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17.1 INTRODUCTION
17.1

Introduction (1 of 2)

� For decades, scientists have used computers to enhance 

and analyze medical images

� Initially simple computer algorithms were used to enhance 

the appearance of interesting features in images, helping 

humans read and interpret them better

� Later, more advanced algorithms were developed, where 

the computer would not only enhance images, but also 

participate in understanding their content
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Introduction (2 of 2)

� Segmentation algorithms were developed to detect and extract 

specific anatomical objects in images, such as malignant lesions in 

mammograms

� Registration algorithms were developed to align images of different 

modalities and to find corresponding anatomical locations in images 

from different subjects

� These algorithms have made computer-aided detection and diagnosis, 

computer-guided surgery, and other highly complex medical 

technologies possible

� Today, the field of image processing and analysis is a complex branch 

of science that lies at the intersection of applied mathematics, 

computer science, physics, statistics, and biomedical sciences
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Overview

� This chapter is divided into two main sections

• classical image processing algorithms

• image filtering, noise reduction, and edge/feature extraction 

from images. 

• more modern image analysis approaches

• including segmentation and registration
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Image processing vs. Image analysis

� The main feature that distinguishes image analysis from 

image processing is the use of external knowledge about 

the objects appearing in the image

� This external knowledge can be based on 

• heuristic knowledge

• physical models

• data obtained from previous analysis of similar images

� Image analysis algorithms use this external knowledge to 

fill in the information that is otherwise missing or 

ambiguous in the images
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Example of image analysis

� A biomechanical model of the heart may be used by an 

image analysis algorithm to help find the boundaries of the 

heart in a CT or MR image

� This model can help the algorithm tell true heart 

boundaries from various other anatomical boundaries that 

have similar appearance in the image 
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The most important limitation of image processing

� Image processing cannot increase the amount of 

information available in the input image

� Applying mathematical operations to images can only 

remove information present in an image

• sometimes, removing information that is not relevant can make it 

easier for humans to understand images

� Image processing is always limited by the quality of the 

input data

• if an imaging system provides data of unacceptable quality, it is 

better to try to improve the imaging system, rather than hope that 

the “magic” of image processing will compensate for poor imaging
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Example of image denoising

� Image noise cannot be 

eliminated without degrading

contrast between small details 

in the image

� Note that although noise 

removal gets rid of the noise, it 

also degrades anatomical 

features

� From left to right

• a chest CT slice

• same slice with added noise

• same slice processed with an 

edge-preserving noise removal 

algorithm

Image from the Lung Cancer Alliance 

Give a Scan database (giveascan.org)
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Changing resolution of an image

� The fundamental resolution of 

the input image (i.e. the ability 

to separate a pair of nearby 

structures) is limited by the 

imaging system and cannot be 

improved by image processing

• in centre image, the system’s 

resolution is less than the distance 

between the impulses - we cannot 

tell from the image that there were 

two impulses in the data.

• in the processed image at right we 

still cannot tell that there were two 

impulses in the input data

� From left to right

• the input to an imaging system, 

it consists of two nearby point 

impulses

• a 16x16 image produced by 

the imaging system 

• image resampled to 128x128 

resolution using cubic 

interpolation
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Filtering

� Filtering is an operation that changes the observable 

quality of an image, in terms of 

• resolution

• contrast

• noise

� Typically, filtering involves applying the same or similar 

mathematical operation at every pixel in an image

• for example, spatial filtering modifies the intensity of each pixel in 

an image using some function of the neighbouring pixels

� Filtering is one of the most elementary image processing 

operations
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Mean filtering in the image domain

� A very simple example of a spatial filter is the mean filter

� Replaces each pixel in an image with the mean of the N x 

N neighbourhood around the pixel

� The output of the filter is an image that appears more 

“smooth” and less “noisy” than the input image

� Averaging over the small neighbourhood reduces the 

magnitude of the intensity discontinuities in the image
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Mean filtering

� Mathematically, the mean filter is defined as a convolution 

between the image and a constant-valued N x N matrix

� The N x N mean filter is a low-pass filter

� A low-pass filter reduces high-frequency components in 

the Fourier transform (FT) of the image
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Convolution and the Fourier transform 

� The relationship between Fourier transform (FT) and 

convolution is 

� Convolution of a digital image with a matrix of constant 

values is the discrete equivalent of the convolution of a 

continuous image function with the rect (boxcar) function

� The FT of the rect function is the sinc function

� So, mean filtering is equivalent to multiplying the FT of the 

image by the sinc function

• this mostly preserves the low-frequency components of the image 

and diminishes the high-frequency components

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.2.1 Slide 5 (17/176)

{ } { } { }F A B  F A F B .=o



IAEA

17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.1 Spatial Filtering and Noise Removal

Mean filtering in the Fourier domain

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.2.1 Slide 6 (18/176)

Fourier transform of 

the 7x7 mean filter, 

i.e., a product of sinc

functions in x and y 

Input X ray image

Fourier transform 

of the input image 

(magnitude)

Fourier transform 

of the filtered 

image



IAEA

17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.1 Spatial Filtering and Noise Removal

Image smoothing

� Mean filtering is an example of an image smoothing

operation

� Smoothing and removal of high-frequency noise can help 

human observers understand medical images

� Smoothing is also an important intermediate step for 

advanced image analysis algorithms

� Modern image analysis algorithms involve numerical 

optimization and require computation of derivatives of 

functions derived from image data

• smoothing helps make derivative computation numerically stable
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Ideal Low-Pass Filter

� The so-called ideal low-pass filter cuts off all frequencies above a 

certain threshold in the FT of the image

• in the Fourier domain, this is achieved by multiplying the FT of the image 

by a cylinder-shaped filter generated by rotating a one-dimensional rect

function around the origin

• theoretically, the same effect is accomplished in the image domain by 

convolution with a one-dimensional sinc function rotated around the origin

� Assumes that images are periodic functions on an infinite domain

• in practice, most images are not periodic

• convolution with the rotated sinc function results in an artefact called 

ringing

� Another drawback of the ideal low-pass filter is the computational cost, 

which is very high in comparison to mean filtering
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Ideal low-pass filter and ringing artefact
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The ideal low-pass filter, i.e., 

a sinc function rotated around 

the centre of the image

The original image The image after 

convolution with the low-

pass filter. Notice how the 

bright intensity of the rib 

bones on the right of the 

image is replicated in the 

soft tissue to the right 
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Gaussian Filtering

