CHAPTER 19 IONIC EQUILIBRIA IN AQUEOUS SYSTEMS

19.1 The purpose of an acid-base buffer is to maintain a relatively constant pH in a solution.
19.2 The weak acid component neutralizes added base and the weak base component neutralizes added acid so that the pH of the buffer solution remains relatively constant. The components of a buffer do not neutralize one another when they are a conjugate acid/base pair.
19.3 The presence of an ion in common between two solutes will cause any equilibrium involving either of them to shift in accordance with Le Châtelier's principle. For example, addition of NaF to a solution of HF will cause the equilibrium

$$
\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

to shift to the left, away from the excess of F^{-}, the common ion.
19.4 a) Buffer 3 has equal, high concentrations of both $\mathrm{HA}^{\text {and }} \mathrm{A}^{-}$. It has the highest buffering capacity.
b) All of the buffers have the same pH range. The practical buffer range of $\mathrm{pH}=\mathrm{pKa} \pm 1$, and is independent of concentration.
c) Buffer $\mathbf{2}$ has the greatest amount of weak base and can therefore neutralize the greatest amount of added acid.
19.5 A buffer with a high capacity has a great resistance to pH change. A high buffer capacity results when the weak acid and weak base are both present at high concentration. Addition of 0.01 mol of HCl to a high-capacity buffer will cause a smaller change in pH than with a low-capacity buffer, since the ratio [HA] / [A^{-}] will change less.
19.6 Only (c) has an affect on the buffer capacity. In theory, any conjugate pair (of any $\mathrm{p} K_{\mathrm{a}}$) can be used to make a high capacity buffer. With proper choice of components, it can be at any pH . The buffer range changes along with the buffer capacity, but does not determine it. A high-capacity buffer will result when comparable quantities (i.e., buffer-component ratio < 10:1) of weak acid and weak base are dissolved so that their concentrations are relatively high.
19.7 The buffer component ratio refers to the ratio of concentrations of the acid and base that make up the buffer. When this ratio is equal to 1 , the buffer resists changes in pH with added acid to the same extent that it resists changes in pH with added base. The buffer range extends equally in both the acidic and basic direction. When the ratio shifts with higher [base] than [acid], the buffer is more effective at neutralizing added acid than base so the range extends further in the acidic than basic direction. The opposite is true for a buffer where [acid] $>$ [base]. Buffers with a ratio equal to 1 have the greatest buffer range. The more the buffer component ratio deviates from 1 , the smaller the buffer range.
$19.8 \mathrm{p} K_{\mathrm{a}}($ formic $)=3.74 ; \mathrm{p} K_{\mathrm{a}}$ (acetic) $=4.74$. Formic acid would be the buffer choice, since its $\mathrm{p} K_{\mathrm{a}}$ is closer to the desired pH of 3.5. If acetic acid were used, the buffer component ratio would be far from 1:1 and the buffer's effectiveness would be lower. The NaOH serves to partially neutralize the acid and produce its conjugate base.
19.9 a) The buffer component ratio and pH increase with added base. The OH^{-}reacts with HA to decrease its concentration and increase [NaA]. The ratio [NaA] / [HA] thus increases. The pH of the buffer will be more basic because the concentration of base, A^{-}, has increased and the concentration of acid, HA, decreased.
b) Buffer component ratio and pH decrease with added acid. The $\mathrm{H}_{3} \mathrm{O}^{+}$reacts with A^{-}to decrease its concentration and increase [HA]. The ratio [NaA] / [HA] thus decreases. The pH of the buffer will be more acidic because the concentration of base, A^{-}, has decreased and the concentration of acid, HA , increased.
c) Buffer component ratio and pH increase with the added sodium salt. The additional NaA increases the concentration of both NaA and HA, but the relative increase in [NaA] is greater. Thus, the ratio increases and the solution becomes more basic. Whenever base is added to a buffer, the pH always increases, but only slightly if the amount of base is not too large.
d) Buffer component ratio and pH decrease. The concentration of HA increases more than the concentration of NaA , so the ratio is less and the solution is more acidic.
19.10 a) pH would increase by a small amount.
b) pH would decrease by a small amount.
c) pH would increase by a very small amount.
d) pH would increase by a large amount.
19.11 The buffer components are propanoic acid and propanoate ion. The sodium ions are spectator ions and are ignored because they are not involved in the buffer. The reaction table that describes this buffer is:

Concentration (M)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}(a q)+$	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$		
Initial	0.15	-	0.35	0	
Change	-x	-	+x	+x	
Equilibrium	$0.15-\mathrm{x}$	-	$0.35+\mathrm{x}$	x	

Assume that x is negligible with respect to both 0.15 and 0.35 since both concentrations are much larger than K_{a}.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}=\frac{[\mathrm{x}][0.35+\mathrm{x}]}{[0.15-\mathrm{x}]}=\frac{[\mathrm{x}][0.35]}{[0.15]}=1.3 \times 10^{-5}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}=\left(1.3 \times 10^{-5}\right)\left(\frac{0.15}{0.35}\right)=5.57143 \times 10^{-6}=5.6 \times 1 \mathbf{1 0}^{-6} \boldsymbol{M}$
Check assumption: percent error $=\left(5.6 \times 10^{-6} / 0.15\right) 100 \%=0.0037 \%$. The assumption is valid.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(5.57143 \times 10^{-6}\right)=5.2540=5.25
$$

Another solution path to find pH is using the Henderson-Hasselbalch equation:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \quad \mathrm{pK}_{\mathrm{a}}=-\log \left(1.3 \times 10^{-5}\right)=4.886 \\
& \mathrm{pH}=4.886+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}\right)=4.886+\log \left(\frac{[0.35]}{[0.15]}\right) \\
& \mathrm{pH}=5.25398=5.25
\end{aligned}
$$

19.12 $\mathrm{CA}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \quad \mathrm{CB}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$Neglect Na^{+}. Assume +x and -x are negligible.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{CB}]}{[\mathrm{CA}]}=\frac{[\mathrm{x}][0.28+\mathrm{x}]}{[0.33-\mathrm{x}]}=\frac{[\mathrm{x}][0.28]}{[0.33]}=6.3 \times 10^{-5}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{CA}]}{[\mathrm{CB}]}=\left(6.3 \times 10^{-5}\right)(0.33 / 0.28)=7.425 \times 10^{-5}=7.4 \times 10^{-5} \boldsymbol{M}$
Check assumption: percent error $=\left(7.425 \times 10^{-5} / 0.28\right) 100 \%=0.026 \%$. The assumption is valid.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(7.425 \times 10^{-5}\right)=4.1293=4.13
$$

19.13 The buffer components are nitrous acid, HNO_{2}, and nitrite ion, $\mathrm{NO}_{2}{ }^{-}$. The potassium ions are ignored because they are not involved in the buffer. Set up the problem with a reaction table.

Concentration (M)	$\mathrm{HNO}_{2}(a q)+$	$\mathrm{H}_{2} \mathrm{O}(l)$	\leftrightarrows	$\mathrm{NO}_{2}^{-}(a q)+$	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
Initial	0.55	-		0.75	0
Change	-x	-		+x	+x
Equilibrium	$0.55-\mathrm{x}$	-		$0.75+\mathrm{x}$	x

Assume that x is negligible with respect to both 0.55 and 0.75 since both concentrations are much larger than K_{a}.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=\frac{[\mathrm{x}][0.75+\mathrm{x}]}{[0.55-\mathrm{x}]}=\frac{[\mathrm{x}][0.75]}{[0.55]}=7.1 \times 10^{-4}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{HNO}_{2}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}=\left(7.1 \times 10^{-4}\right) \frac{[0.55]}{[0.75]}=5.2066667 \times 10^{-4}=5.2 \times 10^{-4} \mathbf{M}$
Check assumption: percent error $=\left(5.2066667 \times 10^{-4} / 0.55\right) 100 \%=0.095 \%$. The assumption is valid. $\mathrm{pH}=-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(5.2066667 \times 10^{-4}\right)=3.28344=3.28$
Verify the pH using the Henderson-Hasselbalch equation.

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \quad \mathrm{pK}_{\mathrm{a}}=-\log \left(7.1 \times 10^{-4}\right)=3.149 \\
\mathrm{pH}
\end{gathered}=3.149+\log \left(\frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}\right)=3.149+\log \left(\frac{[0.75]}{[0.55]}\right)
$$

19.14 The acid component is HF and the base component is F^{-}. Neglect K^{+}. Assume +x and -x are negligible.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=\frac{[\mathrm{x}][0.25+\mathrm{x}]}{[0.20-\mathrm{x}]}=\frac{[\mathrm{x}][0.25]}{[0.20]}=6.8 \times 10^{-4}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{HF}]}{\left[\mathrm{F}^{-}\right]}=\left(6.8 \times 10^{-4}\right)(0.20 / 0.25)=5.44 \times 10^{-4}=5.4 \times 1 \mathbf{1 0}^{-4} \boldsymbol{M}$
Check assumption: percent error $=\left(5.44 \times 10^{-4} / 0.20\right) 100 \%=0.27 \%$. The assumption is valid.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(5.44 \times 10^{-4}\right)=3.2644=3.26
$$

Verify the pH using the Henderson-Hasselbalch equation.
19.15 The buffer components are formic acid, HCOOH , and formate ion, HCOO^{-}. The sodium ions are ignored because they are not involved in the buffer. Calculate K_{a} from $\mathrm{p} K_{\mathrm{a}}$ and write a reaction table for the dissociation of formic acid.
$K_{\mathrm{a}}=10^{-\mathrm{pK}{ }_{a}}=10^{-3.74}=1.8197 \times 10^{-4}$ (unrounded)

| Concentration (M) | $\mathrm{HCOOH}(a q)$ | + | $\mathrm{H}_{2} \mathrm{O}(l)$ | \leftrightarrows | $\mathrm{HCOO}^{-}(a q)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |$+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

Assume that x is negligible because both concentrations are much larger than K_{a}.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}=\frac{[\mathrm{x}][0.63+\mathrm{x}]}{[0.45-\mathrm{x}]}=\frac{[\mathrm{x}][0.63]}{[0.45]}=1.8197 \times 10^{-4}$ (unrounded)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{HCOOH}]}{\left[\mathrm{HCOO}^{-}\right]}=\left(1.8197 \times 10^{-4}\right) \frac{[0.45]}{[0.63]}=1.29979 \times 10^{-4}=1.3 \times 10^{-4} \mathrm{M}$
Check assumption: percent error $=\left(1.29979 \times 10^{-4} / 0.45\right) 100 \%=0.029 \%$. The assumption is valid.
$\mathrm{pH}=-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.29979 \times 10^{-4}\right)=3.886127=3.89$
Verify the pH using the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& \mathrm{pH}=3.74+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right)=3.74+\log \left(\frac{[0.63]}{[0.45]}\right) \\
& \mathrm{pH}=3.8861=3.89
\end{aligned}
$$

$19.16 K_{\mathrm{a}}=10^{-\mathrm{p} K}=10^{-8.64}=2.2908676 \times 10^{-9}$ (unrounded)
The acid component is HBr and the base component is BrO^{-}. Neglect K^{+}. Assume +x and -x are negligible.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{BrO}^{-}\right]}{[\mathrm{HBrO}]}=\frac{[\mathrm{x}][0.68+\mathrm{x}]}{[0.95-\mathrm{x}]}=\frac{[\mathrm{x}][0.68]}{[0.95]}=2.2908676 \times 10^{-9}$ (unrounded)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{HBrO}]}{\left[\mathrm{BrO}^{-}\right]}=\left(2.2908676 \times 10^{-9}\right)(0.95 / 0.68)=3.2004768 \times 10^{-9}=3.2 \times 10^{-9} \mathrm{M}$
Check assumption: percent error $=\left(3.2004768 \times 10^{-9} / 0.68\right) 100 \%=0.00000047 \%$. The assumption is valid.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(3.2004768 \times 10^{-9}\right)=8.4947853=\mathbf{8 . 4 9}
$$

Verify the pH using the Henderson-Hasselbalch equation.
19.17 The buffer components are phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$, and phenolate ion, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$. The sodium ions are ignored because they are not involved in the buffer. Calculate K_{a} from $\mathrm{p} K_{\mathrm{a}}$ and set up the problem with a reaction table.
$K_{\mathrm{a}}=10^{-\mathrm{p} K a}=10^{-10.00}=1.0 \times 10^{-10}$

Concentration (M)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(a q)$	+	$\mathrm{H}_{2} \mathrm{O}(l)$	\leftrightarrows	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(a q)+$	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
Initial	1.2	-		1.3	0	
Change	-x	-		+x	+x	
Equilibrium	$1.2-\mathrm{x}$	-		$1.3+\mathrm{x}$	x	

Assume that x is negligible with respect to both 1.0 and 1.2 because both concentrations are much larger than K_{a}.

