PO_{4}^{-}\right]} = 6.2 \times 10^{-8}$$

$$HPO_{4}^{2-} + H_{2}O \rightleftharpoons H_{3}O^{+} + PO_{4}^{3-}$$

$$K_{3} = \frac{\left[H^{+}\right]\left[PO_{4}^{-3-}\right]}{\left[HPO_{4}^{2-}\right]} = 3.6 \times 10^{-13}$$

Simplifying factor: [H₃O⁺] present at equilibrium will be almost totally due to first 2. step of ionization.

-

- Calculate the conc. of all species present in 2.00 M H₃PO₄. 3.
 - First ionization: a.

Hist formation:

$$H_{3}PO_{4} + H_{2}O \rightleftharpoons H_{3}O^{+} + H_{2}PO_{4}^{-}$$
at equilib. 2.00 - x x x

$$K_{1} = \frac{\left[H_{3}O^{+}\right]\left[H_{2}PO_{4}^{-}\right]}{\left[H_{3}PO_{4}\right]} = \frac{x^{2}}{2.00 - x}$$

$$x \approx \sqrt{2.00K_{1}} = \sqrt{2.00 \times 7.5 \times 10^{-3}} = 0.122 \text{ M}$$

$$[H_{3}O^{+}] = [H_{2}PO_{4}^{-}] = 0.122 M$$

$$pH = -\log(.122) = 0.912$$

Second ionization: b.

$$H_{2}PO_{4}^{-} + H_{2}O \rightleftharpoons H_{3}O^{+} + HPO_{4}^{2-}$$

$$0.122 - y \qquad 0.122 + y \qquad y$$

$$K_{2} = \frac{\left[H_{3}O^{+}\right]\left[HPO_{4}^{2-}\right]}{\left[H_{2}PO_{4}^{-}\right]} = \frac{(0.122 + y)y}{0.122 - y}$$
Assume y << 0.122 M

$$K_{2} = 6.2 \times 10^{-8} \approx \frac{0.122}{0.122} y$$

$$y = 6.2 \times 10^{-8} = K_{2}$$

OR:

General rule: anion produced by second ionization = K_2

Second ionization produces additional $6.2 \times 10^{-8} M$ of H_3O^+ , which is negligible. Still $[H_3O^+] = 0.122 M$ (from first ionization)

c. Third ionization:

$$HPO_{4}^{2-} + H_{2}O \rightleftharpoons_{M}^{K_{3}} H_{3}O^{+} + PO_{4}^{3-}$$

$$6.2 \times 10^{-8}M - z \qquad 0.122 + z \qquad z$$

$$K_{3} = \frac{\left[H_{3}O^{+}\right]\left[PO_{4}^{3-}\right]}{\left[HPO_{4}^{2-}\right]} = \frac{(0.122 + z)z}{6.2 \times 10^{-8} - z}$$

Assume $z << 6.2 \times 10^{-8} M$

$$K_{3} = 3.6 \times 10^{-13} = \frac{0.122z}{6.2 \times 10^{-8}}$$

 $z = 1.83 \times 10^{-19} M$

$$[PO_{4}^{3-}] = 1.83 \times 10^{-19} M$$

General rule: $[PO_{4}^{3-}] = K_{3}K_{2} / [H_{3}O^{+}] = K_{3}K_{2} / \sqrt{C_{A}K_{1}}$
(where C_{A} is formal conc. of polyprotic acid 2.00 M)

- 4. Summary for pure solution of:
 - a. Weak monoprotic acid:

$$[\mathrm{H}^+] \approx \sqrt{\mathrm{C}_{\mathrm{A}} \mathrm{K}_{\mathrm{a}}}$$

b. Weak diprotic acid (weak at both stages):

$$[\text{H}^{+}] = \sqrt{\text{C}_{\text{A}} \text{ K}_{1}}$$

 $[HA^-] = same$

c. Weak triprotic acid:

$$[H^{+}] = \sqrt{C_A K_1}$$

$$[H_2A^{-}] = same$$

$$[HA^{2-}] = K_2$$

$$[A^{3-}] = K_3 K_2 / [H^{+}]$$

5. Strong polyprotic acid H_2SO_4 :

Suppose we have $2.00 M H_2SO_4$.