� The Gaussian filter is a low-pass filter that is not affected 

by the ringing artefact

� In the continuous domain, the Gaussian filter is defined as 

the normal probability density function with standard 

deviation σ, which has been rotated about the origin in x,y

space

� Formally, the Gaussian filter is defined as

where the value σ is called the width of the Gaussian filter
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17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.1 Spatial Filtering and Noise Removal

FT of Gaussian filter

� The FT of the Gaussian filter is also a Gaussian filter with 

reciprocal width 1/σ

where η,υ are spatial frequencies
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FEATURE ENHANCEMENT 
17.2.1 Spatial Filtering and Noise Removal

Discrete Gaussian filter

� The discrete Gaussian filter is a                       matrix

� Its elements, Gij, are given by

� The size of the matrix, 2N+1, determines how accurately 

the discrete Gaussian approximates the continuous 

Gaussian

� A common choice is
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Examples of Gaussian filters
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Application of the Gaussian filter

� To apply low-pass filtering to a digital image, we 

• perform convolution between the image and the Gaussian filter

• this is equivalent to multiplying the FT of the image by a Gaussian filter 

with width 1/σ

� The Gaussian function decreases very quickly as we move away from 

the peak

• at the distance 4σ from the peak, the value of the Gaussian is only 0.0003 

of the value at the peak

� Convolution with the Gaussian filter 

• removes high frequencies in the image

• low frequencies are mostly retained

• the larger the standard deviation of the Gaussian filter, the smoother the 

result of the filtering 
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An image convolved with Gaussian filters with different widths
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FEATURE ENHANCEMENT 
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Median Filtering

� The median filter replaces each pixel in the image with the 

median of the pixel values in an N x N neighbourhood

� Taking the median of a set of numbers is a non-linear 

operation

• therefore, median filtering cannon be represented as convolution

� The median filter is useful for removing impulse noise, a 

type of noise where some isolated pixels in the image 

have very high or very low intensity values

� The disadvantage of median filtering is that it can remove 

important features, such as thin edges
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Example of Median Filtering
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Original image Image degraded by 

adding “salt and 

pepper” noise. The 

intensity of a tenth of 

the pixels has been 

replaced by 0 or 255

The result of filtering 

the degraded image 

with a 5x5 mean filter

The result of filtering 

with a 5x5 median 

filter. Much of the salt 

and pepper noise has 

been removed – but 

some of the fine lines 

in the image have 

also been removed 

by the filtering



IAEA

17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.1 Spatial Filtering and Noise Removal

Edge-preserving smoothing and de-noising

� When we smooth an image, we remove high-frequency 

components

� This helps reduce noise in the image, but it also can 

remove important high-frequency features such as edges

• an edge in image processing is a discontinuity in the intensity 

function

• for example, in an X ray image, the intensity is discontinuous along 

the boundaries between bone and soft tissue

� Some advanced filtering algorithms try to remove noise in 

images without smoothing edges

• e.g. the anisotropic diffusion algorithm (Perona and Malik)
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Anisotropic Diffusion algorithm 

� Mathematically, smoothing an image with a Gaussian filter is 

analogous to simulating heat diffusion in a homogeneous body

� In anisotropic diffusion, the image is treated as an inhomogeneous 

body, with different heat conductance at different places in the image

• near edges, the conductance is lower, so heat diffuses more slowly, 

preventing the edge from being smoothed away

• away from edges, the conductance is faster

� The result is that less smoothing is applied near image edges

� The approach is only as good as our ability to detect image edges
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Edges

� One of the main applications of image processing and 

image analysis is to detect structures of interest in images

� In many situations, the structure of interest and the 

surrounding structures have different image intensities

� By searching for discontinuities in the image intensity 

function, we can find the boundaries of structures of 

interest

• these discontinuities are called edges

• for example, in an X ray image, there is an edge at the boundary 

between bone and soft tissue
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Edge detection

� Edge detection algorithms search for edges in images automatically

� Because medical images are complex, they have very many 

discontinuities in the image intensity

• most of these are not related to the structure of interest

• may be discontinuities due to noise, imaging artefacts, or other structures

� Good edge detection algorithms identify edges that are more likely to 

be of interest

� However, no matter how good an edge detection algorithm is, it will 

frequently find irrelevant edges

• edge detection algorithms are not powerful enough to completely 

automatically identify structures of interest in most medical images

• instead, they are a helpful tool for more complex segmentation algorithms, 

as well as a useful visualization tool
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Tube detection

� Some structures in medical images have very 

characteristic shapes

� For example, blood vessels are tube-like structures with

• gradually varying width

• two edges that are roughly parallel to each other

� This property can be exploited by special tube-detection 

algorithms
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Illustration of edges and tubes in an image
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Detail from a chest CT image –

The yellow profile crosses an 

edge, and the green profile 

crosses a tube-like structure

Plot (blue) of image 

intensity along the yellow 

profile and a plot (red) of 

image intensity after 

smoothing the input image 

with a Gaussian filter with 

σ = 1

Plot of image intensity 

along the green profile. 

Edge and tube detectors 

use properties of image 

derivative to detect edges 

and tube
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How image derivatives are computed

� An edge is a discontinuity in the image intensity

� Therefore, the directional derivative of the image intensity 

in the direction orthogonal to the edge must be large, as 

seen in the preceding figure

� Edge detection algorithms exploit this property

� In order to compute derivatives, we require a continuous 

function, but an image is just an array of numbers

� One solution is to use the finite difference approximation of 

the derivative
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Finite difference approximation in 1D

� From the Taylor series expansion, it is easy to derive the 

following approximation of the derivative

where

• δ is a real number 

• is the error term, involving δ to the power of two and greater

• when δ<< 1 these error terms are very small and can be ignored for 

the purpose of approximation
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Finite difference approximation in 2D (1 of 2)

� Likewise, the partial derivatives of a function of two 

variables can be approximated as
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Finite difference approximation in 2D (2 of 2)

� If we

• treat a digital image as a set of samples from a continuous image 

function

• set δx and δy to be equal to the pixel spacing

� We can compute approximate image derivatives using 

these formulae

� However, the error term is relatively high, of the order of 1 

pixel width

� In practice, derivatives computed using finite difference 

formulae are dominated by noise
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Computing image derivatives by filtering (1 of 3)

� There is another, often more effective, approach to 

computing image derivatives

� We can reconstruct a continuous signal from an image by 

convolution with a smooth kernel (such as a Gaussian), 

which allows us to take the derivative of the continuous 

signal
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Computing image derivatives by filtering (2 of 3)

� In the above, D
v

denotes the directional derivative of a 

function in the direction v

� One of the most elegant ways to compute image 

derivatives arises from the fact that differentiation and 

convolution are commutable operations

• both are linear operations, and the order in which they are applied 

does not matter
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Computing image derivatives by filtering (3 of 3)