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}=\frac{[\mathrm{x}][1.3+\mathrm{x}]}{[1.2-\mathrm{x}]}=\frac{[\mathrm{x}][1.3]}{[1.2]}=1.0 \times 10^{-10} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]}=\left(1.0 \times 10^{-10}\right)\left(\frac{1.2}{1.3}\right)=9.23077 \times 10^{-11} \mathrm{M}}
\end{aligned}
$$

Check assumption: percent error $=\left(9.23077 \times 10^{-11} / 1.2\right) 100 \%=7.7 \times 10^{-9} \%$. The assumption is valid. $\mathrm{pH}=-\log \left(9.23077 \times 10^{-11}\right)=10.03476=\mathbf{1 0 . 0 3}$.
Verify the pH using the Henderson-Hasselbalch equation:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& \mathrm{pH}=10.00+\log \left(\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}\right)=10.00+\log \left(\frac{[1.3]}{[1.2]}\right) \\
& \mathbf{p H}=\mathbf{1 0 . 0 3}
\end{aligned}
$$

$19.18 K_{\mathrm{a}}=10^{-\mathrm{p} K a}=10^{-9.24}=5.7543993 \times 10^{-10}$ (unrounded)
The acid component is $\mathrm{H}_{3} \mathrm{BO}_{3}$ and the base component is $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$. Neglect Na^{+}. Assume $+x$ and $-x$ are negligible.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]}=\frac{[\mathrm{x}][0.82+\mathrm{x}]}{[0.12-\mathrm{x}]}=\frac{[\mathrm{x}][0.82]}{[0.12]}=5.7543993 \times 10^{-10}$ (unrounded)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]}{\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]}=\left(5.7543993 \times 10^{-10}\right)(0.12 / 0.82)=8.4210722 \times 10^{-11} \mathrm{M}$ (unrounded)
Check assumption: percent error $=\left(8.4210722 \times 10^{-11} / 0.12\right) 100 \%=7.0 \times 10^{-8} \%$. The assumption is valid.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(8.4210722 \times 10^{-11}\right)=10.07463261=\mathbf{1 0 . 0 7}
$$

Verify the pH using the Henderson-Hasselbalch equation.
19.19 The buffer components are phenol, NH_{3}, and ammonium ion, $\mathrm{NH}_{4}{ }^{+}$. The chloride ions are ignored because they are not involved in the buffer. Calculate K_{b} from $\mathrm{p} K_{\mathrm{b}}$ and set up the problem with a reaction table.
$K_{\mathrm{b}}=10^{-\mathrm{pKb}}=10^{-4.75}=1.7782794 \times 10^{-5}$ (unrounded)

Concentration (M)	$\mathrm{NH}_{3}(a q)$	+	$\mathrm{H}_{2} \mathrm{O}(l)$	\leftrightarrows	$\mathrm{NH}_{4}+(a q)$	+
Initial	0.25	-		0.15	$\mathrm{OH}^{-}(a q)$	
Change	-x		-		+x	0
Equilibrium	$0.25-\mathrm{x}$	-		$0.15+\mathrm{x}$	x	

Assume that x is negligible with respect to both 0.25 and 0.15 because both concentrations are much larger than K_{b}.
$K_{\mathrm{b}}=10^{-\mathrm{p} K b}=10^{-4.75}=1.7782794 \times 10^{-5}$ (unrounded)
$K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{[0.15+\mathrm{x}]\left[\mathrm{OH}^{-}\right]}{[0.25-\mathrm{x}]}=\frac{[0.15]\left[\mathrm{OH}^{-}\right]}{[0.25]}=1.7782794 \times 10^{-5}$ (unrounded)
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{b}} \frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\left(1.7782794 \times 10^{-5}\right)\left(\frac{0.25}{0.15}\right)=2.963799 \times 10^{-5} \mathrm{M}$ (unrounded)
Check assumption: percent error $=\left(2.963799 \times 10^{-5} / 0.25\right) 100 \%=0.012 \%$. The assumption is valid.

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(2.963799 \times 10^{-5}\right)=4.52815(\text { unrounded })
$$

$14.00=\mathrm{pH}+\mathrm{pOH}$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-4.52815=9.4718=\mathbf{9 . 4 7}$
Verify the pH using the Henderson-Hasselbalch equation. To do this, you must find the pK_{a} of the acid $\mathrm{NH}_{4}{ }^{+}$:
$14=\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}$
$\mathrm{pK}_{\mathrm{a}}=14-\mathrm{pK}_{\mathrm{b}}=14-4.75=9.25$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& \mathrm{pH}=9.25+\log \left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right)=9.25+\log \left(\frac{[0.25]}{[0.15]}\right) \\
& \mathbf{p H}=\mathbf{9 . 4 7}
\end{aligned}
$$

$19.20 \quad K_{\mathrm{b}}=10^{-\mathrm{pKb}}=10^{-3.35}=4.4668359 \times 10^{-4}$ (unrounded)
The base component is $\mathrm{CH}_{3} \mathrm{NH}_{2}$ and the acid component is $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$. Neglect Cl^{-}. Assume +x and -x are negligible.
$K_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}=\frac{[0.60+\mathrm{x}]\left[\mathrm{OH}^{-}\right]}{[0.50-\mathrm{x}]}=\frac{[0.60]\left[\mathrm{OH}^{-}\right]}{[0.50]}=4.4668359 \times 10^{-4}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{b}} \frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]}=\left(4.4668359 \times 10^{-4}\right)(0.50 / 0.60)=3.7223632 \times 10^{-4} \mathrm{M}$ (unrounded)
Check assumption: percent error $=\left(3.7223632 \times 10^{-4} / 0.50\right) 100 \%=0.074 \%$. The assumption is valid.

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(3.7223632 \times 10^{-4}\right)=3.429181246(\text { unrounded })
$$

$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.429181246=10.57081875=\mathbf{1 0 . 5 7}$
Verify the pH using the Henderson-Hasselbalch equation.
19.21 a) The buffer components are $\mathrm{HCO}_{3}{ }^{-}$from the salt KHCO_{3} and $\mathrm{CO}_{3}{ }^{2-}$ from the salt $\mathrm{K}_{2} \mathrm{CO}_{3}$. Choose the K_{a} value that corresponds to the equilibrium with these two components. $K_{a 1}$ refers to carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$ losing one proton to produce HCO_{3}^{-}. This is not the correct K_{a} because $\mathrm{H}_{2} \mathrm{CO}_{3}$ is not involved in the buffer. $\boldsymbol{K}_{\mathrm{a} 2}$ is the correct K_{a} to choose because it is the equilibrium constant for the loss of the second proton to produce $\mathrm{CO}_{3}{ }^{2-}$ from $\mathrm{HCO}_{3}{ }^{-}$.
b) Set up the reaction table and use $K_{\mathrm{a} 2}$ to calculate pH .

Concentration (M)	$\mathrm{HCO}_{3}{ }^{-}(a q)$				
Initial	0.22	$\mathrm{H}_{2} \mathrm{O}(l)$	\leftrightarrows	$\mathrm{CO}_{3}{ }^{2-}(a q)+$	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
Change	-	-	0.37	0	
Equilibrium	-x	-		+x	+x
	$0.22-\mathrm{x}$	-		$0.37+\mathrm{x}$	x

Assume that x is negligible with respect to both 0.22 and 0.37 because both concentrations are much larger than K_{a}.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=\frac{[\mathrm{x}][0.37+\mathrm{x}]}{[0.22-\mathrm{x}]}=\frac{[\mathrm{x}][0.37]}{[0.22]}=4.7 \times 10^{-11}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}=\left(4.7 \times 10^{-11}\right)\left(\frac{0.22}{0.37}\right)=2.79459 \times 10^{-11} \mathrm{M}$ (unrounded)
Check assumption: percent error $=\left(2.79459 \times 10^{-11} / 0.22\right) 100 \%=1.3 \times 10^{-8} \%$. The assumption is valid. $\mathrm{pH}=-\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.79459 \times 10^{-11}\right)=10.5537=\mathbf{1 0 . 5 5}$.
Verify the pH using the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \quad \mathrm{pK}_{\mathrm{a}}=-\log \left(4.7 \times 10^{-11}\right)=10.328 \\
& \mathrm{pH}=10.328+\log \left(\frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}{ }^{-}\right]}\right)=10.328+\log \left(\frac{[0.37]}{[0.22]}\right) \\
& \mathbf{p H}=\mathbf{1 0 . 5 5}
\end{aligned}
$$

19.22 a) The conjugate acid-base pair are related by $\boldsymbol{K}_{\mathrm{a} 2}\left(6.3 \times 10^{-8}\right)$.
b) Assume that x is negligible with respect to both 0.50 and 0.40 because both concentrations are much larger than K_{a}. The acid component is $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and the base component is $\mathrm{HPO}_{4}{ }^{2-}$. Neglect Na^{+}. Assume +x and -x are negligible.
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]}=\frac{[\mathrm{x}][0.40+\mathrm{x}]}{[0.50-\mathrm{x}]}=\frac{[\mathrm{x}][0.40]}{[0.50]}=6.3 \times 10^{-8}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}=\left(6.3 \times 10^{-8}\right)(0.50 / 0.40)=7.875 \times 10^{-8} M$ (unrounded)
Check assumption: percent error $=\left(7.875 \times 10^{-8} / 0.50\right) 100 \%=1.6 \times 10^{-5} \%$. The assumption is valid.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(7.875 \times 10^{-8}\right)=7.103749438=7.10
$$

Verify the pH using the Henderson-Hasselbalch equation.
19.23 Given the pH and K_{a} of an acid, the buffer-component ratio can be calculated from the Henderson-Hasselbalch equation.
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(1.3 \times 10^{-5}\right)=4.8860566$ (unrounded)
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)$
$5.44=4.8860566+\log \left(\frac{\left[\mathrm{Pr}^{-}\right]}{[\mathrm{HPr}]}\right)$
$0.5539434=\log \left(\frac{\left[\mathrm{Pr}^{-}\right]}{[\mathrm{HPr}]}\right) \quad$ Raise each side to 10^{x}.
$\frac{\left[\mathrm{Pr}^{-}\right]}{[\mathrm{HPr}]}=3.5805=3.6$
19.24 Given the pH and K_{a} of an acid, the buffer-component ratio can be calculated from the Henderson-Hasselbalch equation.
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(7.1 \times 10^{-4}\right)=3.148741651$ (unrounded)
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)$
$2.95=3.14874165+\log \left(\frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}\right)$
$-0.19874165=\log \left(\frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}\right) \quad$ Raise each side to 10^{x}.
$\frac{\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=0.632788=\mathbf{0 . 6 3}$
19.25 Given the pH and K_{a} of an acid, the buffer-component ratio can be calculated from the Henderson-Hasselbalch equation.
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(2.3 \times 10^{-9}\right)=8.63827$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)$
$7.95=8.63827+\log \left(\frac{\left[\mathrm{BrO}^{-}\right]}{[\mathrm{HBrO}]}\right)$
$-0.68827=\log \left(\frac{\left[\mathrm{BrO}^{-}\right]}{\left[\mathrm{HBrO}^{-}\right]}\right) \quad$ Raise each side to 10^{x}.
$\frac{\left[\mathrm{BrO}^{-}\right]}{[\mathrm{HBrO}]}=0.204989=\mathbf{0 . 2 0}$
19.26 Given the pH and K_{a} of an acid, the buffer-component ratio can be calculated from the Henderson-Hasselbalch equation.
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(1.8 \times 10^{-5}\right)=4.744727495$ (unrounded)
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right)$
$4.39=4.74473+\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right)$
$-0.35473=\log \left(\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}\right) \quad$ Raise each side to 10^{x}.
$\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=0.441845=\mathbf{0 . 4 4}$
19.27 Determine the $\mathrm{p} K_{\mathrm{a}}$ of the acid from the concentrations of the conjugate acid and base, and the pH of the solution. This requires the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{\text { [acid }]}\right) \\
& 3.35=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[0.1500]}{[0.2000]}\right) \\
& 3.35=\mathrm{pK}_{\mathrm{a}}-0.1249387 \\
& \mathrm{pK}_{\mathrm{a}}=3.474939=3.47
\end{aligned}
$$

Determine the moles of conjugate acid (HA) and conjugate base $\left(\mathrm{A}^{-}\right)$using $(\mathrm{M})(\mathrm{V})=$ moles.
Moles HA $=(0.5000 \mathrm{~L})(0.2000 \mathrm{~mol} \mathrm{HA} / \mathrm{L})=0.1000 \mathrm{~mol} \mathrm{HA}$
Moles $\mathrm{A}^{-}=(0.5000 \mathrm{~L})\left(0.1500 \mathrm{~mol} \mathrm{~A}^{-} / \mathrm{L}\right)=0.07500 \mathrm{~mol} \mathrm{~A}^{-}$
The reaction is:

| | $\mathrm{HA}(a q)$$+$ | $\mathrm{NaOH}(a q)$
 0.0015 mol | $\rightarrow \mathrm{Na}^{+}(a q)$ |
| :--- | :---: | :---: | :---: | :---: |$+\mathrm{A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

