CHAPTER 17: SOLUBILITY AND COMPLEX ION EQUILIBRIA

Part One: Solubility Equilibria

A. K_{sp} , the Solubility Product Constant. (Section 17.1)

- 1. Review the solubility rules. (Table 4.1)
- 2. Insoluble and slightly soluble compounds are important in nature and commercially.

a.

b.

c.

3. Solubility behavior expressed mathematically by special equilib. constant = $K_{\rm sp}$.

a.
$$BaSO_4(s) \stackrel{\mathsf{K}_{\$p}}{\rightleftharpoons} Ba^{2+}(aq) + SO_4^{2-}(aq)$$

b.
$$Ca_3(PO_4)_2 = 3 Ca^{2+} + 2 PO_4^{3-}$$

- 4. Note in <u>all</u> saturated aqueous solutions of BaSO₄, no matter what other materials are present:
- 5. Table of K_{sp} in Table 17.1.
- 6. Solubility = moles of a compound which dissolve in a liter of solution. Directly related to but not equal to K_{sp} .
- B. Finding K_{sp}. (Section 17.1)
 - 1. Usually determined by conductivity experiment.
 - 2. Example: Found that 6.93×10^{-3} g of CaCO₃ can dissolve in 1.00 L of water. What is K_{sp} of CaCO₃?

3. Example: The molar solubility of PbBr₂ is 1.16×10^{-2} moles/Liter. What is K_{sp} ?

$$PbBr_{2}(s)$$

$$Pb^{2+}(aq)$$

4. For Bi_2S_3 with molar solubility = s

- C. Finding the Solubility from K_{sp} . (Section 17.1)
 - 1. Example: Calculate the molar solubility of AgCl and the concentrations [Ag $^+$] and [Cl $^-$] in a saturated aqueous solution of AgCl. The $K_{sp} = 1.8 \times 10^{-10}$.

2. Example: Calculate the molar solubility of Bi_2S_3 , and $[Bi^{3+}]$ and $[S^{2-}]$ concentrations. The $K_{sp}=1.6\times 10^{-72}$.

$$K_{sp} = [Bi^{3+}]^2 [S^{2-}]^3$$

- D. The Common Ion Effect in Solubility Calculations. (Section 17.2)
 - 1. Previously showed that in saturated solution of AgCl:

$$[C1^{-}] = [Ag^{+}] = 1.3 \times 10^{-5} M = \sqrt{K_{sp}}$$

2. Calculate the solubility of AgCl and the concentration of ionic species present in a 2.0 M NaCl solution saturated with AgCl. K_{sp} of AgCl is 1.8×10^{-10} .

Here Cl⁻ ion is present from two sources: NaCl and AgCl.

Chapter 17 Page 4

Part Two: Uses of the Solubility Product Principle

- A. Predicting if Precipitation Will Occur. (Section 17.3)
 - 1. Precipitation will occur whenever the ion concentration product for a compound exceeds the K_{sp} of that compound.

For example, when $[Ag^+][Cl^-] > K_{sp}$

2. The solution is unstable, and precipitate of AgCl will occur until:

$$[Ag^+][Cl^-] = K_{sp}$$

3. Example: The following reagents are added to water and the final volume is adjusted to 1.00 L. What, if any, compounds will precipitate?

1.0 g NaOH
$$\div$$
 40.0 g/mol = $2.5 \times 10^{-2} M$
1.0 g Na₂CO₃ \div 106.0 g/mol = $9.4 \times 10^{-3} M$
1.0 g CaCl₂ \div 110.9 g/mol = $9.0 \times 10^{-3} M$
1.0 g PbNO₃ \div 269.2 g/mol = $3.7 \times 10^{-3} M$

(Hint: Don't expect any Na⁺ or NO₃⁻ salts to precipitate due to their high solubility.)

Pb(OH)₂ will precipitate <u>first</u>, because its ion product is the greatest relative to its K_{sp} .

Chapter 17 Page 5

- B. Predicting Concentration Required to Cause Precipitation. (Section 17.3)
 - 1. Example: A solution is $0.100 \ M$ Na₂CO₃. Then, calcium ions are added by another source. At what concentration of Ca²⁺ ion will precipitation of CaCO₃ occur? K_{sp} of CaCO₃ is 4.8×10^{-9} .