� Therefore, we can achieve the same effect by computing 

the convolution of the image with the derivative of the 

smooth kernel

� This leads to a very practical and efficient way of 

computing derivatives

• create a filter, which is just a matrix that approximates 

• compute numerical convolution between this filter and the image

• this is just another example of filtering described earlier
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Computing image derivatives by Gaussian filtering

� Most frequently G is a Gaussian filter

� The Gaussian is infinitely differentiable, so it is possibly to 

take an image derivative of any order using this approach

� The width of the Gaussian is chosen empirically

• the width determines how smooth the interpolation of the digital 

image is

• the more smoothing is applied, the less sensitive will the derivative 

function be to small local changes in image intensity

• this can help selection between more prominent and less 

prominent edges
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Examples of Gaussian derivative filters
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Edge Detectors Based on First Derivative

� A popular and simple edge detector is the Sobel operator

� To apply this operator, the image is convolved with a pair 

of filters
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Sobel operator

� It can be shown that this convolution is quite similar to the 

finite difference approximation of the partial derivatives of 

the image

� In fact, the Sobel operator 

• approximates the derivative at the given pixel and the two 

neighbouring pixels

• computes a weighted average of these three values with weights 

(1,2,-1)

� This averaging makes the output of the Sobel operator 

slightly less sensitive to noise than simple finite differences
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Illustration of the Sobel operator

� The gradient magnitude is high at image edges, but also at isolated 

pixels where image intensity varies due to noise
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Image from the U.S. National Biomedical Imaging Archive Osteoarthritis Initiative (https://imaging.nci.nih.gov/ncia)
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the Sobel y

derivative filter Sy

Gradient 

magnitude 

image



IAEA

17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.2 Edge, Ridge and Simple Shape Detection

Gradient magnitude image

� The last image is the so-called gradient magnitude image, given by 

• large values of the gradient magnitude correspond to edges

• low values are regions where intensity is nearly constant

� However, there is no absolute value of the gradient magnitude that 

distinguishes an edge from non-edge

• for each image, one has to empirically come up with a threshold to apply 

to the gradient magnitude image in order to separate the edges of interest 

from spurious edges caused by noise and image artefact

� This is one of the greatest limitations of edge detection based on first 

derivatives
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Convolution with Gaussian derivative filters

� Often, the small amount of smoothing performed by the 

Sobel operator is not enough to eliminate the edges 

associated with image noise

� If we are only interested in very strong edges in the image, 

we may want to perform additional smoothing

� A common alternative to the Sobel filter is to compute the 

partial derivatives of the image intensity using convolution 

of the image with Gaussian derivative operators

� and
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Illustration of Gaussian derivative filters

� The gradient magnitude is higher at the image edges, but less than for 

the Sobel operator at isolated pixels where image intensity varies due 

to noise
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First derivative filters and noise

� Of course, too much smoothing can remove important 

edges too

� Finding the right amount of smoothing is a difficult and 

often ill-posed problem
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Edge Detectors Based on First Derivative

� Imagine a particle crossing an edge in a continuous 

smooth image F, moving in the direction orthogonal to the 

edge (i.e. in the direction of the image gradient)

� If we plot the gradient magnitude of the image along the 

path of the particle, we see that at the edge, there is a 

local maximum of the gradient magnitude
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Gradient magnitude at image edges

� The gradient magnitude reaches its maximum at the points where the 

profiles cross the image edge
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Local maximum of gradient magnitude

� Let us denote the unit vector in the particle’s direction as v, 

and the point where the particle crosses the edge as x

� The gradient magnitude of the image F at x is simply

� The gradient magnitude reaches a local maximum at x in 

the direction v if and only if

� Several edge detectors leverage this property
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Marr-Hildreth edge detector (1 of 2)

� The earliest of these operators is the Marr-Hildreth edge 

detector

� It is based on the fact that the necessary (but not 

sufficient) condition for is

� The operator              is the Laplacian operator

� By finding the set of all points in the image where the 

Laplacian of the image is zero, we find the superset of all 

the points that satisfy 
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Marr-Hildreth edge detector (2 of 2)

� When dealing with discrete images, we must use convolution with a 

smooth filter (such as the Gaussian) when computing the second 

derivatives and the Laplacian

� The Marr-Hildreth edge detector convolves the discrete image I with 

the Laplacian of Gaussian (LoG) filter:

� Next, the Marr-Hildreth edge detector finds contours in the image 

where J=0

• these contours are closed and form the superset of edges in the image

� The last step is to eliminate the parts of the contour where the gradient 

magnitude of the input image is below a user-specified threshold

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.2.2 Slide 26 (57/176)

( ) ( ) ( )xx yy xx yyJ I D G D G D I G D I G= + = +o o o



IAEA

17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.2 Edge, Ridge and Simple Shape Detection

Illustration of Marr-Hildreth edge detector

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.2.2 Slide 27 (58/176)

Image from the U.S. National Biomedical Imaging Archive

Osteoarthritis Initiative (https://imaging.nci.nih.gov/ncia)

Input image Zero crossings 

of the 

convolution of 

the image with 

the LoG operator

Edges produced by the Marr-

Hildreth detector, i.e., a subset 

of the zero crossings that have 

gradient magnitude above a 

threshold



IAEA

17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.2 Edge, Ridge and Simple Shape Detection

Canny edge detector

� The Canny edge detector is also rooted in the fact that the 

second derivative of the image in the edge direction is zero

• applies Gaussian smoothing to the image

• finds the pixels in the image with high gradient magnitude using the 

Sobel operator and thresholding

• eliminates pixels that do not satisfy the maximum condition

• uses a procedure called hysteresis to eliminate very short edges 

that are most likely the product of noise in the image

� The Canny edge detector has very good performance 

characteristics compared to other edge detectors

• and is very popular in practice
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Illustration of Canny edge detector

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.2.2 Slide 29 (60/176)

Image from the U.S. National Biomedical Imaging Archive

Osteoarthritis Initiative (https://imaging.nci.nih.gov/ncia)

Input image Edges produced 

by the Sobel

detector

Edges produced 

by the Canny 

detector



IAEA

17.2 DETERMINISTIC IMAGE PROCESSING AND 

FEATURE ENHANCEMENT 
17.2.2 Edge, Ridge and Simple Shape Detection

Hough Transform

� So far, we have discussed image processing techniques 

that search for edges

� Sometimes, the objects that we are interested in detecting 

have a very characteristic shape: circles, tubes, lines

� In these cases, we are better off using detectors that 

search for these shapes directly, rather than looking at 

edges

� The Hough transform is one such detector
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Hough Transform – simplified 

problem (1 of 2)