NaOH is the limiting reagent. The addition of 0.0015 mol NaOH produces an additional $0.0015 \mathrm{~mol} \mathrm{~A}^{-}$and consumes 0.0015 mol of HA.
Then:

$$
\begin{gathered}
{\left[\mathrm{A}^{-}\right]=\frac{0.0765 \mathrm{~mol} \mathrm{~A}^{-}}{0.5000 \mathrm{~L}}=0.153 \mathrm{M} \mathrm{~A}^{-}} \\
{[\mathrm{HA}]=\frac{0.0985 \mathrm{~mol} \mathrm{HA}}{0.5000 \mathrm{~L}}=0.197 \mathrm{M} \mathrm{HA}} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) \\
\mathrm{pH}=3.474938737+\log \left(\frac{[0.153]}{[0.197]}\right)=3.365163942=3.37
\end{gathered}
$$

19.28 Determine the $\mathrm{p} K_{\mathrm{a}}$ of the acid from the concentrations of the conjugate acid and base and the pH of the solution. This requires the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& 8.88=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}\right)=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[0.40]}{[0.25]}\right) \\
& 8.88=\mathrm{pK}_{\mathrm{a}}+0.20411998 \\
& \mathrm{pK}_{\mathrm{a}}=8.67588=8.68
\end{aligned}
$$

Determine the moles of conjugate acid $\left(\mathrm{BH}^{+}\right)$and conjugate base (B) using $(\mathrm{M})(\mathrm{V})=$ moles
Moles $\mathrm{BH}^{+}=(0.25 \mathrm{~L})\left(0.25 \mathrm{~mol} \mathrm{BH}^{+} / \mathrm{L}\right)=0.0625 \mathrm{~mol} \mathrm{BH}^{+}$
Moles $\mathrm{B}=(0.25 \mathrm{~L})(0.40 \mathrm{~mol} \mathrm{~B} / \mathrm{L})=0.10 \mathrm{~mol} \mathrm{~B}$
The reaction is:

	$\mathrm{B}(a q)+$	$\mathrm{HCl}(\mathrm{aq}) \rightarrow$	$\mathrm{BH}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
Initial:	0.10 mol	0.0020 mol	0.0625 mol
Change:	$-0.0020 \mathrm{~mol}$	$-0.0020 \mathrm{~mol}$	$+0.0020 \mathrm{~mol}$
Final:	0.098 mol	0 mol	0.0645 mol
HCl is th consume Then:	limiting reag 0.0020 molo	The addition	of 0.0020 mol HCl produces an ad

$$
\begin{aligned}
& {[\mathrm{B}]=\frac{0.098 \mathrm{~mol} \mathrm{~B}}{0.25 \mathrm{~L}}=0.392 \mathrm{M} \mathrm{~B}} \\
& {\left[\mathrm{BH}^{+}\right]=\frac{0.0645 \mathrm{~mol} \mathrm{BH}^{+}}{0.25 \mathrm{~L}}=0.258 \mathrm{M} \mathrm{BH}^{+}} \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}\right) \\
& \mathrm{pH}=8.67588+\log \left(\frac{[0.392]}{[0.258]}\right)=8.857546361=\mathbf{8 . 8 6}
\end{aligned}
$$

19.29 Determine the $\mathrm{p} K_{\mathrm{a}}$ of the acid from the concentrations of the conjugate acid and base and the pH of the solution. This requires the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& 8.77=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{Y}^{-}\right]}{[\mathrm{HY}]}\right)=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[0.220]}{[0.110]}\right) \\
& 8.77=\mathrm{pK}_{\mathrm{a}}+0.301029996 \\
& \mathrm{pK}_{\mathrm{a}}=8.46897=8.47
\end{aligned}
$$

Determine the moles of conjugate acid (HY) and conjugate base $\left(\mathrm{Y}^{-}\right)$using $(\mathrm{M})(\mathrm{V})=$ moles.
Moles HY $=(0.350 \mathrm{~L})(0.110 \mathrm{~mol} \mathrm{HY} / \mathrm{L})=0.0385 \mathrm{~mol} \mathrm{HY}$
Moles $\left.\mathrm{Y}^{-}=(0.350 \mathrm{~L})\left(0.220 \mathrm{~mol} \mathrm{Y}{ }^{-} / \mathrm{L}\right)=0.077 \mathrm{~mol} \mathrm{Y}^{-}\right)$
The reaction is:

$$
2 \mathrm{HY}(a q)+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \rightarrow \mathrm{Ba}^{2+}(a q)+2 \mathrm{Y}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

Initial: $\quad 0.0385 \mathrm{~mol} \quad 0.0015 \mathrm{~mol} \quad 0.077 \mathrm{~mol}$
Change: $-0.0030 \mathrm{~mol}-0.0015 \mathrm{~mol} \quad+0.0030 \mathrm{~mol}$
Final: $0.0355 \mathrm{~mol} 0 \mathrm{~mol} \quad 0.0800 \mathrm{~mol}$
$\mathrm{Ba}(\mathrm{OH})_{2}$ is the limiting reagent. The addition of $0.0015 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$ will produce $2 \times 0.0015 \mathrm{~mol}^{-}$and consume $2 \times 0.0015 \mathrm{~mol}$ of HY .
Then:

$$
\begin{array}{r}
{\left[\mathrm{Y}^{-}\right]=\frac{0.0800 \mathrm{~mol} \mathrm{Y}^{-}}{0.350 \mathrm{~L}}=0.228571 \mathrm{M} \mathrm{Y}^{-}} \\
{[\mathrm{HY}]=\frac{0.0355 \mathrm{~mol} \mathrm{HY}}{0.350 \mathrm{~L}}=0.101429 \mathrm{M} \mathrm{HY}} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{Y}^{-}\right]}{[\mathrm{HY}]}\right) \\
\mathrm{pH}=8.46897+\log \left(\frac{[0.228571]}{[0.101429]}\right)=8.82183=\mathbf{8 . 8 2}
\end{array}
$$

19.30 Determine the $\mathrm{p} K_{\mathrm{a}}$ of the acid from the concentrations of the conjugate acid and base and the pH of the solution. This requires the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\text { base }]}{[\text { acid }]}\right) \\
& 9.50=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}\right)=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[1.05]}{[0.750]}\right) \\
& 9.50=\mathrm{pK}_{\mathrm{a}}+0.146128036 \\
& \mathrm{pK}_{\mathrm{a}}=9.353872=9.35
\end{aligned}
$$

Determine the moles of conjugate acid $\left(\mathrm{BH}^{+}\right)$and conjugate base (B).
Moles $\mathrm{BH}^{+}=(0.500 \mathrm{~L})\left(0.750 \mathrm{~mol} \mathrm{BH}^{+} / \mathrm{L}\right)=0.375 \mathrm{~mol} \mathrm{BH}^{+}$(unrounded)
Moles $\mathrm{B}=(0.500 \mathrm{~L})(1.05 \mathrm{~mol} \mathrm{~B} / \mathrm{L})=0.525 \mathrm{~mol} \mathrm{~B}$
The reaction is:
$\mathrm{B}(a q)+\mathrm{HCl}(a q) \rightarrow \quad \mathrm{BH}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
Initial: $\quad 0.525 \mathrm{~mol} \quad 0.0050 \mathrm{~mol} \quad 0.375 \mathrm{~mol}$
Change: $-0.0050 \mathrm{~mol} \quad-0.0050 \mathrm{~mol} \quad+0.0050 \mathrm{~mol}$
Final: $\quad 0.520 \mathrm{~mol} 0 \mathrm{~mol} \quad 0.380 \mathrm{~mol}$
HCl is the limiting reagent. The addition of 0.0050 mol HCl will produce $0.0050 \mathrm{~mol} \mathrm{BH}^{+}$and consume 0.0050 mol of B.

Then

$$
\begin{aligned}
& {[\mathrm{B}]=\frac{0.520 \mathrm{~mol} \mathrm{~B}}{0.500 \mathrm{~L}}=1.04 \mathrm{M} \mathrm{~B}} \\
& {\left[\mathrm{BH}^{+}\right]=\frac{0.380 \mathrm{~mol} \mathrm{BH}^{+}}{0.500 \mathrm{~L}}=0.760 \mathrm{M} \mathrm{BH}^{+}} \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{[\mathrm{B}]}{\left[\mathrm{BH}^{+}\right]}\right) \\
& \mathrm{pH}=9.353872+\log \left(\frac{[1.04]}{[0.760]}\right)=9.490092=\mathbf{9 . 4 9}
\end{aligned}
$$

19.31 a) The hydrochloric acid will react with the sodium acetate, $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, to form acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$:

$$
\mathrm{HCl}+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaCl}
$$

Calculate the number of moles of HCl and $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. All of the HCl will be consumed to form $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, and the number of moles of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$will decrease.

$$
\begin{aligned}
& \text { Initial moles } \mathrm{HCl}=\left(\frac{0.452 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(204 \mathrm{~mL})=0.092208 \mathrm{~mol} \mathrm{HCl} \text { (unrounded) } \\
& \text { Initial moles } \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=\left(\frac{0.400 \mathrm{~mol} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\mathrm{~L}}\right)(0.500 \mathrm{~L})=0.200 \mathrm{~mol} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \mathrm{HCl}+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaCl} \\
& \text { Initial: } \quad 0.092208 \mathrm{~mol} \quad 0.200 \mathrm{~mol} \quad 0 \mathrm{~mol} \\
& \text { Change: }-0.092208 \mathrm{~mol}-0.092208 \mathrm{~mol}+0.092208 \mathrm{~mol} \\
& \text { Final: } 0 \text { mol } 0.107792 \mathrm{~mol} \quad 0.092208 \mathrm{~mol} \\
& \text { Total volume }=0.500 \mathrm{~L}+(204 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.704 \mathrm{~L} \\
& {\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=\frac{0.092208 \mathrm{~mol}}{0.704 \mathrm{~L}}=0.1309773 \mathrm{M} \text { (unrounded) }} \\
& {\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=\frac{0.107792 \mathrm{~mol}}{0.704 \mathrm{~L}}=0.1531136 \mathrm{M} \text { (unrounded) }} \\
& \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(1.8 \times 10^{-5}\right)=4.744727495 \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right) \\
& \mathrm{pH}=4.744727495+\log \left(\frac{[0.1531136]}{[0.1309773]}\right)=4.812545=4.81
\end{aligned}
$$

b) The addition of base would increase the pH , so the new pH is $(4.81+0.15)=4.96$.

The new $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$/ $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ ratio is calculated using the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right) \\
& 4.96=4.744727495+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right) \\
& 0.215272505=\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right) \\
& \frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}=1.64162 \text { (unrounded) }
\end{aligned}
$$

From part (a), we know that $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]+\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=(0.1309773 \mathrm{M}+0.1531136 \mathrm{M})=0.2840909 \mathrm{M}$. Although the ratio of $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$to $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ can change when acid or base is added, the absolute amount does not change unless acetic acid or an acetate salt is added.
Given that $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right] /\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=1.64162$ and $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]+\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]=0.2840909 \mathrm{M}$, solve for [$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$] and substitute into the second equation.
$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]=1.64162\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ and $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]+1.64162\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=0.2840909 \mathrm{M}$
$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=0.1075441 \mathrm{M}$ and $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=0.176547 \mathrm{M}$.
Moles of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$needed $=\left(0.176547 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} / \mathrm{L}\right)(0.500 \mathrm{~L})=0.0882735 \mathrm{~mol}$ (unrounded)
Moles of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$initially $=\left(0.1531136 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} / \mathrm{L}\right)(0.500 \mathrm{~L})=0.0765568 \mathrm{~mol}$ (unrounded)
This would require the addition of $(0.0882735 \mathrm{~mol}-0.0765568 \mathrm{~mol})$

$$
=0.0117167 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \text {(unrounded) }
$$

The KOH added reacts with $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ to produce additional $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$:
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{KOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{K}^{+}+\mathrm{H}_{2} \mathrm{O}(l)$
To produce $0.0117167 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$would require the addition of 0.0117167 mol KOH .
Mass $\mathrm{KOH}=(0.0117167 \mathrm{~mol} \mathrm{KOH})\left(\frac{56.11 \mathrm{~g} \mathrm{KOH}}{1 \mathrm{~mol} \mathrm{KOH}}\right)=0.657424=\mathbf{0 . 6 6} \mathbf{g ~ K O H}$
19.32 a) The sodium hydroxide will react with the sodium bicarbonate, NaHCO_{3}, to form carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$:

$$
\mathrm{NaOH}+\mathrm{NaHCO}_{3} \rightarrow 2 \mathrm{Na}^{+}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

Calculate the number of moles of NaOH and NaHCO_{3}. All of the NaOH will be consumed to form $\mathrm{CO}_{3}{ }^{2-}$, and the number of moles of NaHCO_{3} will decrease. The $\mathrm{HCO}_{3}{ }^{-}$is the important part of NaHCO_{3}.

