
Chapter 17
Ecometrics: A Trait-Based Approach to Paleoclimate
and Paleoenvironmental Reconstruction

Wesley A. Vermillion, P. David Polly, Jason J. Head, Jussi T. Eronen, and A. Michelle Lawing

Abstract Ecometrics is a trait-based approach to study
ecosystem variability through time. An ecometric value is
derived from describing the distribution of functional traits at
the community level, which may arise by environmental
filtering, extinction, or convergence. An ecometric relation-
ship describes the correspondence between spatially explicit
ecometric values and corresponding environmental variation.
Transfer functions and maximum likelihood approaches have
been developed with modern trait-environment relationships
to reconstruct paleotemperature, paleoprecipitation, and
paleovegetation cover given the distribution of functional
traits within a community. Because the focus for this
approach is on the traits and not on species, it is transferable
through space and time and can be used to compare novel
communities. In this paper we review the concepts and
history of ecometric analysis and then describe practical
methods for implementing an ecometric study.
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Summary

One of the factors that sort species geographically into
communities is the filtering of species by their functional
morphologies along climate and environmental gradients
(e.g., mammalian herbivores with higher molars eat more
gritty and abrasive vegetation and therefore more species
with higher molars live in places with more gritty and
abrasive vegetation), thus, the morphology has a direct
relationship with its environmental condition. In this sorting
process, the distribution of functional traits within a com-
munity moves toward an optimal environmental condition.
These functional traits may be described in terms of their
distributions within a community and descriptors of the
distribution of community level functional traits have been
defined as ecometrics (Eronen et al. 2010a; Polly et al.
2011). Thus, ecometrics are traits described at the commu-
nity level that have a relationship with environmental con-
dition. Ecometrics are spatially variable, because the
composition of species and traits in communities vary
through geography. If species are perfectly sorted, the trait
distributions in communities will parallel variation in the
environmental condition to which the traits are functionally
linked (i.e., the ecometric correlation equals one). If the
ecometric correlation is strong, one can estimate the most
likely environmental condition given a specific ecometric
value using a transfer function or likelihood estimation. If
the ecometric correlation is not strong, one may still be able
to estimate the most likely environmental condition, but the
likelihood surface would be more flat, which would produce
a more ambiguous reconstruction. The power of this
approach is that functional trait measurements are transfer-
able through space and through time, regardless of the
specific species that make up the community. For this rea-
son, ecometrics is a useful approach to reconstruct paleo-
climate and paleoenvironment (Damuth et al. 1992).
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Terms

Functional trait: a behavioral, biochemical, morphological,
phenological, physiological, or structural characteristic that
has a physical or chemical interaction with a specific envi-
ronmental factor. This characteristic is expressed as a phe-
notype of individual organisms and it is considered relevant
to the response of organisms to the surrounding abiotic
conditions. A functional trait is something that can be
observed and measured.

Geographic sorting: the process by which trait distributions
are arranged in geographic space along gradients of envi-
ronmental conditions.

Taxon free: not depending on taxonomic identity (i.e., it is a
descriptor based on trait values rather than on presence or
absence of particular taxa). For example, using palms as
indicators of frost-free conditions is a taxon-based approach,
whereas using counts of stomatal density as indicators of
carbon dioxide concentration is a taxon-free approach
(Beerling et al. 2011).

Ecometric value: a statistic summarizing the distribution of
a functional trait within a community at a single geographic
location. Means, variances, proportions, and extremes have
been used as descriptors in previous studies; however, any
parameter that describes a distribution of functional traits
may be used.

Ecometric patterning: geography, or spatial variation, of
ecometric values across communities. Perfect patterning
represents optimal distributions of populations and species.
The lack of patterning could represent a lack of useable
covariation, a mismatch between the trait and the environ-
ment, or it could result from the inappropriate choice of
environmental correlates.

Ecometric correlation: product-moment correlation between
ecometric variation and variation in the environmental con-
dition. High correlations evince a close match between the
functional requirements of local communities and their abiotic
condition.

Ecometric likelihood: the probability of finding a particular
environmental condition given the ecometric value of a
community at any single geographic location.

Ecometric load: the amount of mismatch between the dis-
tribution of functional traits and the selective optimum for
the local environment. High loads may indicate risk to
changing environmental conditions. Note that high ecomet-
ric loads can be present even with high ecometric correla-
tions if traits are weakly but consistently sorted.

Ecometric optimum: the optimal distribution of an eco-
metric trait in a particular environment. The optimum is more
likely to be a distribution rather than a single trait value,
especially in locally heterogeneous environments (e.g., a
savannah habitat favors both large and small body sizes).

Transfer function: a function that represents the relation-
ship between the ecometric trait values and a relevant
environmental variable.

Theoretical and Historical Background

Functional traits are features that organisms use to interact
with their environment and with other organisms (Diaz and
Cabido 2001; Violle et al. 2007). Functional traits of species
within a community ultimately mediate the relationship
between organisms’ morphology and their ecology and link
organisms to biotic and abiotic conditions present at par-
ticular geographic locations at a particular point in time
(Ricklefs and Travis 1980; Chapin 1993; Poff 1997). A cer-
tain combination of biotic and abiotic conditions will thus
favor traits that maximize an organism’s performance, either
through natural selection or geographic sorting. Natural
selection is an evolutionary process that acts on the variation
in a population, where individuals that thrive in their envi-
ronment produce the most offspring and disproportionately
share their traits with the next generation (Darwin and
Wallace 1858). Species that move geographically in
response to environmental change may follow an environ-
ment for which they are already adapted and form new
assemblages as a result (Jackson and Overpeck 2000). We
are not concerned with the trait values of particular species,
but with the distribution of traits within communities (e.g.,
mean, standard deviation, and range; Damuth et al. 1992).
Even weak sorting processes can produce trait gradients at
the community level, as has been demonstrated in climate
gradients in plant leaf traits (Wolfe 1979; Reich et al. 1997;
Wilf 1997; Wright et al. 2004; Royer et al. 2005; Wing et al.
2005; Cornwell and Ackerly 2009; Peppe et al. 2011), large
mammalian herbivores dental traits (Janis and Fortelius
1988; Damuth et al. 1992; Fortelius et al. 2002; Mendoza
et al. 2005; Damuth and Janis 2011; Eronen et al. 2010b,
2012), carnivoran locomotor traits (Polly 2010), snake
locomotor traits (Lawing et al. 2012), and mammal life
history, physiological, and range traits (Lawing et al. 2017).
The study of functional traits that have a relationship with
climate or environmental gradients at the community level
has been termed ecometrics to distinguish it from ecomor-
phology of particular species or clades (Eronen et al. 2010a;
Polly et al. 2011). Figure 17.1 shows a few examples of the
morphology of ecometric traits.
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The relationship between the distribution of functional
traits in a community and the corresponding environmental
factors in the local environment is likely to be complex. Some
trait-environment relationships favor a single ecometric
optimum in each local environment such that all species tend
to have the same trait value. Stomatal density on plant leaves

might be expected to have a single optimal value across all
members of a community because carbon dioxide concen-
trations and evapotranspiration conditions are the same for
all. However, locally heterogeneous environments are likely
to favor a heterogeneous ecometric optimum. For example,
savannah environments tend to favor a combination of large
body masses (for animals that can travel long distances to
procure food in a comparatively resource poor habitat and
defend themselves in the open) and small body masses (for
species that can subsist on the resources found in a limited
area and can find cover in grasses or tree tops). The nature of
the ecometric optimum will dictate how it should be mea-
sured. An optimum that favors a single trait value can always
be adequately represented with the community mean, but an
optimum that favors a complex distribution may be better
characterized by variance, skewness, or other measure.
Temporal variation in environmental conditions may also
shape the distribution of the ecometric optimum. For exam-
ple, Žliobaitė et al. (2016) recently showed that recurring
extreme conditions (like drought) were better predictors of
dental traits in Kenyan herbivores than average conditions,
indicating that recurring limiting conditions may be impor-
tant drivers of community functional trait distributions.