� Given a set of points in 

the plane

� Find lines, circles or 

ellipses approximately 

formed by these points
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Hough Transform – simplified problem (2 of 2)

� Simple shapes, like lines, circles and ellipses, can be 

described by a small number of parameters

• circles are parameterized by the centre (2 parameters) and radius 

(1 parameter)

• ellipses are parameterized by four parameters

• lines are naturally parameterized by the slope and intercept (2 

parameters)

• however, this parameterization is asymptotic for vertical lines

• an alternative parameterization by Duda and Hart (1972) uses 

the distance from the line to the origin and the slope of the 

normal to the line as the two parameters describing a line
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Hough Transform – parameter space

� Each line, circle, or ellipse corresponds to a single point in 

the corresponding 2, 3 or 4 dimensional parameter space

� The set of all lines, circles, or ellipses passing through a 

certain point (x,y) in the image space corresponds to an 

infinite set of points in the parameter space

� These points in the parameter space form a manifold

� For example

• all lines passing through (x,y) form a sinusoid in the Duda and Hart 

2-dimensional line parameter space

• all circles passing through (x,y) form a cone in the 3-dimensional 

circle parameter space
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Hough Transform – image domain to parameter domain

� This is the meaning of the Hough transform

� It transforms points in the image domain into curves, 

surfaces or hypersurfaces in the parameter domain

� If several points in the image domain belong to a single 

line, circle or ellipse, then their corresponding manifolds in 

the parameter space intersect at a single point (p1, …, pk)

� This gives rise to the shape detection algorithm
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Hough Transform – shape detection algorithm

� The 2, 3 or 4-dimensional parameter space is divided into a finite set 

of bins and every bin j is assigned a variable qj that is initialized to zero

� For every point (xI,yI) in the image domain

• compute the corresponding curve, surface, or hypersurface in the 

parameter space

• find all the bins in the parameter space though which the  manifold passes

� Every time that the curve, surface or hyper-surface passes through the 

bin j

• increment the corresponding variable qj by 1

� Once this procedure is completed for all N points

• look for the bins where qj is large

• these bins correspond to a set of qj points that approximately form a line, 

circle or ellipse
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Hough Transform for shape detection

� The Hough transform, combined with edge detection, can 

be used to search for simple shapes in digital images

• the edge detector is used to find candidate boundary points

• then the Hough transform is used to find simple shapes

� The Hough transform is an elegant and efficient approach, 

but it scales poorly to more complex objects

• objects more complex than lines, circles, and ellipses require a 

large number of parameters to describe them

• the higher the dimensionality of the parameter space, the more 

memory- and computationally-intensive the Hough transform
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Illustration of Hough transform
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� 17.3.1 Object representation

� 17.3.2 Thresholding

� 17.3.3 Automatic tissue classification

� 17.3.4 Active contour segmentation methods

� 17.3.5 Atlas-based segmentation
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Image segmentation

� The problem of finding objects in images, known as 

segmentation, is the central problem in the field of image 

analysis

� It is also a highly complex problem, and there are many 

types of segmentation problems

• finding and outlining a specific anatomical structure in a medical 

image

• finding pathology in medical images

� These problems are very different depending on the 

anatomy and imaging modality
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Challenges of image segmentation

� Heart segmentation in CT is very different from heart segmentation in 

MRI, which is very different from brain segmentation in MRI

� Some structures move during imaging, while other structures are 

almost still

� Some structures have a simple shape that varies little from subject to 

subject, while others have complex, unpredictable shapes

� Some structures have good contrast with surrounding tissues, and 

others do not

� More often than not, a given combination of anatomical structure and 

imaging modality requires a custom segmentation algorithm
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Methods of representing objects in images

� Binary image or label image

� Geometric boundary representations

� Level sets of real-valued images

� Several other representations are available, but they are 

not discussed here
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Binary image or label image

� These are very simple ways to represent an object or a 

collection of objects in an image

� Given an image I that contains some object O, we can 

construct another image S of the same dimensions as I, 

whose pixels have values 0 and 1 according to

� Such an image is called the binary image of O
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Label image

� When I contains multiple objects of interest, we can 

represent them 

• as separate binary images (although this would not be very 

memory-efficient)

• or as a single label image L
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Limitations of binary and label images

� Their accuracy is limited by the resolution of the image I

� They represent the boundaries of objects as very non-

smooth (piecewise linear) curves or surfaces

• whereas the actual anatomical objects typically have smooth 

boundaries
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Methods of representing objects in images

� Binary image or label image

� Geometric boundary representations

� Level sets of real-valued images
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Geometric boundary representations

� Objects can be described by their boundaries

• more compact than the binary image representation

• allows sub-pixel accuracy

• smoothness can be ensured

� The simplest geometric boundary representation is defined by 

• a set of points on the boundary of an object, called vertices

• a set of line segments called edges (or in 3D, a set of polygons, called 

faces) connecting the vertices

• or connect points using smooth cubic or higher order curves and surfaces

� Such geometric constructs are called meshes

� The object representation is defined by the coordinates of the points 

and the connectivity between the points
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Methods of representing objects in images

� Binary image or label image

� Geometric boundary representations

� Level sets of real-valued images
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Level sets of real-valued images (1 of 2)

� This representation combines attractive properties of the 

two preceding representations

• like binary images, this representation uses an image F of the 

same dimensions as I to represent an object O in the image I

• unlike the binary representation, the level set representation can 

achieve sub-pixel accuracy and smooth object boundaries

� Every pixel (or voxel) in F

• has intensity values in the range [-M,M]

• where M is some real number
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Level sets of real-valued images (2 of 2)

� The boundary of O is given by the zero level set of the 

function F

� F is a discrete image and this definition requires a 

continuous function

• in practice, linear interpolation is applied to the image F
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Conversion to geometric boundary representations 

� Binary and level set representations can be converted to 

geometric boundary representations using contour 

extraction algorithms

• such as the marching cubes algorithm

� A binary or geometric boundary representation can be 

converted to a level set representation using the distance 

map algorithm
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Examples of object representation

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.3.1 Slide 12 (84/176)

Original image, 

axial slice from a 

brain MRI

Binary representation of 

the lateral ventricles in 

the image

Geometric 

representation of the 

lateral ventricles in the 

image

Level sets 

representation of 

the lateral 

ventricles in the 

image



IAEA

17.3 IMAGE SEGMENTATION
17.3.2 THRESHOLDING

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.3.2 Slide 1 (85/176)