2. Part 2: How many grams of CaCl₂ would need to be added to 500 mL of 0.100 *M* Na₂CO₃ to start forming this precipitate?

precipitate when $[Ca^{2+}] = 4.8 \times 10^{-8} M$ (moles/Liter)

OR:
$$= 2.4 \times 10^{-8} \text{ moles in } 500 \text{ mL}$$

 $2.4 \times 10^{-8} \text{ moles} \times 110.9 \text{ g/mol} = 2.66 \times 10^{-6} \text{ grams CaCl}_2$

- C. Fractional Precipitation (Section 17.3)
 - 1. May wish to precipitate some ions from solution but leave others.
 - 2. Example: Have solution: 0.10 M Cu⁺

0.10 M Ag⁺

0.10 M Au⁺

Slowly add NaCl to the solution. Which will precipitate first: CuCl, AgCl, or AuCl? At what [Cl-] will these each begin to precipitate?

Given:
$$K_{sp}$$
 of CuCl = 1.9×10^{-7}

$$K_{sp}$$
 of AgCl = 1.8 × 10⁻¹⁰

$$K_{sp}$$
 of AuCl = 2.0 × 10⁻¹³

3. What will [Au⁺] be when AgCl just begins to precipitate?

$$[Au^{+}][Cl^{-}] = 2.0 \times 10^{-13}$$
 \uparrow
 $1.8 \times 10^{-9} M$ to precipitate AgCl

 $[Au^{+}] \times 1.8 \times 10^{-9} = 2.0 \times 10^{-13}$
 $[Au^{+}] = 1.3 \times 10^{-4} M$

(remember, $[Au^{+}]$ was originally 0.10 M)

- D. Effect of pH on Solubility (Section 17.4)
 - 1. Example: Limestone/Marble tends to dissolve in acidic conditions.
 - 2. Solubility equilibrium for CaCO₃(s)

$$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3^{2-}(aq)$$

3. This equilibrium is affected by addition of strong acid:

$$H_3O^+(aq) + CO_3^{2-}(aq) \rightleftharpoons H_2O + HCO_3^{-}(aq)$$

4. This reaction removes carbonate ion, shifting the solubility equilibrium to the right, causing more CaCO₃(s) to go into solution.

Part Four: Complex-Ion Equilibria

- A. Complex-Ion Formation. (Section 17.5)
 - 1. Some metal ions in solution can bind varying numbers of molecules or molecular ions.

Page 7

2. Example: Ag⁺ ion and ammonia molecules:

$$Ag^{+}(aq) + NH_3(aq) \rightleftharpoons Ag(NH_3)^{+}(aq)$$

 $Ag(NH_3)^{+}(aq) + NH_3(aq) \rightleftharpoons Ag(NH_3)_2^{+}(aq)$

Chapter 17

3. The combined complexation reaction is then:

$$Ag^+(aq) + 2 NH_3(aq) = Ag(NH_3)_2^+(aq)$$

4. This equilibrium is governed by the **formation constant**, or **stability constant**, K_f.

$$K_f = \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2} = 1.7 \times 10^7$$

TABLE 17.2 Formation Constants of Complex Ions at 25°C	
Complex Ion	K_f
Ag(CN) ₂ ⁻ Ag(NH ₃) ₂ ⁺ Ag(S ₂ O ₃) ₂ ³⁻ Cd(NH ₃) ₄ ²⁺ Cu(CN) ₂ ⁻ Cu(NH ₃) ₄ ²⁺ Fe(CN) ₆ ⁴⁻ Fe(CN) ₆ ³⁻ Ni(CN) ₄ ²⁻ Ni(NH ₃) ₆ ²⁺ Zn(NH ₃) ₄ ²⁺	5.6×10^{18} 1.7×10^{7} 2.9×10^{13} 1.0×10^{7} 1.0×10^{16} 4.8×10^{12} 1.0×10^{35} 9.1×10^{41} 1.0×10^{31} 5.6×10^{8} 2.9×10^{9}
$Zn(OH)_4^{2-}$	2.8×10^{15}

- 5. The dissociation constant K_d is simply the reciprocal of K_f .
- 6. Calculations with this equilibrium. (See text Section 17.5)
- 7. Formation of complex ions can have important effects on solubility of ions in solution. (See lab manual Experiments #21-26)

Chapter 17 Page 8