Historical Background

Bailey and Sinnott (1915) conducted the first study of
community-level functional traits. They showed plant com-
munities that have more leaves with ridges, or non-entire
margins, occur in moist temperate climates that experience
warm summers and cold winters. Conversely, plant com-
munities that have leaves with no ridges, or entire leaf
margins, occur in dry climates including tropic, alpine and
arctic regions, moors, steppes, deserts, saline situations, and
other physiologically dry climates. They used the proportion
of species within a community with a specified phenotype as
their metric to describe the community, what we refer to as
an ecometric trait value.

Since Bailey and Sinnott (1915) demonstrated the varia-
tion in community leaf shape across a temperature gradient,
researchers have used leaf shape and other traits to recon-
struct paleotemperature. Most notably, Wolfe (1979, 1993)
quantified the relationship between leaf margins and tem-
perature, which led to many quantitative paleoclimate
reconstructions from leaf assemblages, called leaf-margin
analysis (e.g., Wilf 1997; Greenwood et al. 2004;
Yang et al. 2007). Contemporary to and since Wolfe’s
work, researchers have been interested in identifying the
function of leaf teeth (see Royer and Wilf (2006) for a his-
tory and discussion).

The ecometric approach has grown out of the formalization
by Damuth et al. (1992) of “taxon-free” characterizations of
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Fig. 17.1 A, Example of an entire leaf margin from a live oak leaf
modified from an image by Jeremy Stovall. The leaf margin is entire
when its margin is not punctuated. An easy way to determine if the
margin is entire or to quantify the entirety of the margin is to overlay the
image of the leaf with an oval, as is depicted in the figure with the red
outline. Entire leaf margins are characteristic of hotter environments. B,
Example of a non-entire leaf margin from a dwarf birch modified from
an image by Fox Valley. Non-entire leaf margins are characteristic of
cooler environments. C, Example of hypsodonty in a rodent modified
from Tapaltsyan et al. (2015). Hypsodonty is measured by the crown to
root ratio. Hypsodont rodents are grazers and are characteristic of arid
environments with more gritty vegetation. D, Example of brachydonty
in a rodent modified from Tapaltsyan et al. (2015). Brachydont rodents
are browsers and are found in more wet environments with mixed
vegetation. E, Example of a calcaneum from a raccoon modified from an
image on boneid.net. Gear ratio is measured on the calcaneum and is the
ratio of the length of the sustentacular facet to the total length of the
calcaneum. The gear ratio for the raccoon is typical of a plantigrade
animal and is characteristic for animals living in high vegetation cover
(e.g., dense woodlands). F, Example of a calcaneum from a panther
modified from an image on boneid.net. The gear ratio in the panther is
typical of a digitigrade animal and is characteristic of animals that are
adapted to run through open habitats
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animal communities. These authors were interested in under-
standing long-term evolutionary and ecological processes.
They argued that distributions of traits such as body size,
dietary type, locomotor specialization, and predator-to-prey
ratios serve as descriptive indices that can be used to compare
important aspects of community function in the Paleozoic,
Mesozoic, and Cenozoic or between faunal and floral realms
in a single time period, because they capture information about
productivity, resource availability, community physiognomy,
and resource partitioning, comparisons that cannot be made if
community function is characterized by the species that
dominate it (such as grassland communities). They noted that
what makes an approach “taxon-free” is the focus on distri-
butions of traits for inferring paleoenvironment (i.e., the eco-
metric distributions), not the inferential pathways that lead to
the understanding of the trait-environment relationship, which
may be founded on taxon-based observations. The fact that
many traits have a limited phylogenetic distribution (e.g., teeth
are limited to vertebrates, leaf stomata are limited to plants)
means that taxon-free approaches, including ecometrics, are
not completely free of time, place, and taxon, but comparisons
between communities that have no species in common are
nevertheless possible. Andrews and Hixson (2014) recently
reviewed and critiqued taxon-free approaches.

Ecometric Examples

One of the best-understood ecometrics is the molar crown
height of herbivorous large mammals. Different diets vary in
the amount of wear they produce: species that eat abrasive or
tough foods, or foods of poor nutritive quality, usually have
hypsodont teeth, which have a high crown relative to the root.
Hypsodonty is a morphology adaptated to high rates of tooth
wear (Janis and Fortelius 1988). Proximal factors including
abrasiveness of plant material, such as phytolith content and
ambient grit and dust, are therefore likely to play a role in
selection for tooth crown height (Janis and Fortelius 1988;
Strömberg et al. 2013; Fortelius et al. 2014). Tooth crown
height correlates with precipitation in the modern world and
geologic past (Fortelius et al. 2002; Eronen et al. 2010a, b;
Fortelius et al. 2014). Eronen et al. (2010b) used regression
trees to show that there is a strong correlation (65.8%) between
crown tooth height and regional precipitation, between diet
and precipitation (66.5%), and when diet and tooth crown
height are combined (74.2%). Community hypsodonty levels,
therefore, have a strong correlation with annual precipitation,
which affects both plant tissue properties and the amount of
local grit (Fortelius et al. 2014) and may be used as a paleo-
precipitation proxy that constrain regional details about veg-
etation patterns and climate models (Fortelius et al. 2002).

Together with other dental traits, hypsodonty can addi-
tionally be used to estimate more indirect properties like net

primary productivity (Liu et al. 2012) or more proximate
ones like production of volcanic ash (Strömberg et al. 2013).
Such complex combinations of proximal and distal envi-
ronmental factors are likely to be associated with all eco-
metric traits (Polly and Head 2015). Žliobaitė et al. (2016)
showed that dental traits are closely linked to vegetation
greenness (normalized difference vegetation index [NDVI])
in addition to precipitation and temperature. This is reas-
suring as net primary productivity (NPP) estimates used in
Liu et al. (2012) are computed using precipitation as an input
and are highly dependent on it. NDVI is a direct observation
of vegetation greenness and is independent of precipitation
and temperature measurements. The NDVI depends on cli-
matic conditions and reflects NPP and thus the availability
and quality of herbivores’ food. Using data from present-day
seasonal environments in Africa, Žliobaitė et al. (2016)
demonstrate that the dental traits show strong correlations to
non-availability of preferred plant foods (e.g., during dry
seasons or longer dry periods), rather than the properties of
average foods consumed. This is the main functional link
between climate and herbivore teeth and closely follows the
suggestion by Owen-Smith (2002) (see also discussion in
Liu et al. 2012 and Fortelius et al. 2014).

Other dental characteristics (such as dental wear patterns,
dental structure, and tooth crown complexity) have also been
used as estimates of diet in mammals (Fortelius and
Solounias 2000; Evans et al. 2007; Eronen et al. 2010a;
Wilson et al. 2012; Evans 2013; Saarinen 2014; Saarinen
and Karme 2017). Wilson et al. (2012) used the dental shape
descriptor of orientation patch count (OPC), which is a
measure of dental occlusal complexity that correlates well
with feeding ecology in extant mammals, to determine the
paleodiet of the extinct mammalian clade Multituberculata.
They were able to identify a shift from a more carnivorous or
omnivorous diet among early multituberculates into a more
herbivorous diet around 85 million years ago. This shift
coincided with the rise of angiosperms. Since vegetation
patterns are driven by climatic conditions, these other dental
characteristics could potentially be used as climatic proxies.
Evans (2013) reviewed dental shape descriptors, which can
be used in ecometric studies and will be useful for describing
environmental conditions in the past.

Another well-studied trait in both endothermic and
ectothermic vertebrates is body size, initiated by the work of
Bergmann (1847). Mean body size in non-flying mammals
has been shown to increase as temperature decreases, and
therefore mean body size increases geographically toward the
poles (Rodriquez et al. 2008; Eronen et al. 2010a). It has also
been documented in ectothermic animals that body size is
positively correlated with mean ambient temperature
(Makarieva et al. 2005). This has allowed for the use of
ectothermic animals, to be used to estimate paleotemperatures
(Head et al. 2009; Polly et al. 2011; Head et al. 2013).
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Examples of ecometrics in plants, birds, mammals, and
snakes are detailed in Table 17.1, showing the functional trait
and the environmental condition for which it is related.