IAEA

17.3 IMAGE SEGMENTATION 
17.3.2 Thresholding

Thresholding (1 of 2)

� Thresholding is the simplest segmentation technique 

possible

� It is applicable in situations where the structure of interest 

has excellent contrast with all other structures in the image

� For example, in CT images, thresholding can be used to 

identify bone, muscle, water, fat and air because these 

tissue classes have different attenuation levels
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Thresholding (2 of 2)

� Thresholding produces a binary image using the following 

simple rule

� Here, Tlower is a value called the lower threshold and Tupper

is the upper threshold

• for example, for bone in CT, Tlower= 400 and Tupper = ∞

� The segmentation is simply the set of pixels that have 

intensity between the upper and lower thresholds
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Example of thresholding
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Disadvantages of thresholding

� In most medical image segmentation problems, 

thresholding does not produce satisfactory results

• in noisy images, there are likely to be pixels inside the structure of 

interest that are incorrectly labelled because their intensity is below 

or above the threshold

• in MRI images, intensity is usually inhomogeneous across the 

image, so that a pair of thresholds that works in one region of the 

image is not going to work in a different region

• the structure of interest may be adjacent to other structures with 

very similar intensity

� In all of these situations, more advanced techniques are 

required
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Choice of threshold value

� In some images, the results of thresholding are 

satisfactory, but the value of the upper and lower threshold 

is not known a priori

� For example, in brain MRI images, it is possible to apply 

intensity inhomogeneity correction to the image, to reduce 

the effects of inhomogeneity

• but to segment the grey matter or white matter in these images 

would typically need a different pair of thresholds for every scan

� In these situations, automatic threshold detection is 

required
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Automatic Tissue Classification 

� We have to partition an image into regions corresponding to a fixed 

number of tissue classes, k

� In the brain, for example, there are three important tissue classes

• white matter, gray matter, and cerebrospinal fluid (CSF)

� In T1-weighted MRI, these tissue classes produce different image 

intensities: bright white matter and dark CSF

• unlike CT, the range of intensity values produced by each tissue class in 

MRI is not known a priori

• because of MRI inhomogeneity artefacts, noise, and partial volume 

effects, there is much variability in the intensity of each tissue class

� Automatic tissue classification is a term used to describe various 

computational algorithms that partition an image into tissue classes 

based on statistical inference
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Automatic Tissue Classification by thresholding

� The simplest automatic tissue classification algorithms are closely 

related to thresholding

� Assume that the variance in the intensity of each tissue class is not too 

large

� In this case, we can expect the histogram of the image to have  peaks 

corresponding to the k tissue classes

� Tissue classification simply involves finding thresholds that separate 

these peaks

� In a real MR image, the peaks in the histogram are not as well 

separated and it is not obvious from just looking at the histogram what 

the correct threshold values ought to be
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Examples of tissue classification by thresholding
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histogram are much 

less obvious
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k-means clustering (1 of 3)

� There are several automatic tissue classification methods 

that examine the image histogram and determine 

thresholds that are optimal, according to a certain criterion

� The simplest of these is k-means clustering

� This approach groups intensity values in the image 

histogram into  clusters

� The algorithm seeks to minimize the variability of the 

intensity within each cluster

� Formally, k-means clustering is defined an energy 

minimization problem
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k-means clustering (2 of 3)

where

• αi is the cluster to which the pixel  is assigned

• N is the number of pixels in the image

• Iq is the intensity of the pixel q

• µj is the mean of the cluster j , i.e., the average intensity of all 

pixels assigned the label j

� is read as “the point  in the domain Ω where 

the function f(x) attains its minimum”
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k-means clustering (3 of 3)

� Theoretically, the optimization problem is intractable

• but a simple iterative approach yields good approximations of the 

global minimum in practice

� This iterative approach requires the initial means of the 

clusters to be specified

� One of the drawbacks of k-means clustering is that it can 

be sensitive to initialization
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Example of segmentation by k-means clustering
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Fuzzy c-means clustering

� In fuzzy c-means clustering, cluster membership is not 

absolute

� Instead, fuzzy set theory is used to describe partial cluster 

membership

� This results in segmentations where uncertainty can be 

adequately represented 
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Gaussian mixture modelling (1 of 3)

� Gaussian mixture modelling assumes that the pixel 

intensities              in an image are samples from a random 

variable X with a probability density function f(x) that is a 

weighted sum of n Gaussian probability densities, with 

respective weights

where

• z is the standard normal distribution

• are unknown
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Gaussian mixture modelling (2 of 3)

� The expectation-minimization algorithm (EM) is used to 

find the maximum likelihood estimate of

� Intuitively, Gaussian mixture modelling fits the image 

histogram with a weighted sum of Gaussian densities

� Once the optimal parameters have been found, the 

probability that pixel  belongs to a tissue class  is found as 
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Gaussian mixture modelling (3 of 3)

� Like fuzzy c-means, Gaussian mixture modelling can 

describe uncertainty

� For each tissue class, a probability image is generated

• estimating the probability that a given pixel belongs to a given 

tissue class

� It is possible to model partial volume effects

• for example, a pixel may be assigned 0.5 probability of being white 

matter, 0.4 probability of being gray matter and 0.1 probability of 

being CSF

• which can be interpreted as a partial volume effect, i.e., both white 

matter and gray matter tissues present in the pixel
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Example of segmentation using Gaussian mixture models

� The mixture model (black curve) is a weighted sum of 

three Gaussian probability densities, one for each tissue 

type (red, blue and yellow curves)
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Improving the performance of Gaussian mixture modelling

� The performance of Gaussian mixture modelling can be 

further improved by introducing constraints on consistency 

of the segmentation between neighbouring pixels

� Methods that combine Gaussian mixture modelling with 

such spatial regularization constraints are among the most 

widely used in brain tissue segmentation from MRI
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Active contours

� The term active contours is used to describe a family of image 

segmentation algorithms

• emerged from the seminal work of Kass and Witkin (1988) on active 

snakes

� Before active snakes, the mainstream approach to object 

segmentation involved edge detection, followed by linking edges to 

form object boundaries

� Such a deterministic approach is limited to simple segmentation 

problems

� Active snakes were a radical shift from the deterministic paradigm

• an early example of knowledge-based image analysis, where prior 

knowledge about the shape and smoothness of object boundaries is used 

to guide segmentation
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Object segmentation