a. First ionization goes completely:

$$[H_2SO_4] = 0$$

 $[HSO_4^-] = 2.00 M$
 $[H_3O^+] = 2.00 M$

b. Second ionization is weak:

 $HSO_4^- + H_2O \implies H_3O^+ + SO_4^{-2}$ $2.00 - x \qquad 2.00 + x = x$

$$2.00 - x$$
 $2.00 + x$

$$K_2 = 1.2 \times 10^{-2} = \frac{(2.00 + x)x}{2.00 - x}$$

Try x << 2.00 approx.

$$1.2 \times 10^{-2} \approx \frac{2.00 \text{ x}}{2.00}$$

x = 1.2 × 10⁻² = 0.012 M

$$[SO_4^{2-}] = 0.012 \text{ M} = \text{K}_2$$

 $[\text{H}_3\text{O}^+] = 2.00 \text{ M} + 0.012 \text{ M} \approx 2.012 \text{ M}$
 $[\text{HSO}_4^-] = 2.00 - 0.012 \approx 1.99 \text{ M}$

- C. Weak Monoprotic Bases. (Section 16.3)
 - 1. Calculate conc. of species present and pH of 0.10 M aqueous NH₃.

$$NH_{3} + H_{2}O \implies NH_{4}^{+} + OH^{-}$$

$$K_{b} = \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left[NH_{3}\right]} = 1.8 \times 10^{-}$$

$$\frac{x^{2}}{0.10 - x} = 1.8 \times 10^{-5}$$

$$x^{2} = 1.8 \times 10^{-6}$$

$$[NH_{4}^{+}] = [OH^{-}] = x = 1.34 \times 10^{-3} M$$

$$[H_{3}O^{+}] = \frac{K_{w}}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{1.34 \times 10^{-3}}$$

$$[H_3O^+] = 7.45 \times 10^{-12} M$$

$$pH = -\log (7.45 \times 10^{-12}) = 11.1$$

2. General formula:

pure aqueous of weak base $[OH^-] = \sqrt{C_B K_b}$

where $C_B =$ formal concentration of the base

TABLE 16.2	Base-lor	ization Constants	at 25°C	
Substance	Substance		K _b	
Ammoni	Ammonia		1.8×10^{-5}	
Aniline		$C_6H_5NH_2$	4.2×10^{-10}	
Dimethy	Dimethylamine		5.1×10^{-4}	
Ethylami	ne	$C_2H_5NH_2$	4.7×10^{-4}	
Hydrazir	Hydrazine		1.7×10^{-6}	
Hydroxy	Hydroxylamine		1.1×10^{-8}	
Methylamine		CH ₃ NH ₂	4.4×10^{-4}	
Pyridine		C_5H_5N	1.4×10^{-9}	
Urea		NH ₂ CONH ₂	1.5×10^{-14}	

Part Two: Acidity and Basicity of Salts in Aqueous Solution

- A. Salts from Neutralizing Strong Base with Strong Acid. (Section 16.4)
 - 1. Cations from strong soluble bases:

e.g., Na^+ , K^+ , Ca^{2+} , Sr^{2+} ... (these ions have no effect on pH)

2. Anions from strong acids:

e.g., Cl⁻, Br⁻, I⁻, ClO₄⁻... (no effect on pH)

- 3. These salts produce <u>neutral</u> solutions.
 - a. The anion is the conjugate base of a strong acid so are <u>very</u> weak bases.
- B. Salts from Neutralizing Strong Bases with Weak Acids. (Section 16.4)
 - 1. Again, cations are Na⁺, K⁺...
 - 2. Anions from weak acids:

e.g., Ac⁻, NO₂⁻, CN⁻, OCl⁻...