Ecometric Patterning

Geographic sorting of traits along environmental gradients is
one of three processes by which ecometric patterning can
emerge, along with evolutionary adaptation and extinction
(Polly and Head 2015). Environmental gradients are shown to
filter species geographically (Belmaker and Jetz 2012). The
filtering effects of environmental gradients may sort species
geographically by their traits, resulting in local communities
with similar trait values that are correlated with local envi-
ronmental conditions. The ecometric approach was formal-
ized as a way of synthesizing data from the ecological
present and geological past to measure responses of
ecosystems to climate change in order to better predict the
risks posed by global change over the next millennia (Ero-
nen et al. 2010a; Polly et al. 2011). It has been used to
investigate the impacts and risk of extinction (Wilson et al.
2012; Polly and Sarwar 2014; Polly and Head 2015) and to
understand non-ecological processes (Lawing et al. 2017).
The relative roles of geographic sorting, local adaptation,
and extinction have been investigated by process-based
simulation (Polly and Head 2015). Ecometrics and its pale-
ontological precursors have been used to estimate paleobiotic
conditions using traits (Damuth et al. 1992). For example,
ectotherm body size (Head et al. 2009, 2013) and leaf shape
(Wolfe 1993; Little et al. 2010) have been used as pale-
othermometers and tooth crown height, hypsodonty, has
been used to estimate paleoaridity (Fortelius et al. 2002).

The ecometric approach may be used to forecast
community responses to anthropogenic climate change
(Barnosky et al. 2017). The concept of ecometric load, which
is the mismatch between community-level functional trait

values and optimal performance, potentially allows us to
estimate the vulnerability of a community to climate or
environmental change when the optimal performance of the
traits along an environmental gradient is known (Polly and
Head 2015). If changing conditions increase the ecometric
load, communities are more likely to become vulnerable.

Methods for using ecometrics to characterize paleocli-
mate and paleoenvironments have been expanded exten-
sively. For example, Head et al. (2009) made a significant
push forward on the construction of ecometric models and
the application of the transfer function. Instead of solely
using correlative models for inference, they used a mecha-
nistic model from the physiology of poikilothermic meta-
bolism along with modern observations of boid snakes and
the temperatures they live in to predict paleotemperature at
58–60 Ma (Paleocene) in the neotropics. They found a
minimum mean annual temperature of 30–34°C was needed
in the Cerrejon Formation in Colombia during this time in
order for the large boid, Titanoboa, to survive. This is sev-
eral degrees warmer than the mean annual temperature of
26–27°C found in that area of the world.

The effects of faunal sampling, extinction, and extirpation
on ecometric patterns were investigated by Polly and Sarwar
(2014) using resampling and rarefaction methods with cal-
caneum gear ratios. Gear ratios are related to the locomotor
style of an animal and, in turn, related to the animal’s habitat
(see also Curran 2018). Polly and Sarwar (2014) showed that
extinction, extirpation, and range change have minimal
effects on ecometric correlations when they affect less than a
quarter of the species in North American carnivoran com-
munities. If the correlation between gear ratio and an envi-
ronmental variable, such as vegetation cover, is either high or
low, then extinction of more than 25% of species will alter
the correlations, but the strongly and weakly correlated
environmental variables will still be distinguished. Local
extinctions, extirpation, caused a decline in ecometric cor-
relations; however, up to 75% of species could be lost this

Table 17.1 Examples of ecometrics in plants, birds, mammals, and snakes. Environmental conditions are mean annual temperature (MAT),
annual precipitation (AP), atmospheric carbon dioxide (pCO2), net primary productivity (NPP), trophic position (TP), dietary classification (DC),
and vegetation cover (VC)

Group Functional Trait Environmental
Condition

Citation

Plants Leaf margin MAT Wolfe (1979)
Plants Leaf shape MAT Wolfe (1990), Royer et al. (2005), Peppe et al. (2011)
Plants Stomata counts pCO2 Beerling et al. (2002)
Birds Body mass MAT Meiri and Dayan (2003)
Mammals Body mass MAT Damuth et al. (1992)
Mammals Tooth morphology AP; TP; DC; NPP Evans (2013)
Ungulates Hypsodonty AP Fortelius et al. (2002)
Carnivorans Limb proportion VC; MAT; AP Polly (2010)
Snakes Body length MAT Head et al. (2009)
Snakes Tail proportion VC Lawing et al. (2012)
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way before ecometric patterns were completely lost. This
result suggested that even in fossil faunal assemblages with a
small proportion of the total fauna, the ecometric patterns
may still be recoverable if enough independent assemblages
are considered. These authors also showed that global
extinction and large-scale extirpation have a less predictable
effect on ecometric correlations than do local extinctions.
How the ecometric pattern is affected by global extinction
depends on which organisms go extinct and what their eco-
metric correlation was. So, if a species, such as a polar bear, is
a large contributor to local ecometric means, and if its range
is correlated to an extreme of the environmental variable,
such as zero vegetation cover, then its extinction could drive
correlation up or down dependent on the circumstance.

Ecometric Modeling

Polly et al. (2016a) used stochastic modeling to assess the
role of population level processes in the formation of eco-
metric patterns. They systematically varied parameters like
local selection intensity, probability of dispersal, probability
of extirpation, gene flow, and ancestral trait value to under-
stand the interaction between geographic sorting processes,
trait selection, and clade dynamics in producing ecometric
patterns. These authors introduced the concept of ecometric
load, an analogy with genetic or mutational load, as the
mismatch between the distribution of functional traits in a
community (or a group of communities) and the selective
optimum for those traits in the local environment (Polly et al.
2016a). In cases where ecometric load can be measured, it
may help predict whether environmental change is likely to
make a community more vulnerable to reorganization or
extinction. Interestingly, their models frequently produced
parallel trait evolution in different clades, rather than the
kinds of phylogenetically correlated trait distributions that are
observed in many clades. For example, calcaneum gear ratio,
which has strong ecometric sorting in the real world, also has
a strong phylogenetic correlation with about 60% of its
variance being explained by phylogeny (Polly et al. 2017).
The lack of phylogenetic correlation in the models suggested
that empirically observed examples of trait-based phyloge-
netic sorting of species into communities in the modern world
results from large-scale turnover in environments.

Ecometrics and Ecogeographical Rules

Ecogeographical rules often describe patterns that we would
classify as ecometric. Ecogeographic rules are hypotheses about
how morphological variation changes along environmental or

geographic gradients. They may be rules regarding within-
species variation or between-species variation. Across species
variation has been themost important component of variation to
consider for the ecometric approach.

The most notable ecogeographic rule is Bergmann’s Rule
(Bergmann 1847; Blackburn et al. 1999). It states that body
mass correlates with temperature and this has been demon-
strated both intraspecifically (Ashton 2002; Freckleton et al.
2003) and interspecifically (Blackburn and Hawkins 2004;
Diniz-Filho et al. 2007). Other ecogeographical rules include
Allen’s rule (length of appendages in endotherms positively
correlate with temperature; Allen 1877), Gloger’s rule
(pigmentation is correlated with humidity within endother-
mic species; Gloger 1833), Fox’s rule (among small Aus-
tralian mammals during community assembly, it is more
likely that species entering a community will represent dif-
ferent functional groups; Fox 1987) and Jordan’s rule (there
is an inverse relationship between meristic characters and
water temperature; Lincoln and Clark 1982). See Gaston
et al. (2008) for a review of ecogeographic rules.