� Unlike automatic tissue classification, active contour 

methods address the problem of object segmentation

� The goal is to identify a specific anatomical structure, or 

small set of structures, in a biomedical image

� The structure is represented by a contour (a closed curve 

in 2D, or a closed surface in 3D)

� The goal is to find a contour C that minimizes an energy 

function E(C)
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Minimising the energy function

� The energy function typically comprises of two terms

• a term that measures how well the contour coincides with the 

boundaries of objects in the image

• a term that measures how simple the contour C is

� As an example, consider the 2D contour energy function 

proposed by Caselles et al. (1997)
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17.3.4 Active Contour Segmentation Methods

2D contour energy function

� The contour C is parameterized by the variable

� The function gI is called the speed function

• it is a monotonically decreasing function of the image gradient 

magnitude

• it has very small values along the edges of I, and is close to 1 

away from the edges of I

� It is easy to verify that the energy E(C) is decreased by

• making C fall on edges in I, where gI is reduced

• making C shorter, which reduces 
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Evolution equation

� Active contour methods are usually described not in terms 

of the energy function E(C), but instead, in terms of an 

evolution equation

where

• F is a scalar function of the image and the contour

• is the unit normal vector to C

� This equation describes how to evolve the contour over 

time T such that the energy E(C) decreases
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Deriving the evolution equation

� The evolution equation and the function F can be derived 

from the energy function using the calculus of variations

� Different active contour methods use different functions F, 

which correspond to different energy functions

• for example, the evolution equation for the 2D Caselles energy 

function has the form

where κ is the curvature of the contour C

� The same equation is used to describe contour evolution 

in 3D, except that  is used to describe the mean curvature 

of the surface
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Boundary representation for active contours (1 of 3)

� In early active contour methods, the segmentation was 

represented using a geometric boundary representation

• i.e. a piecewise cubic curve for 2D segmentation

• a surface for 3D segmentation

� In modern active contour methods, the level set 

representation is used instead, because of its numerical 

stability and simplicity

� The evolution equation can be adapted to the level set 

representation
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Boundary representation for active contours (2 of 3)

� If φ is a function on     , such that 

• i.e. C is the zero level set of φ

� Then the evolution equation can be rewritten in terms of φ
as 

� For instance, for the Caselles energy, the level set 

evolution equation has the form
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Boundary representation for active contours (3 of 3)

� The level set representation of the active contour has a 

number of advantages

• level set methods are numerically robust and simple to implement

• with the level set representation, the topology of the segmentation 

can change: multiple contours can merge into a single contour

• because the active contour is represented as a level set, the 

contour is always a closed manifold
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Active contours and tissue classification

� Active contour segmentation can be used in conjunction with 

automatic tissue classification 

• using a method developed by Zhu and Yuille (1996)

� This method uses the following definition for F

where  

• and                                are the probabilities that a pixel at 

position x belongs to the object of interest or to the background, 

respectively

• these probabilities can be estimated from the image I using automatic 

tissue classification or manual thresholding

• the constants α and β are user-specified weights that provide a trade-off 

between the terms in the speed function
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Interpretation of evolution for tissue classification

� The evolution has a very intuitive interpretation

� The component of the force weighted by α
• pushes the contour outwards if it lies inside of the object

• i.e.

• pushes the contour inwards if it lies outside of the object

� The component -βκ

• pushes the contour inward at points with large negative curvature

• pushes it outwards at points with large positive curvature

� The effect is to smooth out the sharp corners in the 

contour, keeping the shape of the contour simple 
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Active contours and segmentation

� Regardless of the flavour of the active contour method, the 

segmentation proceeds as follows

• the user provides an initial segmentation: for example, a circle or 

sphere placed inside the object of interest

• contour evolution is then simulated by repeatedly applying the 

evolution equation

• evolution is repeated 

• until convergence

• or until the user interrupts it
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Example of active contour segmentation

� In the probability map white pixels have high object probability; blue 

points have high background probability

� Simple thresholding of the probability map will lead to a very noisy 

segmentation
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Extensions to active contour segmentation

� Active contour segmentation is an area of active research

� Numerous extensions to the methods have been proposed 

in the recent years, including 

• more general shape priors

• constraints on the topology of the segmentation

• various application-specific image-based criteria
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Atlas-based segmentation (1 of 2)

� Deformable image registration is a technique that

• automatically finds correspondences between pairs of images

• in recent years, has also become a popular tool for automatic 

image segmentation

� Perform registration between 

• one image, called the atlas, in which the structure of interest has 

been segmented, say manually

• another image I, in which we want to segment the structure of 

interest
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Atlas-based segmentation (2 of 2)

� By performing registration between the image and the 

atlas

• we obtain a mapping φ(x) that maps every point in the image into a 

corresponding point in the atlas

• this mapping can be used to transform the segmentation from the 

atlas into image I

� The quality of the segmentation is limited only by the 

quality of the registration
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Example of atlas-based segmentation
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Multiple atlas-based segmentation 

� Several authors have extended this simple idea to using 

multiple atlases

� Each atlas is registered to the image I, and segmentation 

from each atlas is mapped into I

� Because of registration errors, these warped 

segmentations            do not overlap perfectly

� A voting scheme is used to derive a consensus 

segmentation from
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Advantages of atlas-based segmentation 

� The appeal of atlas-based segmentation is that it is very 

easy to implement

� Several image registration software applications are 

available in the public domain

� All that the user needs to perform atlas-based 

segmentation is an image, or several images, where the 

object of interest has been manually segmented

� Atlas-based segmentation can be applied in various 

imaging modalities

• but its quality may not be as high as methods that use shape priors
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17.4

Image registration

� Often in medical image analysis, we have to process 

information from multiple images

• images with different modalities (CT, PET, MRI) from the same 

subject

• images acquired at different time points from a single subject

• images of the same anatomical regions from multiple subjects

� In all these, and many other situations, we need a way to 

find and align corresponding locations in multiple images

� Image registration is a field that studies optimal ways to 

align and normalise images
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Image registration and transformations

� Image registration is the problem of finding transformations 

between images 

� Given an image I :Ω ϵ Rn → R and an image J :Ω ϵ Rn → R

� Seek a transformation 

• such that I(x) and J(φ(x)) are “similar” for all x in Ω

� The meaning of “similar” depends on the application

• in the context of medical image analysis, “similar” usually means  

“describing the same anatomical location”

• however, in practice such anatomical similarity cannot be 

quantified, and “similar” means “having similar image intensity 

features” 

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.4 Slide 3 (128/176)

:φ Ω → Ω



IAEA

17.4 IMAGE REGISTRATION 
17.4

Characterisation of image registration problems

� There are many different types of image registration 

problems

� They can be characterized by two main components

• the transformation model

• the similarity metric
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Linear vs. non-linear transformations