3. These conjugate bases of <u>weak</u> acids WILL affect pH by following reactions called <u>hydrolysis (or solvolysis) reactions</u>:

 $NaAc \rightarrow Na^{+}(aq) + Ac^{-}(aq)$ salt ionizes

Then: $Ac^{-} + H_2O \rightleftharpoons HAc + OH^{-}$

4. These salts produce basic solutions. If Ac⁻ is a base, what is its K_b?

$$K_{b} = \frac{K_{w}}{K_{a} (of HAc)}$$

OR:

 $K_w = K_a K_b$ a,b are conj acid/base pair

5. Problem: What is pH of 1.0 NaAc solution?

$$NaAc \longrightarrow Na^{+} + Ac^{-}$$

$$K_{b} \text{ of } Ac^{-}$$

$$Ac^{-} + H_{2}O \rightleftharpoons HAc + OH^{-}$$

$$1.0 - x \qquad x \qquad x$$

$$K_{b} = \frac{[HAc][OH^{-}]}{[Ac^{-}]} = \frac{K_{w}}{K_{a}(\text{ of } HAc)}$$

$$\frac{x^{2}}{1.0 - x} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.55 \times 10^{-10}$$

$$x \approx \sqrt{1.0 \times 5.55 \times 10^{-10}}; \quad x = 2.36 \times 10^{-5} M$$

 $[OH^{-}] = 2.36 \times 10^{-5} M$

$$[\mathrm{H}^{+}] = \frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]} = \frac{1.0 \times 10^{-14}}{2.36 \times 10^{-5}} = 4.24 \times 10^{-10} \, M$$

pH = 9.37 (basic); Therefore, Ac⁻ acts as weak base.

6. Problem: What is pH of 0.20 *M* NaCN? K_a for HCN is 4.0×10^{-10} ?

NaCN is salt containing conj base CN⁻ of weak acid HCN.

$$K_{b}(CN^{-}) = \frac{K_{w}}{K_{a}(of HCN)} = \frac{1.0 \times 10^{-14}}{4.0 \times 10^{-10}} = 0.25 \times 10^{-4}$$

$$CN^{-} + H_{2}O \stackrel{K_{b}(CN^{-})}{\longleftrightarrow} HCN + OH^{-}$$

$$0.20 - x \qquad x \qquad x$$

$$K_{b}(CN^{-}) = \frac{[HCN][OH^{-}]}{[CN^{-}]}$$

$$0.25 \times 10^{-4} = \frac{x^2}{0.20 - x}$$

 $x \approx \sqrt{0.20 \times 0.25 \times 10^{-4}}$
 $x = 2.24 \times 10^{-3} M = [OH^-] = [HCN]$
pOH = 2.65; pH = 11.3 quite alkaline!!

Since HCN is such a weak acid, CN makes a good base, though still a weak base.

- C. Salts from Neutralizing Weak Base with Strong Acid. (Section 16.4)
 - 1. Cations are conj acids of that <u>weak</u> base: e.g., NH_4^+
 - 2. Anions: e.g., Cl, Br, I...
 - 3. These salts will produce <u>acid</u> solutions.
 - 4. If NH_4^+ is an acid, what is its K_a ?

$$K_{a}(NH_{4}^{+}) = \frac{K_{w}}{K_{b}(NH_{3})} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.55 \times 10^{-10}$$

5. What is the pH of 0.100 M NH₄Cl solution?

Then:

$$NH_4^+ + H_2O \stackrel{K_8(NH_4^+)}{\longleftrightarrow} NH_3 + H_3O^+$$

0.100 - x x x

 $NH_4Cl \longrightarrow NH_4^+ + Cl^-$

$$K_{a} = \frac{[NH_{3}][H_{3}O^{+}]}{[NH_{4}^{+}]}$$
$$5.55 \times 10^{-10} = \frac{x^{2}}{0.100 - x}$$

 $x \approx \sqrt{0.100 \times 5.55 \times 10^{-10}}$ $x = 7.45 \times 10^{-6} M$ $[H_3O^+] = 7.45 \times 10^{-6} M$ pH = 5.13 slightly acidic

- D. Salts from Neutralizing Weak Acid and Weak Base. (Section 16.4)
 - 1. Cation is slightly acidic:

 NH_4^+

2. Anion is slightly basic:

Ac⁻, OC1⁻...

3. Produces \approx neutral solutions if:

 K_a (parent acid) $\approx K_b$ (parent base)

4. Example: NH_4Ac (ammonium acetate)

$$K_{a}(NH_{4}^{+}) = \frac{K_{w}}{K_{a}(NH_{3})} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.6 \text{ x } 10^{-10}$$

parent base is NH₃

$$K_{b}(Ac^{-}) = \frac{K_{w}}{K_{a}(HAc)} = \frac{10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

parent acid is HAc

Neutral solution!