$$
\begin{aligned}
& \text { Initial moles } \mathrm{NaOH}=\left(\frac{0.10 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(10.7 \mathrm{~mL})=0.00107 \mathrm{~mol} \mathrm{NaOH} \text { (unrounded) } \\
& \text { Initial moles } \mathrm{HCO}_{3}{ }^{-}=\left(\frac{0.050 \mathrm{~mol} \mathrm{NaHCO}_{3}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HCO}_{3}^{-}}{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(50.0 \mathrm{~mL}) \\
& =0.0025 \mathrm{~mol} \mathrm{HCO}_{3}^{-} \\
& \begin{array}{lccc}
& \mathrm{NaOH} \\
\text { Initial: } & \begin{array}{ll}
0.00107 \mathrm{~mol} & \mathrm{NaHCO}_{3} \rightarrow \\
0.0025 \mathrm{~mol} & 2 \mathrm{Na}^{+}
\end{array}+\begin{array}{c}
\mathrm{CO}_{3}{ }^{2-} \\
0 \mathrm{~mol}
\end{array}+\mathrm{H}_{2} \mathrm{O} \\
\text { Change: } & -0.00107 \mathrm{~mol} & -0.00107 \mathrm{~mol} & +0.00107 \mathrm{~mol} \\
\hline \text { Final: } & 0 \mathrm{~mol} & 0.00143 \mathrm{~mol} & 0.00107 \mathrm{~mol}
\end{array}
\end{aligned}
$$

Total volume $=(50.0 \mathrm{~mL}+10.7 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.0607 \mathrm{~L}$
$\left[\mathrm{HCO}_{3}{ }^{-}\right]=\frac{0.00143 \mathrm{~mol}}{0.0607 \mathrm{~L}}=0.023558484 \mathrm{M}$ (unrounded)
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=\frac{0.00107 \mathrm{~mol}}{0.0607 \mathrm{~L}}=0.017627677 \mathrm{M}$ (unrounded)
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log \left(4.7 \times 10^{-11}\right)=10.32790214$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}{ }^{-}\right]}\right)$
$\mathrm{pH}=10.32790214+\log \left(\frac{[0.017627677]}{[0.023558484]}\right)=10.2019=\mathbf{1 0 . 2 0}$
b) The addition of acid would decrease the pH , so the new pH is $(10.20-0.07)=10.13$.

The new $\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$ratio is calculated using the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}\right) \\
& 10.13=10.32790214+\log \left(\frac{\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}\right) \\
& -0.19790214=\log \left(\frac{\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}\right) \\
& \frac{\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=0.63401 \text { (unrounded) }
\end{aligned}
$$

From part (a), we know that $\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=(0.023558484 \mathrm{M}+0.017627677 \mathrm{M})=0.041185254 \mathrm{M}$. Although the ratio of $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ to $\left[\mathrm{HCO}_{3}{ }^{-}\right]$can change when acid or base is added, the absolute amount does not change unless acetic acid or an acetate salt is added.
Given that $\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]=0.63401$ and $\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.041185254 \mathrm{M}$, solve for $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ and substitute into the second equation.
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.63401\left[\mathrm{HCO}_{3}{ }^{-}\right]$and $\left[\mathrm{HCO}_{3}{ }^{-}\right]+0.63401\left[\mathrm{HCO}_{3}{ }^{-}\right]=0.041185254 \mathrm{M}$
$\left[\mathrm{HCO}_{3}{ }^{-}\right]=0.025205019 \mathrm{M}$ and $\left[\mathrm{CO}_{3}{ }^{2-}\right]=0.015980234 \mathrm{M}$ (unrounded)
Moles of $\mathrm{HCO}_{3}{ }^{-}$needed $=\left(0.025205019 \mathrm{~mol} \mathrm{HCO}_{3}{ }^{-} / \mathrm{L}\right)\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(25.0 \mathrm{~mL})$
$=0.0006301255 \mathrm{~mol}$ (unrounded)
Moles of $\mathrm{HCO}_{3}{ }^{-}$initially $=\left(0.023558484 \mathrm{~mol} \mathrm{HCO}_{3}{ }^{-} / \mathrm{L}\right)\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(25.0 \mathrm{~mL})$
$=0.000588962 \mathrm{~mol}$ (unrounded)
This would require the addition of $(0.0006301255 \mathrm{~mol}-0.000588962 \mathrm{~mol})$

$$
=0.0000411635 \mathrm{~mol} \mathrm{HCO}_{3}^{-}(\text {unrounded })
$$

The HCl added reacts with $\mathrm{CO}_{3}{ }^{2-}$ to produce additional $\mathrm{HCO}_{3}{ }^{-}$:

$$
\mathrm{CO}_{3}{ }^{2-}+\mathrm{HCl} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{Cl}^{-}
$$

To produce $0.0000411635 \mathrm{~mol} \mathrm{HCO}_{3}{ }^{-}$would require the addition of 0.0000411635 mol HCl .
Mass $\mathrm{HCl}=(0.0000411635 \mathrm{~mol} \mathrm{HCl})\left(\frac{36.46 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}\right)=0.0015008=\mathbf{0 . 0 0 1 5} \mathbf{g ~ H C l}$
19.33 Select conjugate pairs with K_{a} values close to the desired $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
a) For $\mathrm{pH} \approx 4.5,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-4.5}=3.2 \times 10^{-5} \mathrm{M}$. Some good selections are the $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH} /$ $\operatorname{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}^{-}$conjugate pair with K_{a} equal to 3.8×10^{-5} or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COO}^{-}$conjugate pair with K_{a} equal to 4.9×10^{-5}. From the base list, the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$conjugate pair comes close with $K_{\mathrm{a}}=1.0$ $\times 10^{-14} / 4.0 \times 10^{-10}=2.5 \times 10^{-5}$.
b) For $\mathrm{pH} \approx 7.0,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7.0}=1.0 \times 10^{-7} \mathrm{M}$. Two choices are the $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} / \mathrm{HPO}_{4}{ }^{2-}$ conjugate pair with K_{a} of 6.3×10^{-8} and the $\mathrm{H}_{2} \mathrm{AsO}_{4}^{-} / \mathrm{HAsO}_{4}{ }^{2-}$ conjugate pair with K_{a} of 1.1×10^{-7}.
19.34 Select conjugate pairs that have K_{a} or K_{b} values close to the desired $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$.
a) For $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx 1 \times 10^{-9} \mathrm{M}$, the $\mathrm{HOBr} / \mathrm{OBr}^{-}$conjugate pair comes close with K_{a} equal to 2.3×10^{-9}. From the base list, $K_{\mathrm{b}}=1.0 \times 10^{-14} / 1 \times 10^{-9}=1 \times 10^{-5}$, the $\mathrm{NH}_{3} / \mathrm{NH}_{4}^{+}$conjugate pair comes close with $K_{\mathrm{b}}=1.76 \times 10^{-5}$. b) For $\left[\mathrm{OH}^{-}\right] \approx 3 \times 10^{-5} M$, the $\mathrm{NH}_{3} / \mathrm{NH}_{4}{ }^{+}$conjugate pair comes close; also, it is possible to choose $K_{\mathrm{a}}=1.0 \times 10^{-14} / 3 \times 10^{-5}=3.3 \times 10^{-10}$, the $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$comes close with $K_{\mathrm{a}}=1.0 \times 10^{-10}$.
19.35 Select conjugate pairs with $\mathrm{p} K_{\mathrm{a}}$ values close to the desired pH . Convert pH to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for easy comparison to K_{a} values. Determine an appropriate base by $\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
a) For $\mathrm{pH} \approx 3.5\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-3.5}=3.2 \times 10^{-4}\right)$, the best selection is the $\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH} /$ $\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}^{-}$conjugate pair with a $K_{\mathrm{a}}=2.9 \times 10^{-4}$. The $\mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COOH}^{2} / \mathrm{CH}_{3} \mathrm{COOC}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$ pair, with $K_{\mathrm{a}}=3.6 \times 10^{-4}$, is also a good choice. The $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 3.2 \times 10^{-4}=3.1 \times 10^{-11}$, results in no reasonable K_{b} values from the appendix.
b) For $\mathrm{pH} \approx 5.5\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=3 \times 10^{-6}\right)$, no $K_{\mathrm{a} 1}$ gives an acceptable pair; the $K_{\mathrm{a} 2}$ values for adipic acid, malonic acid, and succinic acid are reasonable. The $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 3 \times 10^{-6}=3 \times 10^{-9}$, the K_{b} selection is $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$.
19.36 Select conjugate pairs that have K_{a} or K_{b} values close to the desired $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$.
a) For $\left[\mathrm{OH}^{-}\right] \approx 1 \times 10^{-6} M$, no K_{b} values work. The K_{a} values are $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 1 \times 10^{-6}$ $=1 \times 10^{-8}$, giving the following acceptable pairs $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} / \mathrm{HPO}_{4}{ }^{2-}$ or $\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{2-} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{3-}$ or $\mathrm{HOCl} / \mathrm{OCl}^{-}$. b) For $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx 4 \times 10^{-4} M$, the $\mathrm{HF} / \mathrm{F}^{-}$conjugate pair comes close with K_{a} equal to 6.8×10^{-4}. From the base list, $K_{\mathrm{b}}=1.0 \times 10^{-14} / 4 \times 10^{-4}=2.5 \times 10^{-11}$, there are no reasonable choices.
19.37 The value of the K_{a} from the appendix: $K_{\mathrm{a}}=2.9 \times 10^{-8}$ $\mathrm{p} K_{\mathrm{a}}=-\log 2.9 \times 10^{-8}=7.5376$ (unrounded)
Use the Henderson-Hasselbalch equation to determine the pH .

$$
\mathrm{pH}=\mathrm{pKa}+\log \left(\frac{\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}\right)
$$

a) $\mathrm{pH}=7.5376+\log \left(\frac{[0.100]}{[0.100]}\right)=7.5376=7.54$
b) $\mathrm{pH}=7.5376+\log \left(\frac{[0.150]}{[0.100]}\right)=7.71369=7.71$
c) $\mathrm{pH}=7.5376+\log \left(\frac{[0.100]}{[0.150]}\right)=7.3615=7.36$
d) The reaction is $\mathrm{NaOH}+\mathrm{HClO} \rightarrow \mathrm{Na}^{+}+\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O}$.

The original moles of HClO and OCl^{-}are both $=(0.100 \mathrm{~mol} / \mathrm{L})(\mathrm{L})=0.100 \mathrm{~mol}$

$$
\mathrm{pH}=7.5376+\log \left(\frac{[0.105]}{[0.095]}\right)=7.5811=7.58
$$

19.38 The value of the K_{a} from the appendix: $K_{\mathrm{a}}=6.3 \times 10^{-8}$ (We are using $K_{\mathrm{a} 2}$ since we are dealing with the equilibrium in which the second hydrogen ion is being lost).
Determine the $\mathrm{p} K_{\mathrm{a}}$ using $\mathrm{p} K_{\mathrm{a}}=-\log 6.3 \times 10^{-8}=7.200659451$ (unrounded).
Use the Henderson-Hasselbalch equation:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pKa}+\log \left(\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}\right) \\
& 7.40=7.200659451+\log \left(\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}\right) \\
& 0.19934055=\log \left(\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}\right) \\
& \frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}=1.582486=\mathbf{1 . 6}
\end{aligned}
$$

19.39 You need to know the $\mathrm{p} K_{\mathrm{a}}$ value for the indicator. (Its transition range is approximately $\mathrm{p} K_{\mathrm{a}} \pm 1$.) If the indicator is a diprotic acid, it will have two transition ranges, one for each of the two $\mathrm{H}_{3} \mathrm{O}^{+}$ions lost.
19.40 To see a distinct color in a mixture of two colors, you need one color to be about 10 times the intensity of the other. For this to take place, the concentration ratio [HIn] / [$\left.\mathrm{In}^{-}\right]$needs to be greater than 10:1 or less than 1:10. This will occur when $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}-1$ or $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+1$, respectively, giving a transition range of about two units.
19.41 This is because the concentration of indicator is very small.
19.42 The equivalence point in a titration is the point at which the number of moles of OH^{-}equals the number of moles of $\mathrm{H}_{3} \mathrm{O}^{+}$(be sure to account for stoichiometric ratios, e.g., 1 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ produces 2 moles of OH^{-}). The endpoint is the point at which the added indicator changes color. If an appropriate indicator is selected, the endpoint is close to the equivalence point, but not normally the same. Using an indicator that changes color at a pH after the equivalence point means the equivalence point is reached first. However, if an indicator is selected that changes color at a pH before the equivalence point, then the endpoint is reached first.
19.43 a) The reactions are:

$$
\begin{array}{llllll}
\mathrm{OH}^{-}(a q) & + & \mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow & \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+ & \mathrm{H}_{2} \mathrm{O}(l) & K_{a 1}=7.2 \times 10^{-3} \\
\mathrm{OH}^{-}(a q) & + & \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q) \rightarrow \mathrm{HPO}_{4}{ }^{2-}(a q)+ & \mathrm{H}_{2} \mathrm{O}(l) & K_{a 2}=6.3 \times 10^{-8}
\end{array}
$$