Implementing and Ecometric Analysis

In order to document the existence of an ecometric pattern,
three types of data are required: geographic ranges of spe-
cies, abiotic conditions, and functional trait measurement of
species. The spatial resolution of the data and the density of
sampling of traits and environmental variables within local
communities will depend on the scale of the functional
relationship and on the question being addressed. Here we
focus on ecometric patterns that emerge at regional, conti-
nental, or global scales, but the same principles could be
applied to patterns that emerge on landscape scales. To
simplify large-scale analysis, we recommend measuring trait
distributions by sampling the trait once for each species
making up the local community and making the assumption
that each species has the same trait value everywhere it
occurs. Finer scale analyses might benefit from sampling the
frequencies of traits among the individuals in a local com-
munity to account for variation in abundance of the species
making up the community, or from measuring the local
values of traits within each community. Because of our
choice of scale, our analysis requires information about the
geographic range where species are known to live or where
they have the potential to live. For our purposes, local
community composition includes all the species whose
ranges overlap at a sampling point, an assumption that is
reasonable for coarse scale analysis, but which might be
unreasonable for a finer-scale landscape analysis.
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Geographic Range

Geographic range data are often available from field guides
and are becoming more readily available online as spatial
shapefiles. For example, NatureServe (www.natureserve.org)
and International Union for Conservation of Nature host a
website that has an option to download spatial data that depict
the ranges of species as polygons (www.iucnredlist.org). The
ranges are typically drawn by experts and represent the
general areas of occupation of a species. Species occurrences
may be used to draw range maps, if no range maps are
available, so long as the occurrence data are relatively ran-
domly distributed across the entire environmental range of
the species. Once the geographic ranges are obtained, a
sampling scheme for measuring the trait-environment rela-
tionship needs to be determined. Sampling sites may be
systematically or randomly scattered across the extent of the
study area. A list of species that occur at each sample site
should then be compiled. Some sources of data for geo-
graphic ranges include the NatureServe and IUCN for
mammals, birds, amphibians, coral and some fishes (www.
natureserve.org, www.iucnredlist.org). Plant distribution data
for North America and Europe are available from USDA
PLANTS database (plants.usda.gov) and from the European
Environmental Agency (eea.europa.eu). The Global Biodi-
versity Information Facility contains species occurrences
(longitude and latitude) of both plants and animals (www.gbif.
org). A geographic information system (GIS) is useful to work
with geographic ranges and other geographic information.
Open source systems are available, such as QGIS, DIVA, or
evenR.Proprietary software is also available; themost popular
products are developed through ESRI. Researchers should
check with their institutions for GIS services and licensing.

Environmental Data

Environmental factors can be measured directly in the field at
sample sites or collected from maps representing the geo-
graphic variability of the environmental condition. For every
sample site, the environmental variables that are functionally
linked to the trait of interest should be sampled. PRISM Cli-
mate Group and WorldClim databases provide relatively
high-resolution datasets of climate for the globe (www.prism.
oregonstate.edu and www.worldclim.org). Global potential
vegetation is available from UW SAGE (www.washington.
edu/research/tools/sage/); global historical vegetation cover-
age is available from Oak Ridge National Laboratories
(https://doi.org/10.3334/ornldaac/419); global digital eleva-
tion models and annual productivity are available fromNASA
(earthobservatory.nasa.gov/) and USGS (nationalmap.gov/

elevation.html); global soil distributions are available from
International Institute for Applied Systems Analysis (www.
iiasa.ac.at/); global land cover is available from the European
Space Agency (www.esa.int/); global nitrogen deposition is
available from Oak Ridge National Laboratory (www.ornl.
gov); global freeze and thaw status is available from the
National Snow and Ice Data Center (nsidc.org/); global ter-
restrial ecosystems are available from World Wildlife Fund
(www.worldwildlife.org). In addition to all of these data
sources, there are numerous others to find online and in the
published literature. One may use any reliable map as a ref-
erence for the environmental condition at sample localities.

Functional Traits

Functional traits, such as body size, locomotor strategy,
dentition, or shape, should be measured or categorized for
each species that has the functional trait of interest within
each community. Ideally, one would measure the traits from
all the species that occur at each sampling location; however,
a species value may be used for all of the locations in which
that species occurs. Species values for traits may be collected
from measuring specimens directly or from obtaining mea-
surements from the published literature. Typically only one
value for each species is necessary; however, if there is strong
geographic variation, the analysis can include species values
that are geographically explicit. If the functional trait is
variable within species to the extent that it causes perfor-
mance differences, then individuals should be sorted along
the environmental gradient, but if that variation does not
cause performance differences with respect to the environ-
mental gradient, then it is reasonable to ignore the within
species variation. The functional traits may be continuous
(e.g., size, shape, or ratios of morphological elements) or
categorical (e.g., locomotor strategy, substrate use, or denti-
tion type) in nature.

The equipment necessary for collecting the measurements
of functional traits greatly varies depending on the trait of
interest. One may collect trait data from published literature,
and thus, no equipment is necessary. If measurements are
taken directly from specimens, the researcher might want to
photograph specimens or use calipers to take direct mea-
surements from specimens. If photographs are taken to
investigate specimens, the orientation of the camera and the
orientation of the specimen should be consistent for all
photographs and photos should include a scale. For classi-
fications or counts, no equipment is necessary, unless the
researcher requires magnification. For geometric morpho-
metrics, a camera and scale bar, a 3D scanner, or other
digitizing equipment is necessary.
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Data Analysis

For each sample site, a list of the relevant species that
co-occur there must be assembled. The distribution of
functional traits in the community members can then be
measured. For the remaining examples, we will use the trait
mean to summarize that distribution, but other distributional
statistics such as variation, standard deviation, range, or
median may be appropriate depending on the expected
relationship between the trait and its associated environ-
mental parameter. It is useful to assemble data from all
sampling sites into a table with the mean trait values and the
associated environmental values in columns and sites in the
rows. If there is more than one environmental variable
associated with the trait of interest, then in this table each
variable requires its own column. Ecometric correlation can
easily be calculated from this table as the Pearson’s corre-
lation coefficient (r), or a nonparametric equivalent, of the
two columns as a measure of correspondence between the
environmental parameter and the ecometric trait. If the per-
formance relationship between trait and environment is
known, the ecometric load can be calculated as the mean
absolute difference between the observed trait means and the
expected values for all rows in the table (i.e., the residual
between the observed and expected values). Note that eco-
metric load is largely independent of the ecometric correla-
tion, except insofar that a weak correlation requires at least
some mismatch between performance optimum and realized
trait mean and thus cannot have a load of zero (Polly et al.
2016a). Ecometric patterns with strong correlations can also
have strong loads. Establish a transfer function to determine
the specific relationship between the two variables (i.e., it
estimates function coefficients). If there are fossil localities
to estimate past abiotic conditions, then apply the transfer
function to the mean of the functional traits measured from
the fossils at a single fossil site. Calculate confidence limits
for the estimated abiotic condition.

Ecometric estimates of paleoenvironment can be made
from a regression-based transfer function or from a likeli-
hood distribution of environmental values given an observed
ecometric value. If regression-based methods are used,
reduced major axis (RMA) regression may be the most
appropriate if there is uncertainty in the independent vari-
able. Transfer functions are prediction equations derived
from regressing the environmental variable of interest onto
the predictive trait value. Different transfer functions are
used depending on the type of trait variable and the type of
environmental variable. Other considerations include the
type of predicted relationship between the trait and envi-
ronment and the statistical fitting procedures.

Transfer functions have been typically calibrated with
modern distributions of species and their functional traits.

For optimal use of the transfer function, for both recon-
structing abiotic condition and tracking trait distributions
through time, the functional trait should be either directly
fossilizable or able to be estimated from fossil specimens.
For example, hypsodonty may be estimated directly from
fossil specimens (Fortelius et al. 2002) and body size may be
accurately estimated from fragmentary skeletal and dental
remains (Alexander 1989; MacFadden 1990).

Strengths of Approach

Ecometrics allows us to quantify the dynamic relationships
between organisms and their environment. Arguably, the
primary strength is that ecometric traits are predictable and
transferable through space and time. Since ecometrics uses
taxon-free descriptors of community characteristics, it allows
for the comparison of community changes in the modern
world to those in deep time (Eronen et al. 2010a; Polly et al.
2011). The species that make up the community in the
modern world do not need to be the same as those that make
up the paleocommunity; the only thing the two communities
need to share is the functional trait under study. Because
ecometrics focuses on traits that are directly related to envi-
ronmental conditions, it can be applied to questions across
geographic and temporal scales (Wolfe 1994; Weiher et al.
1998; Thompson et al. 2001; Fortelius et al. 2002). Some
examples of questions include how have environmental
conditions changed in the past, what are the past rates of
change in environmental conditions, how were specific
environmental conditions distributed across a landscape, how
do communities assemble and why are there consistent trait
distributions across communities of very different taxonomic
composition, what drives diversity gradients and do they
change through time, and how does extinction impact traits
distributions. The quality of crossing spatial and temporal
scales allows ecometrics to be applied from local to global
community levels and for the comparison of ecometric pat-
terning across scales. In addition, many ecometric traits are
easily measured on both animal and plant fossils (Alexander
1989; MacFadden 1990; Fortelius et al. 2002; Royer et al.
2005; Head et al. 2009), so we can begin to integrate across
different depositional environmental and data types.