Part Three: Solutions With More Than One Electrolyte

- A. The Common Ion Effect. (Section 16.5)
 - 1. Common-ion effect: the shift in an ionic equilibrium caused by the addition of another solute that provides an ion that takes part in the equilibrium.
 - 2. Example: Solution of weak acid plus soluble salt containing its conjugate base.
 - 3. Problem: A solution is prepared which is 1.0 M HAc and 0.50 M NaAc. What is its pH?

 $NaAc(aq) \longrightarrow Na^+(aq) + Ac^-$

0.50 M 0.50 M

 $HAc(aq) + H_2O \implies H_3O^+(aq) + Ac^-$

initial	1.0 <i>M</i>	$\approx 0.0 \ M$	0.50 M
at equilib	1.0-x	Х	0.50+x

$$\mathbf{K}_{a} = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]\left[\mathbf{A}\mathbf{c}^{-}\right]}{\left[\mathbf{H}\mathbf{A}\mathbf{c}\right]}$$

$$1.8 \times 10^{-5} = \frac{x(0.50 + x)}{1.0 - x}$$

Make assumption that 1.0 - $x \approx 1.0$ and $0.50 + x \approx 0.5$

 $1.8 \times 10^{-5} = \frac{x(0.50)}{1.0}$ $x = 3.6 \times 10^{-5} M$ $[H_3O^+] = 3.6 \times 10^{-5} M$ $[Ac^-] = 0.50 + x \approx 0.50 M$ $[HAc] = 1.0 - x \approx 1.00 M$ $pH = -\log (3.6 \times 10^{-5}) = 4.44$

4. What would the pH of pure 1.0 *M* HAc have been?

 $[H_3O^+] = \sqrt{1.0 \times 1.8 \times 10^{-5}} = 4.24 \times 10^{-3} M$

pH = 2.37 (more acidic!)

- 5. Adding the conjugate base Ac in the form of the salt NaAc raised pH by 2 points, making solution less acidic.
- 6. Common ion effect means effect of having Ac⁻ ions from two different sources:
 - HAc
 - NaAc

(two electrolytes have Ac in common)

- 7. Solution of weak base plus soluble salt containing its conjugate acid.
- 8. Example: A solution which is 0.20 *M* $NH_3(aq)$ and 0.30 *M* $NH_4Cl(aq)$. What is its pH?

$$NH_4Cl(aq) \longrightarrow NH_4^+(aq) + Cl^-$$

	$NH_3(aq) + H_2O$	$\stackrel{K_{b_{A}}}{\longleftrightarrow} \operatorname{NH}_{4}^{+}(aq)$) + OH ⁻
initial	0.20 M	0.30 M	≈0 M
at equilib	0.20-x	0.30+x	Х

$$K_{b} = \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left[NH_{3}\right]} = 1.8 \times 10^{-5}$$
$$\frac{x(0.30 + x)}{0.20 - x} = 1.8 \times 10^{-5}$$
$$\frac{0.30x}{0.20} \approx 1.8 \times 10^{-5}$$
$$x = 1.2 \times 10^{-5} M$$
$$[OH^{-}] = 1.2 \times 10^{-5} M$$

$$[NH_4^+] \approx 0.30 M$$

$$[NH_3] \approx 0.20 M$$

$$pH = ?? \qquad [H_3O^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{1.2 \times 10^{-5}} = 8.33 \times 10^{-10} M$$

$$pH = 9.08$$

- B. Buffer Solutions. (Section 16.6)
 - 1. The two previous examples were, in reality, <u>buffer solutions</u>.
 - 2. Buffer solutions are those which resist changes in pH when other acids or bases are added.
 - 3. Prepare by mixing solution of:
 - a. weak acid and its salt in comparable amounts.

```
example - HF and NaF (acidic buffer)
```

OR:

b. weak base and its salt in comparable amounts.

example - NH₃ and NH₄Cl (basic buffer)

4. Calculating the pH of an acidic buffer:

$$\begin{aligned} \frac{\left[H^{+}\right]\left[A^{-}\right]}{\left[HA\right]} &= K_{a} \\ \left[H^{+}\right] &= K_{a} \frac{\left[HA\right]}{\left[A^{-}\right]} \\ \left[H^{+}\right] &= K_{a} \frac{\left[acid\right]}{\left[salt\right]} \\ &-\log\left[H^{+}\right] &= -\log K_{a} - \log\frac{\left[acid\right]}{\left[salt\right]} \\ &pH &= pK_{a} - \log\left(\frac{\left[acid\right]}{\left[salt\right]}\right) \end{aligned}$$