The correct order is $\mathbf{C}, \mathbf{B}, \mathbf{D}, \mathbf{A}$. Scene C shows the solution before the addition of any NaOH . Scene B is half-way to the first equivalence point; Scene D is halfway to the second equivalence point and Scene A is at end of the titration.
b) Scene B is the second scene in the correct order. This is halfway towards the first equivalence point when there are equal amounts of the acid and conjugate base, which constitutes a buffer.

$$
\mathrm{pH}=\mathrm{pKa}+\log \left(\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}\right)
$$

Determine the $\mathrm{p} K_{\mathrm{a}}$ using $\mathrm{p} K_{\mathrm{a}}=-\log 7.2 \times 10^{-3}=2.142668$

$$
\mathrm{pH}=2.1426675+\log \left(\frac{[3]}{[3]}\right)=2.1426675=2.14
$$

c) 10.00 mL of NaOH is required to reach the first half-equivalence point. Therefore, an additional 10.00 mL of NaOH is required to reach the first equivalence point, for a total of 20 mL for the first equivalence point. An additional 20.00 mL of NaOH will be required to reach the second equivalence point where only $\mathrm{HPO}_{4}{ }^{2-}$ remains. A total of $\mathbf{4 0 . 0 0} \mathbf{~ m L}$ of NaOH is required to reach Scene A.
19.44 a) The initial pH is lowest for flask solution of the strong acid, followed by the weak acid and then the weak base. In other words, strong acid-strong base $<$ weak acid-strong base $<$ strong acid-weak base.
b) At the equivalence point, the moles of $\mathrm{H}_{3} \mathrm{O}^{+}$equal the moles of OH^{-}, regardless of the type of titration. However, the strong acid-strong base equivalence point occurs at $\mathrm{pH}=7.00$ because the resulting cation-anion combination does not react with water. An example is the reaction $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$. Neither Na^{+}nor Cl^{-}ions dissociate in water.
The weak acid-strong base equivalence point occurs at $\mathrm{pH}>7$, because the anion of the weak acid is weakly basic, whereas the cation of the strong base does not react with water. An example is the reaction $\mathrm{HCOOH}+$ $\mathrm{NaOH} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}$. The conjugate base, HCOO^{-}, reacts with water according to this reaction: $\mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HCOOH}+\mathrm{OH}^{-}$.
The strong acid-weak base equivalence point occurs at $\mathrm{pH}<7$, because the anion of the strong acid does not react with water, whereas the cation of the weak base is weakly acidic. An example is the reaction $\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow$ $\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$. The conjugate acid, $\mathrm{NH}_{4}{ }^{+}$, dissociates slightly in water: $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$. In rank order of pH of equivalence point, strong acid -weak base $<$ strong acid-strong base $<$ weak acid -strong base.
19.45 In the buffer region, comparable amounts of weak acid and its conjugate base are present. At the equivalence point, the predominant species is the conjugate base. In a strong acid-weak base titration, the weak base and its conjugate acid are the predominant species present.
19.46 At the very center of the buffer region of a weak acid-strong base titration, the concentration of the weak acid and its conjugate base are equal, which means that at this point the pH of the solution equals the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid.
19.47 The titration curve for a diprotic acid has two "breaks" i.e., two regions where the pH increases sharply. For a monoprotic acid, only one break occurs.
19.48 Indicators have a pH range that is approximated by $\mathrm{p} K_{\mathrm{a}} \pm 1$. The $\mathrm{p} K_{\mathrm{a}}$ of cresol red is $-\log \left(3.5 \times 10^{-9}\right)=8.5$, so the indicator changes color over an approximate range of 7.5 to 9.5.
19.49 Indicators have a pH range that is approximated by $\mathrm{p} K_{\mathrm{a}} \pm 1$. The $\mathrm{p} K_{\mathrm{a}}$ of ethyl red is $-\log \left(3.8 \times 10^{-6}\right)=5.42$, so the indicator changes color over an approximate range of 4.4 to 6.4.
19.50 Choose an indicator that changes color at a pH close to the pH of the equivalence point.
a) The equivalence point for a strong acid-strong base titration occurs at $\mathrm{pH}=7.0$. Bromthymol blue is an indicator that changes color around pH 7.
b)The equivalence point for a weak acid-strong base is above pH 7 . Estimate the pH at equivalence point from equilibrium calculations.
At the equivalence point, all of the HCOOH and NaOH have been consumed; the solution is $0.050 \mathrm{M} \mathrm{HCOO}^{-}$. (The volume doubles because equal volumes of base and acid are required to reach the equivalence point. When the volume doubles, the concentration is halved.) The weak base HCOO- undergoes a base reaction:

Concentration, M	$\mathrm{COOH}^{-}(a q)$	$+\mathrm{H}_{2} \mathrm{O}(l)$	\leftrightarrows	$\leftleftarrows \mathrm{COOH}(a q)$			
Initial:	0.050 M	-	0	0			

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{[\mathrm{HCOOH}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HCOO}^{-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.050-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.050]}=5.5556 \times 10^{-11} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{x}=1.666673 \times 10^{-6} M} \\
& \mathrm{pOH}=-\log \left(1.666673 \times 10^{-6}\right)=5.7781496 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-5.7781496=8.2218504=8.22
\end{aligned}
$$

Choose thymol blue or phenolphthalein.
19.51 a) Determine the K_{a} (of the conjugate acid) from the K_{b} for $\mathrm{CH}_{3} \mathrm{NH}_{2}$. $K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(4.4 \times 10^{-4}\right)=2.2727 \times 10^{-11}$ (unrounded)
An acid-base titration of two components of equal concentration and at a 1:1 ratio gives a solution of the conjugates with half the concentration. In this case, the concentration of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}=0.050 \mathrm{M}$.

$$
\begin{aligned}
& K_{\mathrm{a}}= \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]}=\frac{\mathrm{x}^{2}}{0.050-\mathrm{x}}=\frac{\mathrm{x}^{2}}{0.050}=2.2727 \times 10^{-11} \\
&\left.\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0659971 \times 10^{-6} M \text { (unrounded }\right) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.0659971 \times 10^{-6}\right)=5.97224=5.97
\end{aligned}
$$

Either methyl red or alizarin is acceptable.
b) This is a strong acid-strong base titration; thus, the equivalence point is at $\mathrm{pH}=7.00$.

The best choice would be bromthymol blue; alizarin might be acceptable.
19.52 a) The equivalence point for a weak base-strong acid is below pH 7 . Estimate the pH at equivalence point from equilibrium calculations.
At the equivalence point, the solution is $0.25 \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}$. (The volume doubles because equal volumes of base and acid are required to reach the equivalence point. When the volume doubles, the concentration is halved.) $K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(5.9 \times 10^{-4}\right)=1.6949152 \times 10^{-11}$ (unrounded)

Concentration, M	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}(a q)$	$+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}(a q)$	$+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
Initial:	0.25 M	-	0	0
Change:	-x	-	+x	+x
Equilibrium:	$0.25-\mathrm{x}$		x	x

$$
\begin{aligned}
& K_{\mathrm{a}}= \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}\right]}=\frac{\mathrm{x}^{2}}{0.25-\mathrm{x}}=\frac{\mathrm{x}^{2}}{0.25}=1.6949152 \times 10^{-11} \\
&\left.\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.0584674 \times 10^{-6} M \text { (unrounded }\right) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.0584674 \times 10^{-6}\right)=5.686456=5.69
\end{aligned}
$$

Methyl red is an indicator that changes color around pH 5.7.
b) This is a strong acid-strong base titration; thus, the equivalence point is at $\mathrm{pH}=7.00$. Bromthymol blue is an indicator that changes color around pH 7.
19.53 a) Determine the K_{b} (of the conjugate base) from the K_{a} for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.
$K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(6.3 \times 10^{-5}\right)=1.5873 \times 10^{-10}$ (unrounded)
An acid-base titration of two components of equal concentration and at a $1: 1$ ratio gives a solution of the conjugates with half the concentration. In this case, the concentration of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}=0.125 \mathrm{M}$ (unrounded).
$K_{\mathrm{b}}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.125-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.125]}=1.5873 \times 10^{-10}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=4.4543518 \times 10^{-6} \mathrm{M}$
$\mathrm{pOH}=-\log \left(4.4543518 \times 10^{-6}\right)=5.351215485$ (unrounded)
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-5.351215485=8.64878=8.65$
The choices are phenolphthalein or thymol blue.
b) The titration will produce a $0.25 \mathrm{MNH}_{3}$ solution at the equivalence point. Use the K_{b} for NH_{3} from the Appendix.
$K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.25-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.25]}=1.76 \times 10^{-5}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=2.0976176 \times 10^{-3} \mathrm{M}$
$\mathrm{pOH}=-\log \left(2.0976176 \times 10^{-3}\right)=2.67827$ (unrounded)
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-2.67827=11.32173=11.32$
The best choice would be alizarin yellow \mathbf{R}; alizarin might be acceptable.
19.54 The reaction occurring in the titration is the neutralization of $\mathrm{H}_{3} \mathrm{O}^{+}$(from HCl) by OH^{-}(from NaOH):
$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(a q)$ or, omitting spectator ions: $\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
For the titration of a strong acid with a strong base, the pH before the equivalence point depends on the excess concentration of acid and the pH after the equivalence point depends on the excess concentration of base. At the equivalence point, there is not an excess of either acid or base so the pH is 7.0 . The equivalence point occurs when 40.00 mL of base has been added. Use $(\mathrm{M})(\mathrm{V})$ to determine the number of moles.
The initial number of moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(40.00 \mathrm{~mL})=4.000 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
a) At 0 mL of base added, the concentration of hydronium ion equals the original concentration of HCl .
$\mathrm{pH}=-\log (0.1000 \mathrm{M})=\mathbf{1 . 0 0 0 0}$
b) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(25.00 \mathrm{~mL})=2.500 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$
$\begin{array}{llll}\text { Initial: } & \quad 4.000 \times 10^{-3} \mathrm{~mol} & \begin{array}{l}\mathrm{NaOH}(a q) \\ 2.500 \times 10^{-3} \mathrm{~mol}\end{array} \rightarrow & \mathrm{H}_{2} \mathrm{O}(1)\end{array}+\quad \begin{gathered}\mathrm{NaCl}(a q) \\ 0\end{gathered}$

Change:	$-2.500 \times 10^{-3} \mathrm{~mol}$	$-2.500 \times 10^{-3} \mathrm{~mol}$	-
Final:	$1.500 \times 10^{-3} \mathrm{~mol}$	0	$+2.500 \times 10^{-3} \mathrm{~mol}$

The volume of the solution at this point is $[(40.00+25.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.06500 \mathrm{~L}$
The molarity of the excess HCl is $\left(1.500 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}\right) /(0.06500 \mathrm{~L})=0.02307 \mathrm{M}$ (unrounded)

$$
\mathrm{pH}=-\log (0.02307)=\mathbf{1 . 6 3 6 8}
$$

(Note that the NaCl product is a neutral salt that does not affect the pH).
c) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(39.00 \mathrm{~mL})=3.900 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$

	$\mathrm{HCl}(\mathrm{aq})$	+	$\mathrm{NaOH}(\mathrm{aq})$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}(l)$
Initial:	$4.000 \times 10^{-3} \mathrm{~mol}$	$4.900 \times 10^{-3} \mathrm{~mol}$	-	$\mathrm{NaCl}(a q)$	
Change:	$-3.900 \times 10^{-3} \mathrm{~mol}$	$-3.900 \times 10^{-3} \mathrm{~mol}$	-	0	
Final:	$1.000 \times 10^{-4} \mathrm{~mol}$	0		$+3.900 \times 10^{-3} \mathrm{~mol}$	

The volume of the solution at this point is $[(40.00+39.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.07900 \mathrm{~L}$
The molarity of the excess HCl is $\left(1.00 \times 10^{-4} \mathrm{~mol} \mathrm{HCl}\right) /(0.07900 \mathrm{~L})=0.0012658 \mathrm{M}$ (unrounded)

$$
\mathrm{pH}=-\log (0.0012658)=\mathbf{2 . 8 9 8}
$$

d) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(39.90 \mathrm{~mL})=3.990 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(a q)
$$

Initial: $\quad 4.000 \times 10^{-3} \mathrm{~mol} \quad 3.990 \times 10^{-3} \mathrm{~mol}{ }^{-} \quad 0$

Change:	$-3.990 \times 10^{-3} \mathrm{~mol}$	$-3.990 \times 10^{-3} \mathrm{~mol}$	-	$+3.990 \times 10^{-3} \mathrm{~mol}$
Final:	$1.000 \times 10^{-5} \mathrm{~mol}$	0	$3.900 \times 10^{-3} \mathrm{~mol}$	

The volume of the solution at this point is $[(40.00+39.90) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.07990 \mathrm{~L}$
The molarity of the excess HCl is $\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{HCl}\right) /(0.07990 \mathrm{~L})=0.000125156 \mathrm{M}$ (unrounded)

$$
\mathrm{pH}=-\log (0.000125156)=3.903
$$

e) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(40.00 \mathrm{~mL})=4.000 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$.

$$
\begin{aligned}
& \begin{array}{llll}
\mathrm{HCl}(a q) \\
4.000 \times 10^{-3} \mathrm{~mol} & +\mathrm{NaOH}(a q) \\
4.000 \times 10^{-3} \mathrm{~mol}
\end{array} \rightarrow \quad \mathrm{H}_{2} \mathrm{O}(l) \quad+\quad \begin{array}{l}
\mathrm{NaCl}(a q) \\
0
\end{array} \\
& \text { Initial: } \quad 4.000 \times 10^{-3} \mathrm{~mol} \quad 4.000 \times 10^{-3} \mathrm{~mol} \quad-\quad 0
\end{aligned}
$$

The NaOH will react with an equal amount of the acid and 0.0 mol HCl will remain. This is the equivalence point of a strong acid-strong base titration, thus, the pH is $\mathbf{7 . 0 0}$. Only the neutral salt NaCl is in solution at the equivalence point.
f) The NaOH is now in excess. It will be necessary to calculate the excess base after reacting with the HCl . The excess strong base will give the pOH , which can be converted to the pH .