Biases and Shortcomings

The incomplete nature of the fossil record may influence the
quality of data in ecometric studies. However, Polly and
Sarwar (2014) showed that even if only 25% of the species
of a community are found in a fossil locality, the ecometric
patterns still appear. Taphonomic issues with the fossil
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preservation should also be taken into account, because the
functional traits used in ecometric studies need to be mea-
surable or inferred from the fossil remains. It has often not
been the case where this is an issue (Alexander 1989;
MacFadden 1990; Fortelius et al. 2002; Royer et al. 2005;
Head et al. 2009; Peppe et al. 2011; Wilson et al. 2012) and
there are various ways to remove the taphonomic influence
from the fossil, thus returning it, or a model of it, to its
original state (i.e., retrodeformation methods; Webster and
Hughes 1999; Angielczyk and Sheets 2007).

Several important assumptions are made with the eco-
metric approach, including, that the ecometric relationship
doesn’t change through time and that the full range of
morphologies and environmental conditions are represented
(i.e., they are not truncated – there are no biased extinctions
and only analogous climate conditions). If these are rea-
sonable assumptions for the ecometric trait in question, one
may use an ecometric relationship to reconstruct paleocli-
mate and paleoenvironment, given a couple more assump-
tions about the fossil localities. The community of fossils
within the fossil localities being studied should represent the
actual community of species that co-occurred with the
depositional environment. In addition, the functional traits
should be measurable in the preserved fossils. More work is
needed to quantify coefficients describing the relationship
between functional traits and environmental conditions to
understand if and how they change through time and space.

More research needs to be done concerning intraspecific
variation. Intraspecific variation, at least in regards to car-
nivoran calcaneum gear ratios, is high, and it does not follow
community level ecometric patterning. Models seem to
support the idea that this is possible due to the high level of
gene flow within populations, but the overall signal at the
community level overshadows the intraspecific variation of
the populations.

Ecometrics Example

In this section we provide an example of how mean annual
temperature can be estimated from the distribution of body
masses in North American mammals using a likelihood
approach. In addition to presenting the method, we also
discuss the theory for why ecometric distributions are related
to local environment and how our methodology is related to
that theory.

When the relationship between trait performance and
environment is known, the likelihood function can, in the-
ory, be determined a priori (Arnold 1983). Performance-
environment relationships can sometimes be estimated for
traits recovered in fossils using tools such as finite element
analysis, hydrodynamic or mechanical principles, or

functional morphological experimentation (e.g., Baumiller
et al. 1991; Rayfield 2007; Wroe 2008; Shino and Suzuki
2011; Stayton 2011; Polly et al. 2016b). However, in many
cases the performance-environment relationship is unknown,
even when the trait-function relationship is well understood.
For example, the functional role of hind-limb gear ratio of
mammals is understood (it is related through physical lever
principles to the efficiency of hind limb extension, and thus
to the mechanics of walking, springing, climbing, and run-
ning), but its distribution in a particular environment is
difficult to predict a priori because it is likely to be influ-
enced by a combination of factors such as vegetation phys-
iognomy, terrain ruggedness, substrate, snow cover, and
predator-prey interactions (Klein et al. 1987; Polly 2008,
2010; Crête and Larivìere 2003). In such cases, likelihoods
can be estimated directly from empirical data by making the
assumption that the distribution of traits in modern com-
munities is close enough to equilibrium to be representative.
Polly and Sarwar (2014) found this to be a reasonable
assumption for carnivore limb ratios, but care should be
taken before generalizing that result to other traits.

Likelihoods for paleoenvironmental parameters can be
estimated empirically by projecting environmental variables
into an ecometric space, which is a mathematical space
whose axes are statistical descriptors of the distribution of
traits in local communities (Fig. 17.2A). Ecometric space is
in some ways the conceptual opposite of Hutchinson’s
(1957) niche space, in which a species’ niche is the volume
it occupies in a multidimensional space whose axes are
environmental variables. Translated into ecometric terms,
the niche of a species is circumscribed by the performance of
the functional traits that relate it to the environmental factors.
An ecometric space inverts that relationship by mapping the
distribution of environmental parameters on trait-based axes,
except that those axes describe the distribution of traits in
community assemblages rather than the traits of a single
species. Figure 17.2A shows mean annual temperature
mapped into an ecometric space whose axes are defined by
the distribution of log body mass (kg) of mammals.

To create this ecometric space we sampled mammal
faunas at 50 km intervals across the entirety of North
America. At each sampling point we calculated the mean
and standard deviation of the body masses (kg) of the local
mammals from the data compiled by Smith et al. (2003) and
we recorded the local mean annual temperature (MAT) from
Hijmans et al. (2005).

Estimating the likelihood of MAT from community trait
characteristics is then a three-step process. First, the trait data
should be binned so that a frequency distribution of the
environmental variable can be calculated. The number of
bins is arbitrary, but it should be coarse enough to encom-
pass a reasonable number of communities in the densest
areas of the trait space, yet fine enough to be biologically
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Fig. 17.2 A, Ecometric space for community-level mammalian body mass showing the maximum likelihood estimation of mean annual
temperature (MAT) for each bin. B, Likelihood function for MAT based on mammal body mass at the point in Central America highlighted by the
black circles in C–E. C, MAT estimated from mammalian body mass. D, Observed MAT. E, anomaly between estimated and observed MAT. F,
Ecometric space for snake body size showing the maximum likelihood estimate for MAT in each bin. G, Likelihood function for MAT at the same
point in Central America based on snake size. H, MAT estimated from combined mammalian body mass and snake size. I, Observed MAT. J,
Anomaly between combined estimate and observed MAT
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meaningful. The ideal bin size would be about as wide as
the standard errors of the means and standard deviations
in the bin. We divided our ecometric space into 625 bins
(25 � 25).

Second, the MAT observations in each trait bin were
themselves binned to tabulate their frequency distribution.
The number of temperature bins is also arbitrary (we used a
bin size of 1°C). Once binned, a discrete probability density
function (PDF) can be estimated by dividing the bin counts
by the total number of observations. A continuous PDF can
also be fit to the frequency data. Figure 17.2B shows a
continuous PDF for temperature in communities with a mean
ln body mass between 3.05 (21.11 kg) and 3.13 (22.87 kg)
and a standard deviation between 1.05 and 1.10 (black box
in Fig. 17.2A) based on a Gaussian kernel density estimate
with bandwidth of 1°C.

With these pieces in place, a maximum likelihood esti-
mate of the environmental variable (MAT) can be made by
measuring the trait (body mass) mean and standard deviation
at a site of interest and then finding the environmental value
that maximizes the PDF. The maximum likelihood estimates
of MAT for all the sampling locations in North America are
shown in Fig. 17.2C, compared with the real MAT values in
Fig. 17.2D. This estimate (MAT at sampling locations) is
reasonable, but tends to be too low in high elevation areas
and too warm at lower elevations (see anomaly map in Fig.
17.2E). On average, the discrepancy between the real MAT
and the estimate based on mammal body masses was 3.9°C,
which serves as an approximate standard error (but one that
is probably underestimated because the likelihood functions
were estimated from the same data on which they were
tested).

One of the primary advantages of using likelihood and
ecometric spaces is that the likelihoods of alternative recon-
structions can be compared. For example, the maximum
likelihood estimate of MAT for the Central American loca-
tion highlighted by the black circles in Fig. 17.2C–E is
24.95°C with L(24.95) = 0.274 derived from the PDF for that
location (Fig. 17.2B). The real MAT is 25.3°C, which has L
(25.3) = 0.265, which is clearly much more plausible with a
likelihood ratio of 0.967 than an MAT of 20°C, where L
(20.0) = 0.024 produces a likelihood ratio of only 0.088. This
approach can be developed into a formal likelihood ratio test
of alternative hypotheses about paleoenvironment, and it can
be combined with prior probabilities from independent
paleoenvironmental proxies into a Bayesian framework
(Polly and Head 2015).