Henderson-Hasselbach Equation:

 $pH = pK_a + log\left(\frac{[salt]}{[acid]}\right)$

Use it: A buffer solution is 1.0 M HF and 0.5 M NaF. What is pH? K_a of HF is 7.2 × 5. 10-4.

$$[acid] = 1.0 M \quad [salt] = 0.5 M$$
$$pH = pK_a + log\left(\frac{[salt]}{[acid]}\right)$$
$$= -log(7.2 \times 10^{-4}) + log (0.5/1.0)$$
$$= 3.143 + (-.301)$$
$$pH = 2.842$$

6. Special important case: When [acid] = [salt].

$$pH = pK_a + \log(1)$$
$$pH = pK_a$$

Therefore, the pK_a of an acid tells us approximately the pH of its buffer solution.

7.

For basic buffers: $pOH = pK_b + log\left(\frac{[salt]}{[base]}\right)$

- Buffering Action. C.
 - Now let's demonstrate the buffering action: 1.
 - Prepare 500 mL of buffer solution which is 1.00 M acetic acid and 1.00 M a. sodium acetate. Calculate pH.

$$HAc + H_2O \rightleftharpoons H_3O^+ + Ac^-$$

[acid] = [salt], so:

 $pH = pK_a = -log(1.8 \times 10^{-5}) = 4.74$

b. Add 1.00 gram of NaOH to this buffer solution. What is new pH?

	$\frac{1.00 \text{ g}}{40.0 \text{ g/mol}}$	= 0.025 mol;	$\frac{0.025 \text{ mol}}{0.500 \text{ L}}$	= 0.050M		
		$HAc + H_2O$	= H ₃ O ⁺ +	Ac		
before NaOH		1.00 <i>M</i>	1.8×10^{-5}	1.00 <i>M</i>		
after OH ⁻ added and new equili attained		1.00 - 0.05	?	1.00 + 0.05		
pH = 4.74	$pH = 4.74 + \log\left(\frac{[salt]}{[acid]}\right)$					
	$= 4.74 + \log\left(\frac{1.05}{0.95}\right) = 4.74 + 0.0435$					
new pH =	4.78 - haro	dly changed at	all!!			

c. Instead suppose we had added 2.50g HClO₄. What is new pH?

 $\frac{2.50 \text{ g}}{100.4 \text{ g/mol}} = 0.0250 \text{ mol}; \qquad \frac{.0250 \text{ mol}}{500 \text{ L}} = 0.0500 \text{ M}$ Now: [acid] = 1.00 M + 0.0500 = 1.05 M

$$[salt] = 1.00 \ M - 0.0500 = 0.95 \ M$$
$$pH = 4.74 + \log\left(\frac{0.95}{1.05}\right) = 4.74 - 0.0434$$
new pH = 4.70 - hardly changed at all again!!

2. For comparison, what if we added 2.50 g HClO_4 to 500 mL of simply 1.00 *M* HAc? (not a buffer solution)

 $HAc + H_2O \implies H_3O^+ + Ac^-$

before HClO₄	1.00 M	1.8×10^{-5}	1.8×10^{-5}
after HClO ₄	1.00	0.0500 M	↑ no conjugate base to react with

 $[H^+] = .0500 M; pH = 1.30$

Almost all [H⁺] new comes from the strong acid, not weak.

- 3. Try a basic buffer:
 - a. Prepare 1.000 L of 0.500 M NH₃ and 0.400 M NH₄Cl. What is pH? K_b of NH₃ is 1.8×10^{-5} .

$$pOH = pK_b + log\left(\frac{[salt]}{[base]}\right)$$

$$= 4.74 + \log\left(\frac{0.400}{0.500}\right) = 4.74 - 0.0969$$

pOH = 4.64 so pH - 14 - pOH = 9.36

b. Now add 2.0 g NaOH. What is new pH?