� The transformation  can take many forms

� The transformation is called linear when it has the form

where

• A is an n × n  matrix

• b is an n × 1 vector

� Otherwise, the transformation is non-linear 

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.4.1 Slide 3 (133/176)

( ) A bφ = +x x



IAEA

17.4 IMAGE REGISTRATION 
17.4.1 Transformation Models

Rigid vs. non-rigid transformations

� A special case of linear transformations are rigid

transformations

� The matrix  in rigid transformations is a rotation matrix

� Rigid transformations describe rigid motions

� They are used in applications when the object being 

imaged moves without being deformed

� Non-rigid linear transformations, as well as non-linear 

transformations, are called deformable transformations
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Examples of spatial transformations
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Parametric transformations

� Non-linear transformations can be parametric or non-

parametric

� Parametric transformations have the form

where  

• {fi (x) :Ω → R is a basis, such as the Fourier basis or the B-spline 

basis

• e1, e2 are unit vectors in the cardinal coordinate directions

• are the coefficients of the basis functions
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Parametric vs. non-parametric transformations

� Usually, a relatively small number of low-frequency basis 

functions is used to represent a parametric transformation

� The resulting transformations vary smoothly across Ω

� Such transformations are called low-dimensional non-

linear transformations

� Non-parametric transformations do not have such a 

parametric form

� Instead, at every point in Ω, a vector v(x) is defined, and 

the transformation is simply given by
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Diffeomorphic transformations

� Diffeomorphic transformations are a special class of non-parametric 

deformable transformations

• they are differentiable on Ω and have a differentiable inverse

• e.g. in one dimension (n=1), diffeomorphic transformations are 

monotonically increasing (or monotonically decreasing) functions

� Very useful for medical image registration because they describe 

realistic transformations of anatomy, without singularities such as 

tearing or folding

� Registration algorithms that restrict deformations to be diffeomorphic

exploit the property that the composition of two diffeomorphic

transformations is also diffeomorphic

• the deformation between two images is constructed by composing many 

infinitesimal deformations, each of which is itself diffeomorphic
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Similarity metrics

� Image registration tries to match places in images that are 

similar

� Since true anatomical similarity is not known, surrogate 

measures based on image intensity are used

� Many metrics have been proposed

� We will only review three such metrics

• Mean squared intensity difference

• Mutual information

• Cross-correlation

Diagnostic Radiology Physics:  A Handbook for Teachers and Students – 17.4.2 Slide 3 (141/176)



IAEA

17.4 IMAGE REGISTRATION 
17.4.2 Registration Similarity Metrics

Mean squared intensity difference

� The similarity is measured as difference in image intensity

� The similarity of images I and J is given by

� Simple to compute

� Appropriate when anatomically similar places can reasonably be 

expected to have similar image intensity values

� Not appropriate for 

• registration of images with different modalities

• MRI registration, because MRI intensity values are not consistent across 

scans
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Mutual information (1 of 3)

� Very useful for multimodality image registration

� A pair of images of the body are acquired with different 

modalities

• in modality 1, bone may have intensity range 100-200 and soft 

tissue may have range 10-20

• in modality 2, bone may have intensity between 3000 and 5000, 

and soft tissue may have intensity between 10000 and 20000

� The mean square intensity difference metric would return 

very large values if these two images are aligned properly

� Another metric is needed that does not directly compare 

the intensity values
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Mutual information (2 of 3)

� The mutual information metric is derived from information 

theory

� To compute mutual information between images I and J, 

we treat the pairs of intensity values (Ik, Jk) as samples 

from a pair of random variables X, Y

� One such sample exists at each pixel

� Mutual information is a measure of how dependent 

random variables X and Y are on each other
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Mutual information (3 of 3)

Mutual information is given by

where

• p(x,y) is the joint density of X and Y

• p(x) is the marginal density of X,  p(y) is the marginal density of Y

� The marginal densities are estimated by the histograms of 

the images I and J

� The joint density is estimated by the two-dimensional joint 

histogram of the images I and J
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Illustration of the joint histogram used in the computation of 

the mutual information metric
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Cross-correlation

� The cross-correlation metric is computed as follows

• at each pixel index k, we compute the correlation coefficient 

between the values of image I in a small neighbourhood of pixels 

surrounding k, and the values of image J over the same 

neighbourhood

• the correlation coefficients are summed up over the whole image

� The cross-correlation metric is robust to noise because it 

considers neighbourhoods rather than individual pixels

� However, it is expensive in computation time
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17.4 IMAGE REGISTRATION
17.4.3 THE GENERAL FRAMEWORK FOR IMAGE 

REGISTRATION
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17.4 IMAGE REGISTRATION 
17.4.3 The General Framework for Image Registration

General algorithmic framework for image registration
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17.4 IMAGE REGISTRATION 
17.4.3 The General Framework for Image Registration

General algorithmic framework – transformation φ

� Usually, one of the images is designated as a reference 

image and the other image is the moving image

� Transformations are applied to the moving image, while 

the reference image remains unchanged

� The transformation φ is defined by some set of 

parameters

• small set for linear registration

• bigger for parametric non-linear registration

• and very large for non-parametric non-linear registration
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17.4 IMAGE REGISTRATION 
17.4.3 The General Framework for Image Registration

General algorithmic framework – similarity metric

� Some initial parameters are supplied

• usually these initial parameters correspond to the identity 

transformation

� The transformation is applied to the moving image

• this involves resampling and interpolation because the values of  

φ(x) fall between voxel centres

� The resampled image J(φ(x)) is compared to the reference 

image I(x) using the similarity metric

• this results in a dissimilarity value

• registration seeks to minimize this dissimilarity value
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17.4 IMAGE REGISTRATION 
17.4.3 The General Framework for Image Registration

General algorithmic framework – regularization prior

� In many registration problems, an additional term, called 

the regularization prior, is minimized

� This term measures the complexity of the transformation φ
• favours smooth, regular transformations over irregular 

transformations

• can be though of as an Occam’s razor prior for transformations
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17.4 IMAGE REGISTRATION 
17.4.3 The General Framework for Image Registration

General algorithmic framework – objective function value

� Together, the dissimilarity value and the regularization 

prior value are combined into an objective function value

� The gradient of the objective function with respect to the 

transformation parameters is also computed

� Numerical optimization updates the values of the 

transformation parameters so as to minimize the objective 

function
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17.4 IMAGE REGISTRATION
17.4.4 APPLICATIONS OF IMAGE REGISTRATION
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Applications of Image Registration

� There are many image analysis problems that require 

image registration

� Different problems require different transformation models, 

and different similarity metrics

� We can group medical image registration problems into 

two general categories

• registration that accounts for differences in image acquisition

• registration that accounts for anatomical variability (image 

normalisation)
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Registration that accounts for differences in image acquisition

� In many biomedical applications, multiple images of the same subject 

are acquired

• images may have completely different modalities (MRI vs. CT, CT vs. 