The second advantage of the likelihood approach is that
incommensurable traits can be combined. Mammalian body
mass distributions were fairly good predictors of MAT, as
might be expected by extrapolating Bergmann’s rule, which
postulates that subspecies in colder climates will have larger
body mass than their conspecifics elsewhere (Bergmann

1847; Scholander 1955; Mayr 1963), to the level of species
and communities. However, homeothermic mammals are
well-insulated from climate and their body size may not be as
good predictors of MAT as that of ectotherms (Head et al.
2009). Because large ectothermic animals require warm
ambient temperatures to sustain their growth rate, the size
range of species in hot climates is expected to be greater than
in cold climates (Makarieva et al. 2005). Using a dataset of
ventral scale count as a proxy for size assembled by Lawing
et al. (2012), we repeated the likelihood estimation for MAT
in North America using the range of log scale count and its
standard deviation as the dimensions of the ecometric space
(Fig. 17.2F). These two parameters are both measures of
dispersion and are therefore correlated, yet pick out different
aspects of the distribution of body size in local communities.
These data yield a similar likelihood function for the site in
Central America, but with a narrower peak of predicted MAT
(Fig. 17.2G). Because the likelihood functions are probabil-
ities, they can be combined by multiplying them and renor-
malizing so that the area under them is 1.0. The resulting
function gives the likelihood of MAT given the distribution
of body masses in mammals and the distribution of ventral
scale counts in snakes. This combined likelihood function
provides a better estimate of temperature than either trait does
alone (Fig. 17.2H–J). The mean anomaly between estimated
and real temperature based on the combined estimate is only
2.4°C, much better than with mammals alone. Sacrificed is
the ability to estimate MAT in the northern part of the con-
tinent where the climate is too cold for snakes to live.

A fully worked ecometrics example and R code is doc-
umented in Appendix I.

Future Prospects

Several aspects of ecometrics need to be addressed with
future research. These areas include—intraspecific variation
(but see Polly et al. 2017 for a recent example), abundance,
phylogenetics, combining multiple ecometrics, conservation,
and ecosystem services. Polly et al. (2016a) took first steps
to identify and define a theory of ecogeography, moving
from pattern to process with ecometric modeling. They used
modeling to simulate the effects of changing microevolu-
tionary processes on the ecometric patterning seen at the
community level. As this area of interest progresses, even-
tually we hope to be able to observe ecometric patterns and
determine which microevolutionary and macroevolutionary
processes caused the patterns we see.

Another future development in the field of ecometrics is the
prospect of marine ecometrics (Wallin 1991; Yasuhara et al.
2015). Due to the depositional environments found in marine
systems, marine fossils are the majority of fossils found
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(Sepkoski 1978). Marine fossils are often used in isotopic
studies to reconstruct paleoecology (Bowen 1964; Anderson
and Arthur 1983; Krantz et al. 1987; Wefer and Berger 1991;
Rodrigues et al. 2014; Huyghe et al. 2015; Reich et al. 2015).
The changes in isotopic fractionationmay followgeographical
gradients similar to an ecometric (Marchais et al. 2013;
Lynch-Stieglitz et al. 2015;Mackenzie et al. 2014; Beard et al.
2015). However, the isotopic fractionation process is not a
morphological trait, it is a metabolic functional trait, and as
such, followsdifferent biological, physical, andchemical rules.

New advances in remote sensing capabilities could alter
the accuracy of our estimates of both species geographic
ranges and the environmental condition in which they occur.
Remote sensing appears like it will be quite useful when
studying changes in plant community structures over large
geographic regions. It allows for a level of detail in which
single plants are recognizable across regional scales (Jones
and Vaughan 2010).

Geometric morphometrics will also allow for the study of
ecometrics when a particular functional trait changes size
across age, but doesn’t change shape (or vice versa). New
advances will also allow for 3D modeling of functional traits.
This may allow for the identification of aspects of the mor-
phology that are better ecometrics than those being used. It can
also allow for better ecometrics since we will no longer be
using linear or volumetric measurements, but instead use the
full 3D shape. Recent work by Polly (2010) and Wilson et al.
(2012) has shown that this is a viable avenue of future inquiry.
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Appendix 17.1. Ecometrics Workflow
and R Code

This section demonstrates an ecometric modeling workflow
using the R Statistical Programing Language. To demon-
strate these models in R, we will work with spatial data.
There are special functions in two packages, raster and sp,
that allow for relatively quick processing of spatial infor-
mation (Bivand et al. 2013; Hijmans 2015; Pebesma and
Bivand 2005). We will use climate data from the worldclim
database (Hijmans et al. 2005) and we will use trait data
body mass and hypsodonty from the PanTHERIA database
(Jones et al. 2009) and from Eronen et al. (2010b). The code
below can be typed directly into an R console or can be

entered into an R script file. A bold word indicates that the
word is a function. To start the analysis, load the two
required libraries. If they are not installed yet on your
computer, install them with the function install.packages().

library(raster)

## Loading required package: sp

library(sp)

Load the sampling locations and look at the first six rows
of data with the functions read.csv() and head(). The first
function read.csv() is a wrapper for another function called
read.table(), which can be used in place of read.csv(), if the
data are in tab delimited format. Use the help() function to
see the documentation associated with each function.

points <- read.csv("data/SamplingPoints.csv")

head(points)

## GLOBALID Longitude Latitude

## 1 103148 -42.1727 83.26264

## 2 103149 -38.3442 83.26264

## 3 103150 -34.5156 83.26264

## 4 103151 -30.6871 83.26264

## 5 103152 -26.8586 83.26264

## 6 103235 -79.4690 82.81348

Plot the sampling locations with the function plot() to
visualize the geographic distribution of the sampling loca-
tions. In this example, we use 50 km equidistant points
sampled across North America (Fig. 17.A1). These are the
same points used in Polly (2010).

plot(points[,2:3], col = "gray", pch = 16)
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Fig. 17.A1 An example of output in the R Statistical Programing
Language from calling the plot function for plotting the latitude and
longitude of 50 km equidistant points sampled from across North
America
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Download raster climate data from the worldclim data-
base using the getData() function from the package raster
that we loaded with the library() function (Hijmans et al.
2005; Hijmans 2015). In this example, we download the
10-minute resolution, but if you would like to try a higher
resolution data set, then change the argument named res to
2.5 or 0.5. Extract the temperature and precipitation for each
sampling location using the extract() function.

bioclim <- getData("worldclim", down-

load = T, path = "data", var = "bio", res = 10)

Extract the temperature for each sampling location.

temperature <- extract(bioclim[[1]], points[,2:3])

Calculate the temperature range for all the sampling
localities to make a plot of the temperature. We add one to
the range to make the range equal to index values that we
can use to subset the color function. The R language starts
the subset of data at an index value of 1.

Calculate the color value associated with each tempera-
ture value and the temperature values associated with even
breaks to assign legend values. Figure 17.A2 is a map of the
mean annual temperatures.

temp_range <- 1 + max(temperature, na.rm = T) -

min(temperature, na.rm = T)

colfunc_temp <- colorRampPalette(c

("darkblue", "blue", "gray", "yellow",

"red"))(temp_range)[1 + temperature - min

(temperature, na.rm = T)]

h <- hist(temperature, breaks = 5)

plot(points[,2:3], col = colfunc_temp,

pch = 16, main = "Mean Annual Temperature

(C)")

legend("bottomright", legend = h

$breaks/10, pch = 16, col =

colorRampPalette(c("darkblue", "blue", "gray",

"yellow", "red"))(length(h$breaks)))

Extract the precipitation for each sampling locality.

precipitation <- extract(bioclim[[12]], points

[,2:3])

Calculate the precipitation range for all the sampling
localities to make a plot of the precipitation. Also, calculate
color value associated with each precipitation value and the
precipitation values associated with even breaks to assign
legend values. Figure 17.A3 is a map of the precipitation
values.

precip_range <- 1 + max(log(precipitation),

na.rm = T) - min(log(precipitation), na.rm = T)

colfunc_pr <- colorRampPalette(c("brown", "green"))