$$\frac{2.0g}{40.0 \text{ g/mol}} = 0.050 \text{ mol in } 1 \text{ L} = 0.050 \text{ M}$$

$$NH_3 + H_2O \implies OH^+ + NH_4^+$$
before
$$0.500 M \qquad 1.8 \times 10^{-5} \quad 0.400 M$$

$$\uparrow$$

$$OH- \text{ reacts with strongest}$$
acid present & neutralizes part
after
$$0.500 + .050 M \qquad 0.400 - .050 M$$

$$pOH = pK_b + log\left(\frac{0.350}{0.550}\right)$$

 $pOH = 4.54$
 $pH = 14 - 4.54 = 9.45$ - little change

Part Four: Titration Curves

- A. Strong Acid/Strong Base Curve. (Section 16.7)
 - 1. Titration curve is plot of pH versus volume of acid or base added.
 - 2. Example: Start with 100.0 mL of 0.100 *M* HCl. Begin adding 0.100 *M* NaOH and plot pH.

	Titration Data for 100.0	mL of 0.100 M HCl Ver	sus NaOH
mL of 0.100 <i>M</i> NaOH Added	mmol NaOH Added	mmol Excess Acid or Base	pH
0.0	0.00	10.0 H ₃ O ⁺	1.00
20.0	2.00	8.0	1.18
50.0	5.00	5.0	1.48
90.0	9.00	1.0	2.28
99.0	9.90	0.10	3.30
99.5	9.95	0.05	3.60
100.0	10.00	0.00 (eq. pt.)	7.00
100.5	10.05	0.05 OH-	10.40
110.0	11.00	1.00	11.68
120.0	12.00	2.00	11.96
© 2004 Thomson/Brooks Cole			

3. Plot:

- 4. Note: Curve is so vertical at equivalence point that mere drops of NaOH cause pH to change several units.
- 5. One desires entire indicator color change to be in this vertical region.
- 6. Thus, just a drop or two will produce complete color transition.
- 7. Look at the following table. What other indicators would work here?

	Range a	11111 00	107 CI.	minges	09 301		pH So		Duse 1	mmm	43			
Indicators	1	2	3	4	5	6	7	8	9	10	11	12	13	
methyl orange	**-	red	•						yellow					
methyl red			red		4					yellow				
bromthymol blue			y	ellow			~ ,				blue			
neutral red				red			-				ye	llow		
phenolphthalein				cc	olorless			4		•	bright p	oink		colorless beyond 13.

8. Problem: strong acid/strong base titration.

Titrate 200.0 mL of 0.500 M HBr with 0.400 M KOH.

a. What is pH at the start of the titration?

pH of 0.500 M HBr $[H^+] = 0.500 M$ pH = -log(0.500) = 0.301

b. What is pH after 50.0 mL of base added?

Start:200.0 mL * 0.500 M HBr = 100.0 mmol acidAdd:50.0 mL of 0.400 M KOH = 20.0 mmol base

OH will neutralize an equivalent amount of acid, so will have left only 80.0 mmol acid.

 $[H^+] = 80.0 \text{ mmol acid}/250.0 \text{ mL tot vol} = 0.32 \text{ M}$ pH = -log(0.32) = 0.49

B. Weak Acid/Strong Base Titration Curve. (Section 16.7)

- 1. Start with 100 mL solution of the acid 0.100 M HAc. Add 0.100 M solution dropwise.
- 2. Titration data:

	0.100 M NaOH						
	mL 0.100 M mmol Base NaOH Added Added		mmol Excess Acid or Base	pН			
0.0 mL		0	10.0 CH ₃ COOH	2.89			
20.0 mL		2.00	8.00	4.14			
50.0 mL		5.00	5.00	4.74			
75.0 mL	buffered	7.50	2.50	5.22			
90.0 mL	region	9.00	1.00	5.70			
95.0 mL		9.50	0.50	6.02			
99.0 mL	ļ	9.90	0.10	6.74			
100.0 mL		10.0	0 (equivalence point)	8.72			
101.0 mL		10.1	0.10 OH-	10.70			
110.0 mL		11.0	1.0	11.68			
120.0 mL		12.0	2.0	11.96			

Titration Data for 100.0 mL of 0.100 M CH₃COOH with

- 3. Let's calculate one of these points for practice. Calculate pH after adding 20.0 mL of NaOH solution.
 - Start: 100.0 mL of 0.100 M HAc = 0.0100 moles HAc