Determine the moles of NaOH added:
Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(40.10 \mathrm{~mL})=4.010 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$
The HCl will react with an equal amount of the base, and $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{NaOH}$ will remain.

	$\mathrm{HCl}(\mathrm{aq})$			
Initial:	$4.000 \times 10^{-3} \mathrm{~mol}$	$\mathrm{NaOH}(a q)$	$4.010 \times 10^{-3} \mathrm{~mol}$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
	+	$\mathrm{NaCl}(a q)$		
Change:	$-4.000 \times 10^{-3} \mathrm{~mol}$	$-4.000 \times 10^{-3} \mathrm{~mol}$	-	0
Final:	0	$1.000 \times 10^{-5} \mathrm{~mol}$		$+4.000 \times 10^{-3} \mathrm{~mol}$

The volume of the solution at this point is $[(40.00+40.10) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.08010 \mathrm{~L}$
The molarity of the excess NaOH is $\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{NaOH}\right) /(0.08010 \mathrm{~L})=0.00012484 \mathrm{M}$ (unrounded)

$$
\begin{aligned}
& \mathrm{pOH}=-\log (0.00012484)=3.9036(\text { unrounded }) \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.9036=10.09637=\mathbf{1 0 . 1 0}
\end{aligned}
$$

g) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(50.00 \mathrm{~mL})=5.000 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$ The HCl will react with an equal amount of the base, and $1.000 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$ will remain.

	$\mathrm{HCl}(a q)$	$\mathrm{NaOH}(a q) \quad \rightarrow$	$\mathrm{H}_{2} \mathrm{O}(l)$	+
$\mathrm{NaCl}(a q)$				
Initial:	$4.000 \times 10^{-3} \mathrm{~mol}$	$5.000 \times 10^{-3} \mathrm{~mol}$	-	0
Change:	$-4.000 \times 10^{-3} \mathrm{~mol}$	$-4.000 \times 10^{-3} \mathrm{~mol}$	-	$+4.000 \times 10^{-3} \mathrm{~mol}$
Final:	0	$1.000 \times 10^{-3} \mathrm{~mol}$		$4.000 \times 10^{-3} \mathrm{~mol}$

The volume of the solution at this point is $[(40.00+50.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.09000 \mathrm{~L}$
The molarity of the excess NaOH is $\left(1.000 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}\right) /(0.09000 \mathrm{~L})=0.011111 \mathrm{M}$ (unrounded)

$$
\begin{aligned}
& \mathrm{pOH}=-\log (0.011111)=1.95424 \text { (unrounded }) \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-1.95424=12.04576=\mathbf{1 2 . 0 5}
\end{aligned}
$$

19.55 The reaction occurring in the titration is the neutralization of OH^{-}(from KOH) by $\mathrm{H}_{3} \mathrm{O}^{+}$(from HBr):

$$
\begin{aligned}
& \mathrm{HBr}(a q)+\mathrm{KOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{KBr}(a q) \\
& \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

For the titration of a strong base with a strong acid, the pH before the equivalence point depends on the excess concentration of base and the pH after the equivalence point depends on the excess concentration of acid. At the equivalence point, there is not an excess of either acid or base so pH is 7.0. The equivalence point occurs when 30.00 mL of acid has been added.

The initial number of moles of $\mathrm{KOH}=(0.1000 \mathrm{~mol} \mathrm{KOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(30.00 \mathrm{~mL})$ $=3.000 \times 10^{-3} \mathrm{~mol} \mathrm{KOH}$
a) At 0 mL of acid added, the concentration of hydroxide ion equals the original concentration of KOH .
$\mathrm{pOH}=-\log (0.1000 \mathrm{M})=1.0000$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-1.0000=\mathbf{1 3 . 0 0}$
b) Determine the moles of HBr added:

Moles of $\mathrm{HBr}=(0.1000 \mathrm{~mol} \mathrm{HBr} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(15.00 \mathrm{~mL})=1.500 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}$
The HBr will react with an equal amount of the base, and $1.500 \times 10^{-3} \mathrm{~mol} \mathrm{KOH}$ will remain.
The volume of the solution at this point is $[(30.00+15.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.04500 \mathrm{~L}$
The molarity of the excess KOH is $\left(1.500 \times 10^{-3} \mathrm{~mol} \mathrm{KOH}\right) /(0.04500 \mathrm{~L})=0.03333 \mathrm{M}$ (unrounded)
$\mathrm{pOH}=-\log (0.03333)=1.4772$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-1.4772=12.5228=\mathbf{1 2 . 5 2}$
c) Determine the moles of HBr added:

Moles of $\mathrm{HBr}=(0.1000 \mathrm{~mol} \mathrm{HBr} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(29.00 \mathrm{~mL})=2.900 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}$
The HBr will react with an equal amount of the base, and $1.00 \times 10^{-4} \mathrm{~mol} \mathrm{KOH}$ will remain.
The volume of the solution at this point is $[(30.00+29.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.05900 \mathrm{~L}$
The molarity of the excess KOH is $\left(1.00 \times 10^{-4} \mathrm{~mol} \mathrm{KOH}\right) /(0.05900 \mathrm{~L})=0.0016949 \mathrm{M}$ (unrounded)
$\mathrm{pOH}=-\log (0.0016949)=2.7708559$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-2.7708559=11.2291441=\mathbf{1 1 . 2 3}$
d) Determine the moles of HBr added:

Moles of $\mathrm{HBr}=(0.1000 \mathrm{~mol} \mathrm{HBr} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(29.90 \mathrm{~mL})=2.990 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}$
The HBr will react with an equal amount of the base, and $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{KOH}$ will remain.
The volume of the solution at this point is $[(30.00+29.90) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.05990 \mathrm{~L}$
The molarity of the excess KOH is $\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{KOH}\right) /(0.05990 \mathrm{~L})=0.000166944 \mathrm{M}$ (unrounded)
$\mathrm{pOH}=-\log (0.000166944)=3.7774268$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.7774268=10.2225732=\mathbf{1 0 . 2}$
e) Determine the moles of HBr added:

Moles of $\mathrm{HBr}=(0.1000 \mathrm{~mol} \mathrm{HBr} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(30.00 \mathrm{~mL})=3.000 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}$ The HBr will react with an equal amount of the base and 0.0 mol KOH will remain. This is the equivalence point of a strong acid-strong base titrations; thus, the pH is $\mathbf{7 . 0 0}$.
f) The HBr is now in excess. It will be necessary to calculate the excess base after reacting with the HCl . The excess strong acid will give the pH .
Determine the moles of HBr added:
Moles of $\mathrm{HBr}=(0.1000 \mathrm{~mol} \mathrm{HBr} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(30.10 \mathrm{~mL})=3.010 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}$
The HBr will react with an equal amount of the base, and $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{HBr}$ will remain.
The volume of the solution at this point is $[(30.00+30.10) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.06010 \mathrm{~L}$
The molarity of the excess HBr is $\left(1.0 \times 10^{-5} \mathrm{~mol} \mathrm{HBr}\right) /(0.06010 \mathrm{~L})=0.000166389 \mathrm{M}$ (unrounded) $\mathrm{pH}=-\log (0.000166389)=3.778874=3.8$
g) Determine the moles of HBr added:

Moles of $\mathrm{HBr}=(0.1000 \mathrm{~mol} \mathrm{HBr} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(40.00 \mathrm{~mL})=4.000 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}$ The HBr will react with an equal amount of the base, and $1.000 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}$ will remain.
The volume of the solution at this point is $[(30.00+40.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.07000 \mathrm{~L}$
The molarity of the excess HBr is $\left(1.000 \times 10^{-3} \mathrm{~mol} \mathrm{HBr}\right) /(0.07000 \mathrm{~L})=0.0142857 \mathrm{M}$ (unrounded) $\mathrm{pH}=-\log (0.0142857)=1.845098=\mathbf{1 . 8 5}$
19.56 This is a titration between a weak acid and a strong base. The pH before addition of the base is dependent on the K_{a} of the acid (labeled HBut). Prior to reaching the equivalence point, the added base reacts with the acid to form butanoate ion (labeled But ${ }^{+}$). The equivalence point occurs when 20.00 mL of base is added to the acid because at this point, moles acid = moles base. Addition of base beyond the equivalence point is simply the addition of excess OH^{-}.
The initial number of moles of HBut $=(\mathrm{M})(\mathrm{V})=$
$(0.1000 \mathrm{~mol} \mathrm{HBut} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(20.00 \mathrm{~mL})=2.000 \times 10^{-3} \mathrm{~mol}$ HBut
a) At 0 mL of base added, the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is dependent on the dissociation of butanoic acid:

	HBut	+	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{H}_{3} \mathrm{O}^{+}$	$+$	But
Initial:	0.100 M						0
Change:	-x						+x
Equilibr	$0.100-\mathrm{x}$						X

$$
\begin{aligned}
& K_{\mathrm{a}}= \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{But}^{-}\right]}{[\mathrm{HBut}]}=\frac{\mathrm{x}^{2}}{0.1000-\mathrm{x}}=\frac{\mathrm{x}^{2}}{0.1000}=1.54 \times 10^{-5} \\
& \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.2409673 \times 10^{-3} M(\text { unrounded }) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.2409673 \times 10^{-3}\right)=2.9062=\mathbf{2 . 9 1}
\end{aligned}
$$

b) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(10.00 \mathrm{~mL})=1.000 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$ The NaOH will react with an equal amount of the acid, and $1.000 \times 10^{-3} \mathrm{~mol} \mathrm{HBut} \mathrm{will} \mathrm{remain}$. number of moles of But^{-}will form.

The volume of the solution at this point is $[(20.00+10.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03000 \mathrm{~L}$
The molarity of the excess HBut is $\left(1.000 \times 10^{-3} \mathrm{~mol} \mathrm{HBut}\right) /(0.03000 \mathrm{~L})=0.03333 \mathrm{M}$ (unrounded)
The molarity of the But formed is $\left(1.000 \times 10^{-3} \mathrm{~mol} \mathrm{But}^{-}\right) /(0.03000 \mathrm{~L})=0.03333 \mathrm{M}$ (unrounded)
Using a reaction table for the equilibrium reaction of HBut:
$\begin{array}{lcccccc} & \text { HBut } \\ & +\quad \mathrm{H}_{2} \mathrm{O} & \leftrightarrows & \mathrm{H}_{3} \mathrm{O}^{+}+\begin{array}{c}\mathrm{But}^{-} \\ 0.03333 \mathrm{M}\end{array} & & & \\ \text { Initial: } & 0.03333 \mathrm{M} \\ \text { Change: } & -\mathrm{x}\end{array}$

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{But}^{-}\right]}{[\mathrm{HBut}]}=\frac{\mathrm{x}(0.0333+\mathrm{x})}{0.03333-\mathrm{x}}=\frac{\mathrm{x}(0.03333)}{0.03333}=1.54 \times 10^{-5} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.54 \times 10^{-5} M(\text { unrounded }) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.54 \times 10^{-5}\right)=4.812479=\mathbf{4 . 8 1}
\end{gathered}
$$

c) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(15.00 \mathrm{~mL})=1.500 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$ The NaOH will react with an equal amount of the acid, and $5.00 \times 10^{-4} \mathrm{~mol} \mathrm{HBut} \mathrm{will} \mathrm{remain}$, and 1.500×10^{-3} moles of But will form.