(precip_range)[1 + log(precipitation) –

min(log(precipitation), na.rm = T)]

h <- hist(log(precipitation), breaks = 5)

plot(points[,2:3], col = col-

func_pr, pch = 16, main = "Precipitation (mm)")

legend(-36.25, 60.5, legend = round(exp(h$breaks)),

pch = 16, col =

colorRampPalette(c("brown", "green"))(length

(h$breaks)))
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Fig. 17.A2 A heat map of the mean annual temperature (°C), where
the hotter colors represent warmer places and cooler colors represent
colder places
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Fig. 17.A3 A heat map of the annual precipitation (mm), where
greener colors represent wetter places and browner colors represent
drier places
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Compile the climate variables into a new data.frame
called climate. Remove the variables that are taking up
memory with the rm() function if your memory is getting
sluggish.

climate <- cbind(points, temperature, precipitation)

#rm(bioclim, temperature, precipitation, points)

Visually check the climate variables for normality and if
they are not mostly normally distributed, transform them for
normality (Fig. 17.A4).

head(climate)

## GLOBALID Longitude Latitude temperature precipi-

tation

## 1 103148 -42.1727 83.26264 -169 139

## 2 103149 -38.3442 83.26264 -170 141

## 3 103150 -34.5156 83.26264 -175 149

## 4 103151 -30.6871 83.26264 -185 166

## 5 103152 -26.8586 83.26264 -180 139

## 6 103235 -79.4690 82.81348 -207 90

hist(climate[,4], main = "", xlab = "Mean Annual

Temperature", col = "gray")

Temperature appears to be reasonably normally dis-
tributed, so now we check precipitation (Fig. 17.A4).

hist(climate[,5], main = "", xlab = "Annual Precipita-

tion", col = "gray")

Precipitation appears to be log distributed (Fig. 17.A5).
We log transform this variable to get it closer to normality
(Fig. 17.A6).

climate[,5] <- log(climate[,5])

hist(climate[,5], main = "", xlab = "Log Annual Pre-

cipitation", col = "gray")

Next, we read in the trait data from a folder called data.
We assign the row names of the new data frame to the names
of the taxon within the dataset. We look at the first six rows
of the trait data frame with the head() function. The two traits
that we use in this example are body mass and hypsodonty
index. Body mass is reported in grams and is the mass of any
adult reported in the PanTHERIA database (Jones et al.
2009) from live or freshly-killed specimens. These include
captive, wild, provisioned, or unspecified populations and
include male, female, and sex unspecified individuals. The
mean for each species is reported for each species. The
second trait that we use is an index for hypsodonty from
Eronen et al. (2010b).
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Fig. 17.A4 A histogram of the mean annual temperature (°C � 10) of
all of the sampling locations
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Fig. 17.A5 A histogram of annual precipitation (mm) of all the
sampling locations
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Fig. 17.A6 A histogram of log annual precipitation (mm) of all
sampling locations
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traits <- read.csv("data/NAmammalTraits.csv")

rownames(traits) <- traits$TaxonName

head(traits)

## TaxonName BodyMass hypsodonty_index

## Didelphis virginiana Didelphis

virginiana 3.387760 1

## Aplodontia rufa Aplodontia rufa 2.906448 3

## Sciurus carolinensis Sciurus carolinensis

2.736715 1

## Sciurus griseus Sciurus griseus 2.847480 1

## Sciurus niger Sciurus niger NA 1

## Tamiasciurus douglasii Tamiasciurus

douglasii 2.352183 1

Now we read in shapefiles containing polygons that rep-
resent the geographic ranges for all of the species of interest.
These specific shape files were obtained from IUCN Redlist
using their spatial data download option (www.iucnredlist.
org). If you are dealing with large shapefiles, then this step
will take a reasonable amount of processing time.

geography <-

shapefile

("data/TERRESTRIAL_MAMMALS/TERRESTRIAL_MAMMALS.

shp")

Next we create a list of species at each sampling locality
by first turning the sampling points into spatial points with
the function SpatialPoints(). We assign the coordinate ref-
erence system of our spatial points to a proj4string to match
the coordinate reference system of the spatial polygons
representing the geographic ranges. We then create a list
with the function over(). If you are dealing with large
shapefiles, keep in mind that the over() function will take a
reasonable amount of time to process.

sp <- SpatialPoints(climate[,2:3], proj4string = CRS

(proj4string(geography)))

o <- over(sp, geography, returnList = T)

The sample size at each site is calculated by determining the
lengthof thevector returned for each site.The ecometric for body
mass and hypsodonty index are summarized for the community
level distribution. Here, we summarize with the mean.

richness <- unlist(lapply(o, function(x) length(-

traits[x$binomial,"hypsodonty_index"])))

ecometric_bodymass <- unlist(lapply(o, function(x)

mean(traits[x$binomial,"BodyMass"],

na.rm = T)))

ecometric_hypsodonty <- unlist(lapply(o, function(x)

mean(traits[x$binomial,"hypsodonty_index"], na.rm =

T)))

First Approximation with Transfer
Function

Now we create a model describing the relationship between
traits and climate. First, we consider the relationship
between hypsodonty and precipitation. We build a simple
linear model to describe the variation in precipitation due to
the variation in hypsodonty using the function lm(). We only
use sites that we have data for more than five species. We
look at a summary of the model using the function summary
(). Both the intercept and the coefficient (here the coefficient
represents the slope of the linear relationship) are not zero (p
< 0.001). The amount of explained variation (R2) is 30%.
We then make a scatterplot of those variables to look at the
general spread of data and add the linear model with the
function abline() (Fig. 17.A7).

model_mass <- lm(climate[richness > 5,4] *

ecometric_bodymass[richness > 5])

summary(model_mass)

## Call:

## lm(formula = climate[richness > 5, 4] *

ecometric_bodymass[richness > 5])

## Residuals:

## Min 1Q Median 3Q Max

## -170.72 -65.22 -24.73 43.71 375.19

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 471.512 6.571 71.76 <2e-16 ***

## ecometric_bodymass[richness > 5] -153.559 2.304

-66.64 <2e-16 ***

## ---

## Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "."

0.1 " " 1

## Residual standard error: 92.6 on 8651 degrees of

freedom
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Fig. 17.A7 A scatterplot of hypsodonty and log annual precipitation
with a trend line
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## (15 observations deleted due to missing data)

## Multiple R-squared: 0.3392, Adjusted R-squared:

0.3391

## F-statistic: 4440 on 1 and 8651 DF, p-value: <

2.2e-16

plot(ecometric_bodymass[richness > 5], climate[rich-

ness > 5,4], ylab = "MAT", xlab = "Body

Mass", pch = 16, col = "gray")

curve(model_mass$coefficients[1] + model_mass$coeffi-

cients[2] * x, col = "red", lwd = 4,

add = T)

From this model, we can see there is some predictive
power in this transfer function, but the linear model does not
capture the relationship well. In the next section we will show
how to estimate annual precipitation from hypsodonty with a
maximum likelihood approach that better captures the rela-
tionship between annual precipitation and hypsodonty.

Now we create a model describing the relationship
between the body mass and temperature. We build a linear
model to describe the variation in body mass due to the
variation in temperature using the function lm(). We look at
a summary of the model using the function summary().
Both the intercept and all the coefficients are significantly
different from zero (p < 0.001). The amount of explained
variation (R2) is approximately 34%. We then make a
scatterplot of those variables to look at the general spread
of data and add the model with the function curve() (Fig.
17.A8).

model_mass <- lm(climate[richness > 5,4] *

ecometric_bodymass[richness > 5])

summary(model_mass)

## Call:

## lm(formula = climate[richness > 5, 4] *

ecometric_bodymass[richness > 5])

## Residuals:

## Min 1Q Median 3Q Max

## -170.72 -65.22 -24.73 43.71 375.19

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 471.512 6.571 71.76 <2e-16 ***

## ecometric_bodymass[richness > 5] -153.559 2.304

-66.64 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

0.1 ' ' 1

## Residual standard error: 92.6 on 8651 degrees of

freedom

## (15 observations deleted due to missing data)

## Multiple R-squared: 0.3392, Adjusted R-squared:

0.3391

## F-statistic: 4440 on 1 and 8651 DF, p-value: <

2.2e-16

plot(ecometric_bodymass[richness > 5],

climate[richness > 5,4], ylab = "MAT", xlab

= "Body Mass", pch = 16, col = "gray")

curve(model_mass$coefficients[1] +

model_mass$coefficients[2] * x, col = "red", lwd

= 4, add = T)

From this model, we can see that, again, there is some
predictive power in this transfer function, but the linear
model does not capture the relationship well. In the next
section we will show how to estimate mean annual temper-
ature from body mass with a maximum likelihood approach
that better captures the relationship between the two.