Add: 20.0 mL of 0.100 M NaOH = 0.0020 moles NaOH

Then:
$$[HAc] = \frac{0.0080 \text{ moles}}{120 \text{ mL}} = 0.0666 M$$

$$[Ac^{-}] = \frac{0.0020 \text{ moles}}{120 \text{ mL}} = 1.66 \times 10^{-2} M$$

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[Ac^{-}\right]}{\left[HAc\right]}$$

$$1.8 \times 10^{-5} = \frac{\left[H_{3}O^{+}\right]1.66 \times 10^{-2}}{0.0666}$$

$$[H_{3}O^{+}] = 7.20 \times 10^{-5} M \text{ so } pH = 4.14$$

- Plot: 12 11 10 Indicator 9 Equivalence point range 8 7 pH 6 5 4 3 Buffered solution 2 (CH₃COOH/NaCH₃COO) 1 0 0 10 20 30 40 50 60 70 80 90 100 110 120 mL NaOH added
- 5. Problem: Titrate 200.0 mL of 0.500 M KHP (weak acid, $K_a = 1.0 \times 10^{-4}$) with 0.500 M NaOH.
 - a. What is the pH at the start of the tiration?

KHP is simply a weak acid, so treat as a pure solution of a weak monoprotic acid.

$$[H^+] \approx \sqrt{C_A K_a} \approx \sqrt{0.500 * 1.0 \times 10^{-4}}$$

 $[H^+] = 0.00707 \text{ M}$
 $pH = 2.15$

b. What is the pH after 50.0 mL of base has been added?

The base converts some of the weak acid to its conjugate base (salt), so you have a <u>buffer solution</u>.

Start: 200 mL * 0.500 M = 100 mmol weak acid

Add: $50 \text{ mL} * 0.500 \text{ M} = 25 \text{ mmol OH}^{-1}$

Use buffer equation:

$$pH = pK_a + \log([salt]/[acid])$$

= -log(1.0 x 10⁻⁴) + log(25mmol/100 - 25 mmol)
= 4 - 0.477 = 3.52

4.

- C. Weak Acid with Weak Base Titration Curve.
 - 1. Example: HAc with NH_3 .
 - 2. Curve:

D. Titrate Weak Base with a Weak Acid:

- E. How Acid/Base Indicators Work. (optional)
 - 1. Indicator is a weak acid itself. Symbolize it HIn:

K _a (in)	
$HIn + H_2O \rightleftharpoons$	$H_3O^+ + In^-$
acid form	base form
of indicator	of indicator
(color 1)	(color 2)

pH where it changes $\approx pK_a$ of HIn.

2. Example: Bromothymol blue $K_a(in) = 7.9 \times 10^{-8}$; $pK_a = 7.1$

$$HIn + H_2O \Longrightarrow H_3O^+ + In^-$$

yellow

blue

Color depends on
$$\frac{\left[In^{-}\right]}{\left[HIn\right]}$$
 ratio:
if $\frac{\left[In^{-}\right]}{\left[HIn\right]} \ge 10$, then In⁻ color observed blue (pH ≥ 8)
if $\frac{\left[In^{-}\right]}{\left[HIn\right]} \le 1/10$, then HIn color observed yellow (pH ≤ 6)
3. Since $\frac{\left[H_{3}O^{+}\right]\left[In^{-}\right]}{\left[HIn\right]} = K_{a}(in)$
Ratio $\frac{\left[In^{-}\right]}{\left[HIn\right]} = \frac{K_{a}(in)}{\left[H_{3}O^{+}\right]} = depends on [H_{3}O^{+}]$

- 4. Add acid to solution, causes shift (\leftarrow), more HIn present.
- 5. Add base to solution, causes shift (\rightarrow) , more In present.
- 6. Midpoint of change is when:

$$\frac{\left[\mathrm{In}^{-}\right]}{\left[\mathrm{HIn}\right]} = 1 = \frac{\mathrm{K}_{\mathrm{a}}(\mathrm{in})}{\left[\mathrm{H}_{3}\mathrm{O}^{+}\right]}$$

Thus, when

 $[H_3O^+] = K_a(in), or$

$$pH = pK_a(in)$$

(for Bromothymol blue $pK_a(in) = 7.1$, i.e. neutral is midpoint)

7. Tables of indicators and their pK_a are available.