PET, etc.) 

• images may be acquired on the same piece of equipment using different 

imaging parameters

• even when parameters are identical, the position of the subject in the 

scanner may change between images

� To co-analyse multiple images of the same subject, it is necessary to 

match corresponding locations in these images

� This is accomplished using image registration

� Within this category, there are several distinct subproblems that 

require different methodology
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Accounting for Subject’s Motion

� When multiple images of a subject are acquired in a short 

span of time, the subject may move

• for example, in fMRI studies, hundreds of scans are acquired 

during an imaging session

� To analyse the scans, they must first be aligned, so that 

the differences due to subject motion are factored out

� Motion correction typically uses image registration with 

rigid transformation models

� Simple image similarity metrics suffice
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Alignment of Multi-Modality 3D Images

� Often information from different imaging modalities must be combined 

for purposes of visualisation, diagnosis, and analysis

• for example, CT and PET images are often co-analysed, with CT providing 

high-resolution anatomical detail, and PET capturing physiological 

measures, such as metabolism

� The images have very different intensity patterns

• so registration requires specialised image similarity metrics, such as 

mutual information

� Often rigid transformations suffice

• however, some modalities introduce geometric distortions to images and 

low-dimensional parametric transformations may be necessary to align 

images
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Alignment of 3D and 2D Imaging Modalities

� Sometimes registration is needed to align a 2D image of the subject to 

a 3D image

• this problem arises in surgical and radiotherapy treatment contexts

• a 3D scan is acquired and used to plan the intervention

• during the intervention, X ray or angiographic images are acquired and 

used to ensure that the intervention is being performed according to the 

plan

• corrections to the intervention are made based on the imaging

� For this to work, image registration must accurately align images of 

different dimensions and different modality

� This is a challenging problem that typically requires the image 

registration algorithm to simulate 2D images via data from the 3D 

image
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Registration that Accounts for Anatomical Variability (Image 

Normalisation)

� The other major application of image registration is to 

match corresponding anatomical locations 

• in images of different subjects

• in images where the anatomy of a single subject has changed over 

time

� The term commonly used for this is image normalisation

� Again, there are several different applications
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Cross-sectional morphometry (1 of 2)

� Often we are interested in measuring how the anatomy of 

one group of subjects differs from another

• in a clinical trial, we may want to compare the anatomy of a cohort 

receiving a trial drug to the cohort receiving a placebo

� We may do so by matching every image to a common 

template image using image registration with non-linear 

transformations

� We may then compare the transformations from the 

template to the images in one cohort to the 

transformations to the images in the other cohort
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Cross-sectional morphometry (2 of 2)

� Specifically, we may examine the Jacobian of each 

transformation

� The Jacobian of the transformation describes the local 

change in volume caused by the transformation

� If 

• an infinitesimal region in the template has volume δV0,

• the transformation φ maps this region into a region of volume δV1

� Then the ratio δV1 / δV0 equals the determinant of the 

Jacobian of the transformation
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17.4 IMAGE REGISTRATION 
17.4.4 Applications of Image Registration

Longitudinal morphometry

� We may acquire multiple images of a subject at different 

time points when studying the effect on human anatomy of 

• disease

• intervention 

• aging

� To measure the differences over time, we can employ 

parametric or non-parametric deformable registration

� Because the overall anatomy does not change extensively 

between images, the regularisation priors and other 

parameters of registration may need to be different than 

for cross-sectional morphometry
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS
17.5
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS 
17.5

Open-source tools for image analysis

� This section briefly reviews several mature image processing and 

analysis tools that were available freely on the Internet at the time of 

writing

� The reader can experiment with the techniques described in this 

chapter by downloading and running these tools

� Most tools run on Apple and PC computers (with Linux and Windows 

operating systems)

� These are just of few of many excellent tools available to the reader

� The Neuroimaging Informatics Tools and Resources Clearinghouse 

(NITRC, http://www.nitrc.org) is an excellent portal for finding free 

image analysis software
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS 
17.5

Open-source tools for image analysis: URLs

� ImageJ http://rsbweb.nih.gov/ij

� ITK-SNAP* http://itksnap.org

� FSL http://www.fmrib.ox.ac.uk/fsl

� OsiriX http://www.osirix-viewer.com

� 3D Slicer http://slicer.org

* Disclaimer: the book chapter author is involved in development of ITK-SNAP
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS 
17.5

ImageJ

� ImageJ provides a wide array of image processing 

operations that can be applied to 2D and 3D images

� In addition to basic image processing (filtering, edge 

detection, resampling), ImageJ provides some higher-level 

image analysis algorithms

� ImageJ is written in Java

� ImageJ can open many common 2D image files, as well as 

DICOM format medical imaging data
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS 
17.5

ITK-SNAP

� ITK-SNAP is a tool for navigation and segmentation of 3D 

medical imaging data

� ITK-SNAP implements the active contour automatic 

segmentation algorithms by Caselles et al. (1997) and Zhu 

and Yuille (1996)

� It also provides a dynamic interface for navigation in 3D 

images

� Several tools for manual delineation are also provided. 

ITK-SNAP can open many 3D image file formats, including 

DICOM, NIfTI and Analyze
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS 
17.5

FSL

� FSL is a software library that offers many analysis tools for 

MRI brain imaging data

� It includes tools for linear image registration (FLIRT), non-

linear image registration (FNIRT), automated tissue 

classification (FAST) and many others

� FSL supports NIfTI and Analyze file formats, among others
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS 
17.5

OsiriX

� OsiriX is a comprehensive PACS workstation and DICOM 

image viewer

� It offers a range of visualization capabilities and a built-in 

segmentation tool

� Surface and volume rendering capabilities are especially 

well-suited for CT data

� OsiriX requires an Apple computer with MacOS X
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17.5 OPEN-SOURCE TOOLS FOR IMAGE ANALYSIS 
17.5

3D Slicer 

� Slicer is an extensive software platform for image display 

and analysis

� It offers a wide range of plug-in modules that provide 

automatic segmentation, registration and statistical 

analysis functionality

� Slicer also includes tools for image-guided surgery

� Many file formats are supported
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