The coefficients that were estimated in both of these
models can be used to estimate paleotemperature and pre-
cipitation. Confidence limits can also be calculated given the
input dataset. It is important to note that the size of the
confidence limits will vary with climate. For example,
between 5 C and 28 C, there is a stronger relationship with
body size than below or above those temperatures. Hyp-
sodonty has high variability throughout the precipitation
range present in North America; however, there is a central
tendency about the average relationship between precipita-
tion and hypsodonty index that is useful in reconstructing
paleoprecipitation with confidence limits.

Maximum Likelihood Estimation

Although transfer functions, while easy to apply and ade-
quate for first approximations, assume a fairly simple
one-to-one relationship between environment and trait
means. Combining different traits that have functional
relationships with the same environmental factor is also
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Fig. 17.A8 A scatterplot of body mass and mean annual temperature
with a trend line
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awkward with conventional regression-based transfer func-
tions, especially if the traits are fundamentally different in
kind or scale (e.g., body mass measured in kg and humerus
shape measured in Procrustes units).

An alternative strategy is to estimate the likelihood of
environmental parameters given the distribution of traits in a
community (Lawing et al. 2012; Polly and Head 2015). This
approach, like many likelihood or Bayesian methods,
requires far fewer assumptions about the statistical distri-
butions of variables and it allows otherwise incommensu-
rable data to be combined into the same estimate.

To begin, we need to create another variable at the
community level, namely the standard deviation, to use in
the maximum likelihood estimate of temperature.

sd_ecometric_bodymass <- unlist(lapply(o,

function(x)

sd(traits[x$binomial,"BodyMass"], na.rm = T)))

We create bins using the body mass variable and extract
the break points for each bin.

#bin the community level trait distribution into 25X25

#first take the range of each

mtemp <- range(ecometric_bodymass, na.rm = T)

sdtemp <- range(sd_ecometric_bodymass, na.rm = T)

#get the break points for the mean and sd

mbrks <- seq(mtemp[1], mtemp[2], diff(mtemp)/25)

sdbrks <- seq(sdtemp[1], sdtemp[2], diff(sdtemp)/25)

#assign bin codes for each

mbc <- .bincode(ecometric_bodymass, breaks = mbrks)

sdbc <- .bincode(sd_ecometric_bodymass, breaks =

sdbrks)

We calculate the temperature for each bin.

#calculate the data for the raster

obj <- array(NA,dim = c(25,25))

for(i in 1:25){

for(j in 1:25){

dat <- round(temperature[which(mbc==i & sdbc==j)]/

10)

obj[26 - j,i] <- mean(dat, na.rm = T)

}

}

Next, we create a raster to store the body mass and
temperature data for bins.

#make a raster

r <- raster(extent(0,25,0,25), resolution = 1)

#set the values to the obj

r <- setValues(r,obj)

Plot the raster and highlight the bin that we will use to
extract data to show an example of that maximum likelihood
estimate (Fig. 17.A9).

#make an empty plot

plot(1:25, 1:25, type = "n", xlim = c(1,25), ylim = c

(1,25),

xaxs = "i", yaxs = "i", asp = 1, axes = F, xlab ="",

ylab = "")

#add the rectangle/box

rect(0, 1, 25, 25, lwd = 3)

#add the raster data

plot(r, col = colorRampPalette(c("darkblue", "blue",

"grey","yellow", "red"))(round(maxValue(r) –

minValue(r))), add = T)

#this is mean = 3.1, 12, and sd = 1.08, 10

rect(11, 9, 12, 10, lwd = 4)

The colors in this raster plot show the Mean Annual
Temperature (MAT) maximum likelihood estimate given the
associated mean and standard deviation of each bin.

We extract the data for the highlighted bin and plot the
kernel density with a Gaussian kernel (Fig. 17.A10). This
shows the distribution of the likelihood surface.

#grab all the data for that box

dat <- round(temperature[which(mbc==12 & sdbc==10)]/
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Fig. 17.A9 Ecometric space for the trait body mass with mean body
mass on the x-axis and standard deviation of body mass on the y-axis.
The colors represent the estimate of mean annual temperature for each
mean and standard deviation combination. The hotter colors represent
higher mean annual temperature and the cooler colors represent lower
mean annual temperatures
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10)

#plot the kernel density with gaussian kernel,

bandwidth = 1

mod <- density(dat, bw = 1)

plot(mod, ylim = c(0,1), col = "darkblue", lwd = 2)

polygon(mod$x, mod$y, col = "skyblue")

This likelihood surface shows a bimodal distribution of
the most likely temperature. Although it is bimodal, it is
much more likely that the temperature falls on the warm end
of the spectrum, as opposed to the cold end.

Next, we calculate the maximum likelihood for all bins.

modmax <- array(NA, dim = length(points[,1]))

mod <- list()

for(i in 1:length(points[,1])){

if(!(is.na(mbc[i]) | is.na(sdbc[i]))){

dat <- round(temperature[which(mbc==mbc[i] &

sdbc==sdbc[i])]/10)

mod[[i]] <- density(dat, bw = 1)

modmax[i] <- mod[[i]]$x[which.max(mod[[i]]$y)]

}}

modmax <- round(modmax*10)

We only use bins with more than the number of species
specified as the cutoff. Here we use seven. This means that
there needs to be at least seven species recorded at each
location to be included in the estimate.

cutoff <- 7

To plot the maximum likelihood temperature estimate
from the ecometric values, we create a color palette for the
temperature estimates. In addition, we save the histogram

with five break points to a variable to use in plotting (refer
back to Fig. 17.A4).

colfunc_eco <- colorRampPalette(c("darkblue",

"blue", "gray", "yellow", "red"))(temp_range)[1 +

modmax - min(modmax, na.rm = T)]

h <- hist(temperature, main = "", xlab = "Mean

Annual Temperature", col = "gray", breaks = 5)

We map the maximum likelihood temperature estimate
from body mass (Fig. 17.A11).

plot(points[,2:3], col = "gray", pch = 16)

points(points[richness > cutoff, 2:3], col =

colfunc_eco[richness > cutoff], pch = 16)

legend(-31.5, 61, legend = h$breaks/10, pch = 16,

col = colorRampPalette(c("darkblue",

"blue", "gray", "yellow", "red"))(length(h$breaks)))

Next we plot the actual temperature to compare with the
estimated temperature (refer back to Fig. 17.A2).

plot(points[,2:3], col = "gray", pch = 16, main = "Mean

Annual Temperature (C)")

points(points[richness > cutoff,2:3], col =

colfunc_temp[richness > cutoff], pch = 16)

legend(-31.5, 61, legend = h$breaks/10, pch = 16,

col = colorRampPalette(c("darkblue",

"blue", "gray", "yellow", "red"))(length(h$breaks)))

We plot the anomaly to visualize the difference between
the estimated and actual Mean Annual Temperature (Fig.
17.A12).
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Fig. 17.A10 Kernel density estimation from one combination of mean
and standard deviation of body mass
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Fig. 17.A11 A heat map of the estimate of mean annual temperature
(°C) from the mean and standard deviation of body mass. The hotter
colors represent higher temperature estimates and the cooler colors
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plot(points[,2:3], col = "gray", pch = 16)

anom <- temperature – modmax

colfunc_anom <- colorRampPalette(c("purple", "grey",

"green"))(max(anom, na.rm = T) –

min(anom, na.rm = T))[1 + anom - min(anom, na.rm = T)]

points(points[richness > cutoff, 2:3], col =

colfunc_anom[richness > cutoff], pch = 16)

legend(-31.5, 61, legend = h$breaks/10, pch = 16,

col = colorRampPalette(c("purple", "grey", "green"))

(length(h$breaks)))

The anomaly between the estimated Mean Annual Tem-
perature and the actual Mean Annual Temperature shows that
most of the temperature estimates are less that 1°C divergent
from the actual Mean Annual Temperature.
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