The volume of the solution at this point is $[(20.00+15.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03500 \mathrm{~L}$
The molarity of the excess HBut is $\left(5.00 \times 10^{-4} \mathrm{~mol} \mathrm{HBut}\right) /(0.03500 \mathrm{~L})=0.0142857 \mathrm{M}$ (unrounded)
The molarity of the But formed is $\left(1.500 \times 10^{-3} \mathrm{~mol} \mathrm{But}^{-}\right) /(0.03500 \mathrm{~L})=0.0428571 \mathrm{M}$ (unrounded)
Using a reaction table for the equilibrium reaction of HBut :

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{But}^{-}\right]}{[\mathrm{HBut}]}=\frac{\mathrm{x}(0.0428571+\mathrm{x})}{0.0142857-\mathrm{x}}=\frac{\mathrm{x}(0.0428571)}{0.0142857}=1.54 \times 10^{-5} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.1333 \times 10^{-6} M(\text { unrounded }) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(5.1333 \times 10^{-6}\right)=5.2896=\mathbf{5 . 2 9}
\end{gathered}
$$

d) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(19.00 \mathrm{~mL})=1.900 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$
The NaOH will react with an equal amount of the acid, and $1.00 \times 10^{-4} \mathrm{~mol} \mathrm{HBut} \mathrm{will} \mathrm{remain}$, and 1.900×10^{-3} moles of But will form.

	$\operatorname{HBut}(\mathrm{aq})$	$\mathrm{NaOH}(a q)$	$\rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\operatorname{But}^{+}(a q)+\mathrm{Na}^{+}(a q)$
Initial:	$2.000 \times 10^{-3} \mathrm{~mol}$	$1.900 \times 10^{-3} \mathrm{~mol}$	-	0
Change:	$-1.900 \times 10^{-3} \mathrm{~mol}$	$-1.900 \times 10^{-3} \mathrm{~mol}$	-	$+1.900 \times 10^{-3} \mathrm{~mol}$
Final:	$1.000 \times 10^{-4} \mathrm{~mol}$	0		$1.900 \times 10^{-3} \mathrm{~mol}$

The volume of the solution at this point is $[(20.00+19.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03900 \mathrm{~L}$
The molarity of the excess HBut is $\left(1.00 \times 10^{-4} \mathrm{~mol} \mathrm{HBut}\right) /(0.03900 \mathrm{~L})=0.0025641 \mathrm{M}$ (unrounded)
The molarity of the But formed is $\left(1.900 \times 10^{-3} \mathrm{~mol} \mathrm{But}^{-}\right) /(0.03900 \mathrm{~L})=0.0487179 \mathrm{M}$ (unrounded)
Using a reaction table for the equilibrium reaction of HBut:

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{But}^{-}\right]}{[\mathrm{HBut}]}=\frac{\mathrm{x}(0.0487179+\mathrm{x})}{0.0025641-\mathrm{x}}=\frac{\mathrm{x}(0.0487179)}{0.0025641}=1.54 \times 10^{-5} \\
\\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.1052631 \times 10^{-7} M(\text { unrounded }) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(8.1052631 \times 10^{-7}\right)=6.09123=\mathbf{6 . 0 9}
\end{gathered}
$$

e) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(19.95 \mathrm{~mL})=1.995 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$ The NaOH will react with an equal amount of the acid, and $5 \times 10^{-6} \mathrm{~mol} \mathrm{HBut} \mathrm{will} \mathrm{remain}$, and 1.995×10^{-3} moles of But will form.

	$\operatorname{HBut}(\mathrm{aq})$	+	$\mathrm{NaOH}(\mathrm{aq})$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$+$	$\operatorname{But}^{-}(a q)+$	$\mathrm{Na}^{+}(\mathrm{aq})$
Initial:	$2.000 \times 10^{-3} \mathrm{~mol}$		$1.995 \times 10^{-3} \mathrm{~mol}$		(0	
Change:	$-1.995 \times 10^{-3} \mathrm{~mol}$		$-1.995 \times 10^{-3} \mathrm{~mol}$		-		$995 \times 10^{-3} \mathrm{~mol}$	-
Final:	$5.000 \times 10^{-6} \mathrm{~mol}$		0				, $995 \times 10^{-3} \mathrm{~mol}$	

The volume of the solution at this point is $[(20.00+19.95) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03995 \mathrm{~L}$
The molarity of the excess HBut is $\left(5 \times 10^{-6} \mathrm{~mol} \mathrm{HBut}\right) /(0.03995 \mathrm{~L})=0.000125156 \mathrm{M}$ (unrounded)
The molarity of the But formed is $\left(1.995 \times 10^{-3} \mathrm{~mol} \mathrm{But}^{-}\right) /(0.03995 \mathrm{~L})=0.0499374 \mathrm{M}$ (unrounded)
Using a reaction table for the equilibrium reaction of HBut :

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{But}^{-}\right]}{[\mathrm{HBut}]}=\frac{\mathrm{x}(0.0499374+\mathrm{x})}{0.000125156-\mathrm{x}}=\frac{\mathrm{x}(0.0499374)}{0.000125156}=1.54 \times 10^{-5} \\
\\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.859637 \times 10^{-8} M(\text { unrounded }) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(3.859637 \times 10^{-8}\right)=7.41345=7.41
\end{gathered}
$$

f) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(20.00 \mathrm{~mL})=2.000 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$ The NaOH will react with an equal amount of the acid, and 0 mol HBut will remain, and 2.000×10^{-3} moles of But ${ }^{-}$will form. This is the equivalence point.

	$\operatorname{HBut}(a q)$	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\operatorname{But}^{-}(a q)+\mathrm{Na}^{+}(a q)$
Initial:	$2.000 \times 10^{-3} \mathrm{~mol}$	$2.000 \times 10^{-3} \mathrm{~mol}$	-	$0-$
Change:	$-2.000 \times 10^{-3} \mathrm{~mol}$	$-2.000 \times 10^{-3} \mathrm{~mol}$	-	$+2.000 \times 10^{-3} \mathrm{~mol}$
Final:	0	0		$2.000 \times 10^{-3} \mathrm{~mol}$

The K_{b} of But^{-}is now important.
The volume of the solution at this point is $[(20.00+20.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.04000 \mathrm{~L}$
The molarity of the But formed is $\left(2.000 \times 10^{-3} \mathrm{~mol} \mathrm{But}^{-}\right) /(0.04000 \mathrm{~L})=0.05000 \mathrm{M}$ (unrounded)

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(1.54 \times 10^{-5}\right)=6.4935 \times 10^{-10} \text { (unrounded) }
$$

Using a reaction table for the equilibrium reaction of But-:

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{[\mathrm{HBut}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{But}^{-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.05000-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.05000]}=6.4935 \times 10^{-10} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{x}=5.6980259 \times 10^{-6} M} \\
& \mathrm{pOH}=-\log \left(5.6980259 \times 10^{-6}\right)=5.244275575 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-5.244275575=8.755724425=\mathbf{8 . 7 6}
\end{aligned}
$$

g) After the equivalence point, the excess strong base is the primary factor influencing the pH .

Determine the moles of NaOH added:
Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(20.05 \mathrm{~mL})=2.005 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$
The NaOH will react with an equal amount of the acid, 0 mol HBut will remain, and 5×10^{-6} moles of NaOH will be in excess. There will be $2.000 \times 10^{-3} \mathrm{~mol}$ of But produced, but this weak base will not affect the pH compared to the excess strong base, NaOH .

	$\operatorname{HBut}(a q)$	$\mathrm{NaOH}(\mathrm{aq})$	$\rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$+\operatorname{But}^{-}(a q)+\mathrm{Na}^{+}(a q)$
Initial:	$2.000 \times 10^{-3} \mathrm{~mol}$	$2.005 \times 10^{-3} \mathrm{~mol}$	-	0
Change:	$-2.000 \times 10^{-3} \mathrm{~mol}$	$-2.000 \times 10^{-3} \mathrm{~mol}$	-	$+2.000 \times 10^{-3} \mathrm{~mol}$
Final:	0	$5.000 \times 10^{-6} \mathrm{~mol}$		$2.000 \times 10^{-3} \mathrm{~mol}$

The volume of the solution at this point is $[(20.00+20.05) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.04005 \mathrm{~L}$
The molarity of the excess OH^{-}is $\left(5 \times 10^{-6} \mathrm{~mol} \mathrm{OH}^{-}\right) /(0.04005 \mathrm{~L})=1.2484 \times 10^{-4} M$ (unrounded)

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left(1.2484 \times 10^{-4}\right)=3.9036 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.9036=10.0964=\mathbf{1 0 . 1 0}
\end{aligned}
$$

h) Determine the moles of NaOH added:

Moles of $\mathrm{NaOH}=(0.1000 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(25.00 \mathrm{~mL})=2.500 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$ The NaOH will react with an equal amount of the acid, 0 mol HBut will remain, and 5.00×10^{-4} moles of NaOH will be in excess.

	$\operatorname{HBut}(a q)$				
Initial:	$2.000 \times 10^{-3} \mathrm{~mol}$	$\mathrm{NaOH}(a q)$ $2.500 \times 10^{-3} \mathrm{~mol}$$\rightarrow$	$\mathrm{H}_{2} \mathrm{O}(l)$	+	$\operatorname{But}^{-}(a q)+\mathrm{Na}^{+}(a q)$
Change:	$-2.000 \times 10^{-3} \mathrm{~mol}$	$-2.000 \times 10^{-3} \mathrm{~mol}$	-	0	-
Final:	0	$5.000 \times 10^{-4} \mathrm{~mol}$		$+2.000 \times 10^{-3} \mathrm{~mol}-$	

The volume of the solution at this point is $[(20.00+25.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.04500 \mathrm{~L}$
The molarity of the excess OH^{-}is $\left(5.00 \times 10^{-4} \mathrm{~mol} \mathrm{OH}^{-}\right) /(0.04500 \mathrm{~L})=1.1111 \times 10^{-2} \mathrm{M}$ (unrounded)

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left(1.1111 \times 10^{-2}\right)=1.9542 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-1.9542=12.0458=\mathbf{1 2 . 0 5}
\end{aligned}
$$

19.57 This is a titration between a weak base and a strong acid. The pH before addition of the acid is dependent on the K_{b} of the base $\left.\left(\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right)\right)$. Prior to reaching the equivalence point, the added acid reacts with base to form $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$ion. The equivalence point occurs when 20.00 mL of acid is added to the base because at this point, moles acid = moles base. Addition of acid beyond the equivalence point is simply the addition of excess $\mathrm{H}_{3} \mathrm{O}^{+}$.
The initial number of moles of $\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}=\left(0.1000 \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right) / \mathrm{L}\right)\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(20.00 \mathrm{~mL})$

$$
=2.000 \times 10^{-3} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}
$$

a) Since no acid has been added, only the weak base $\left(K_{\mathrm{b}}\right)$ is important.
$K_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.1000-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.1000]}=5.2 \times 10^{-4}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=7.2111 \times 10^{-3} \mathrm{M}$
$\mathrm{pOH}=-\log \left(7.2111 \times 10^{-3}\right)=2.141998$ (unrounded)
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-2.141998=11.8580=\mathbf{1 1 . 8 6}$
b) Determine the moles of HCl added:

Moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(10.00 \mathrm{~mL})=1.000 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
The HCl will react with an equal amount of the base, and $1.000 \times 10^{-3} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ will remain; an equal number of moles of $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$will form.
The volume of the solution at this point is $[(20.00+10.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03000 \mathrm{~L}$
The molarity of the excess $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ is $\left(1.000 \times 10^{-3} \mathrm{~mol}_{\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right) /(0.03000 \mathrm{~L})}\right.$

$$
=0.03333 M \text { (unrounded) }
$$

The molarity of the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$formed is $\left(1.000 \times 10^{-3} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right) /(0.03000 \mathrm{~L})$

$$
=0.03333 M \text { (unrounded })
$$

$K_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]}=\frac{[\mathrm{x}][0.0333+\mathrm{x}]}{[0.03333-\mathrm{x}]}=\frac{[\mathrm{x}][0.0333]}{[0.03333]}=5.2 \times 10^{-4}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=5.2 \times 10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log \left(5.2 \times 10^{-4}\right)=3.283997$ (unrounded)
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.283997=10.7160=\mathbf{1 0 . 7 2}$
c) Determine the moles of HCl added:

Moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(15.00 \mathrm{~mL})=1.500 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
The HCl will react with an equal amount of the base, and $5.00 \times 10^{-4} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ will remain; and
1.500×10^{-3} moles of $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$will form.
The volume of the solution at this point is $[(20.00+15.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03500 \mathrm{~L}$
The molarity of the excess $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ is $\left(5.00 \times 10^{-4} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right) /(0.03500 \mathrm{~L})$ $=0.0142857 \mathrm{M}$ (unrounded)
The molarity of the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$formed is $\left(1.500 \times 10^{-3} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right) /(0.03500 \mathrm{~L})$ $=0.0428571 \mathrm{M}$ (unrounded)
$K_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]}=\frac{[\mathrm{x}][0.0428571+\mathrm{x}]}{[0.0142857-\mathrm{x}]}=\frac{[\mathrm{x}][0.0428571]}{[0.0142857]}=5.2 \times 10^{-4}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=1.7333 \times 10^{-4} \mathrm{M}$
$\mathrm{pOH}=-\log \left(1.7333 \times 10^{-4}\right)=3.761126$ (unrounded)
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-3.761126=10.23887=\mathbf{1 0 . 2 4}$
d) Determine the moles of HCl added:

Moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(19.00 \mathrm{~mL})=1.900 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
The HCl will react with an equal amount of the base, and $1.00 \times 10^{-4} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ will remain; and 1.900×10^{-3} moles of $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$will form.
The volume of the solution at this point is $[(20.00+19.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03900 \mathrm{~L}$
The molarity of the excess $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ is $\left(1.00 \times 10^{-4} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right) /(0.03900 \mathrm{~L})$

$$
=0.002564102 M \text { (unrounded })
$$

The molarity of the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$formed is $\left(1.900 \times 10^{-3} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right) /(0.03900 \mathrm{~L})$

$$
=0.0487179 \mathrm{M} \text { (unrounded) }
$$

$K_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]}=\frac{[\mathrm{x}][0.0487179+\mathrm{x}]}{[0.002564102-\mathrm{x}]}=\frac{[\mathrm{x}][0.0487179]}{[0.002564102]}=5.2 \times 10^{-4}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=2.73684 \times 10^{-5} \mathrm{M}$
$\mathrm{pOH}=-\log \left(2.73684 \times 10^{-5}\right)=4.56275$ (unrounded)
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-4.56275=9.43725=\mathbf{9 . 4 4}$
e) Determine the moles of HCl added:

Moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(19.95 \mathrm{~mL})=1.995 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
The HCl will react with an equal amount of the base, and $5 \times 10^{-6} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ will remain; and 1.995×10^{-3} moles of $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$will form.
The volume of the solution at this point is $[(20.00+19.95) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.03995 \mathrm{~L}$
The molarity of the excess $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ is $\left(5 \times 10^{-6} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right) /(0.03995 \mathrm{~L})$

$$
=0.000125156 M \text { (unrounded) }
$$

The molarity of the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$formed is $\left(1.995 \times 10^{-3} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right) /(0.03995 \mathrm{~L})$ $=0.0499374 \mathrm{M}$ (unrounded)
$K_{\mathrm{b}}=\frac{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]}=\frac{[\mathrm{x}][0.0499374+\mathrm{x}]}{[0.000125156-\mathrm{x}]}=\frac{[\mathrm{x}][0.0499374]}{[0.000125156]}=5.2 \times 10^{-4}$
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=1.303254 \times 10^{-6} \mathrm{M}$
$\mathrm{pOH}=-\log \left(1.303254 \times 10^{-6}\right)=5.88497$ (unrounded)
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-5.88497=8.11503=\mathbf{8 . 1}$
f) Determine the moles of HCl added:

Moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(20.00 \mathrm{~mL})=2.000 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
The HCl will react with an equal amount of the base, and $0 \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ will remain; and 2.000×10^{-3} moles of $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$will form. This is the equivalence point.
The volume of the solution at this point is $[(20.00+20.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.04000 \mathrm{~L}$
The molarity of the $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}$formed is $\left(2.000 \times 10^{-3} \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right) /(0.04000 \mathrm{~L})$

$$
=0.05000 \mathrm{M}
$$

$K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(5.2 \times 10^{-4}\right)=1.923 \times 10^{-11}$ (unrounded)
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]}{\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{NH}^{+}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.05000-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.05000]}=1.923 \times 10^{-11}$
$\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9.8056 \times 10^{-7} M$ (unrounded)
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(9.8056 \times 10^{-7}\right)=6.0085=\mathbf{6 . 0 1}$
g) After the equivalence point, the excess strong acid is the primary factor influencing the pH .

Determine the moles of HCl added:
Moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(20.05 \mathrm{~mL})=2.005 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
The HCl will react with an equal amount of the base, and $0 \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ will remain,
and 5×10^{-6} moles of HCl will be in excess.
The volume of the solution at this point is $[(20.00+20.05) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.04005 \mathrm{~L}$
The molarity of the excess $\mathrm{H}_{3} \mathrm{O}^{+}$is $\left(5 \times 10^{-6} \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}\right) /(0.04005 \mathrm{~L})=1.2484 \times 10^{-4} \mathrm{M}$ (unrounded) $\mathrm{pH}=-\log \left(1.2484 \times 10^{-4}\right)=3.9036=3.90$
h) Determine the moles of HCl added:

Moles of $\mathrm{HCl}=(0.1000 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)(25.00 \mathrm{~mL})=2.500 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$
The HCl will react with an equal amount of the base, and $0 \mathrm{~mol}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$ will remain, and $5.00 \times 10^{-4} \mathrm{~mol}$ of HCl will be in excess.
The volume of the solution at this point is $[(20.00+25.00) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.04500 \mathrm{~L}$
The molarity of the excess $\mathrm{H}_{3} \mathrm{O}^{+}$is $\left(5.00 \times 10^{-4} \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}\right) /(0.04500 \mathrm{~L})=1.1111 \times 10^{-2} \mathrm{M}$ (unrounded) $\mathrm{pH}=-\log \left(1.1111 \times 10^{-2}\right)=1.9542=\mathbf{1 . 9 5}$
19.58 a) The balanced chemical equation is:

$$
\mathrm{NaOH}(a q)+\mathrm{CH}_{3} \mathrm{COOH}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

The sodium ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of NaOH needed:

Volume $=$

$=58.989247=\mathbf{5 9 . 0} \mathbf{~ m L ~ N a O H}$

Determine the moles of $\mathrm{CH}_{3} \mathrm{COOH}$ present:

$$
\begin{aligned}
\text { Moles }= & \left(\frac{0.0520 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(42.2 \mathrm{~mL}) \\
& =0.0021944 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH} \text { (unrounded) }
\end{aligned}
$$

At the equivalence point, 0.0021944 mol NaOH will be added so the moles acid $=$ moles base.
The NaOH will react with an equal amount of the acid, $0 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ will remain, and 0.0021944 moles of $\mathrm{CH}_{3} \mathrm{COO}^{-}$will be formed.

$$
\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{NaOH}(a q) \quad \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad+\quad \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{Na}^{+}(a q)
$$

Initial: $0.0021944 \mathrm{~mol} \quad 0.0021944 \mathrm{~mol} \quad-\quad 0$

Change:	-0.0021944 mol	-0.0021944 mol	-	+0.0021944 mol
Final:	0	0	0.0021944 mol	

Determine the liters of solution present at the equivalence point:
Volume $=[(42.0+58.989247) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.100989 \mathrm{~L}$ (unrounded)
Concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}$at equivalence point:
Molarity $=\left(0.0021944 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COO}^{-}\right) /(0.100989 \mathrm{~L})=0.021729 \mathrm{M}$ (unrounded)
Calculate K_{b} for $\mathrm{CH}_{3} \mathrm{COO}^{-}: \quad K_{\mathrm{a}} \mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$
$K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(1.8 \times 10^{-5}\right)=5.556 \times 10^{-10}$ (unrounded)
Using a reaction table for the equilibrium reaction of $\mathrm{CH}_{3} \mathrm{COO}^{-}$:

	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	+	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{CH}_{3} \mathrm{COOH}$	+
Initial:	0.021729 M				0	
Change:	-x			+OH	0	
Equilibrium:	$0.021729-\mathrm{x}$					x

Determine the hydroxide ion concentration from the K_{b}, and then determine the pH from the pOH .

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.021729-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.021729]}=5.556 \times 10^{-10}
$$

$$
\left.\left[\mathrm{OH}^{-}\right]=\mathrm{x}=3.4745693 \times 10^{-6} M \text { (unrounded }\right)
$$

$$
\mathrm{pOH}=-\log \left(3.4745693 \times 10^{-6}\right)=5.459099012(\text { unrounded })
$$

$$
\mathrm{pH}=14.00-\mathrm{pOH}=14.00-5.459099012=8.54090=\mathbf{8 . 5 4}
$$

b) The balanced chemical equations are:

$$
\begin{aligned}
& \mathrm{NaOH}(a q)+\mathrm{H}_{2} \mathrm{SO}_{3}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{HSO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{NaOH}(a q)+\mathrm{HSO}_{3}{ }^{-}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{SO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

The sodium ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of NaOH needed:

Volume $=$

$$
\left(\frac{0.0850 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{3}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(28.9 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{3}}\right)\left(\frac{\mathrm{L}}{0.0372 \mathrm{~mol} \mathrm{NaOH}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)
$$

$$
=66.034943=\mathbf{6 6 . 0} \mathbf{~ m L ~ N a O H}
$$

It will require an equal volume to reach the second equivalence point for a total of $2 \times 66.034943=\mathbf{1 3 2 . 1} \mathbf{~ m L}$. Determine the moles of $\mathrm{HSO}_{3}{ }^{-}$produced:

$$
\begin{aligned}
\text { Moles }= & \left(\frac{0.0850 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{3}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(28.9 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{HSO}_{3}{ }^{2-}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{3}}\right) \\
& =0.0024565 \mathrm{~mol} \mathrm{HSO}_{3}^{-}
\end{aligned}
$$

An equal number of moles of $\mathrm{SO}_{3}{ }^{2-}$ will be present at the second equivalence point.
Determine the liters of solution present at the first equivalence point:
Volume $=[(28.9+66.034943) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.094934943 \mathrm{~L}$
Determine the liters of solution present at the second equivalence point:
Volume $=[(28.9+66.034943+66.034943) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.160969886 \mathrm{~L}$
Concentration of $\mathrm{HSO}_{3}{ }^{-}$at equivalence point:
Molarity $=\left(0.0024565\right.$ moles $\left.\mathrm{HSO}_{3}^{-}\right) /(0.094934943 \mathrm{~L})=0.0258756 \mathrm{M}$
Concentration of $\mathrm{SO}_{3}{ }^{2-}$ at equivalence point:
Molarity $=\left(0.0024565\right.$ moles SO $\left.3^{2-}\right) /(0.160969886 \mathrm{~L})=0.0152606 \mathrm{M}$

Calculate K_{b} for $\mathrm{HSO}_{3}{ }^{-}: \quad K_{\mathrm{a}} \mathrm{H}_{2} \mathrm{SO}_{3}=1.4 \times 10^{-2}$

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(1.4 \times 10^{-2}\right)=7.142857 \times 10^{-13}
$$

Calculate K_{b} for $\mathrm{SO}_{3}{ }^{2-}: \quad K_{\mathrm{a}} \mathrm{HSO}_{3}{ }^{-}=6.5 \times 10^{-8}$

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(6.5 \times 10^{-8}\right)=1.53846 \times 10^{-7}
$$

For the first equivalence point:
Using a reaction table for the equilibrium reaction of $\mathrm{HSO}_{3}{ }^{-}$:

	HSO_{3}^{-}	+	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{H}_{2} \mathrm{SO}_{3}$	+
Initial:	0.0258756 M			0		OH^{-}
Change:	-x			+x		+x
Equilibrium:	$0.0258756-\mathrm{x}$				x	
Eq						

Determine the hydroxide ion concentration from the K_{b}, and then determine the pH from the pOH .

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HSO}_{3}^{-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0258756-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0258756]}=7.142857 \times 10^{-13} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{x}=1.359506 \times 10^{-7} M \text { (unrounded) }} \\
& \mathrm{pOH}=-\log \left(1.359506 \times 10^{-7}\right)=6.8666188 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-6.8666188=7.13338=7.13
\end{aligned}
$$

For the second equivalence point:
Using a reaction table for the equilibrium reaction of $\mathrm{SO}_{3}{ }^{2-}$:

	SO_{3}	+	$\mathrm{H}_{2} \mathrm{O}$	\rightarrow	HSO_{3}	+
Initial:	0.0152606 M			OH^{2}		
Change:	-x		+x	0		
Equilibrium:	$0.0152606-\mathrm{x}$			x		+x

Determine the hydroxide ion concentration from the K_{b}, and then determine the pH from the pOH .

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{\left[\mathrm{HSO}_{3}{ }^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{SO}_{3}{ }^{2}-\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0152606-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0152606]}=1.53846 \times 10^{-7} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{x}=4.84539 \times 10^{-5} M \text { (unrounded) }} \\
& \mathrm{pOH}=-\log \left(4.84539 \times 10^{-5}\right)=4.31467 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-4.31467=9.68533=\mathbf{9 . 6 9}
\end{aligned}
$$

19.59 The balanced chemical equation is:

$$
\mathrm{K}^{+}(a q)+\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HNO}_{2}(a q) \rightarrow \mathrm{K}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

The potassium ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of NaOH needed:

Volume $=$

$$
\left(\frac{0.0390 \mathrm{~mol} \mathrm{HNO}_{2}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(23.4 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{KOH}}{1 \mathrm{~mol} \mathrm{HNO}_{2}}\right)\left(\frac{\mathrm{L}}{0.0588 \mathrm{~mol} \mathrm{KOH}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)
$$

$$
=15.5204=15.5 \mathbf{~ m L ~ K O H}
$$

Determine the moles of HNO_{2} present:

$$
\begin{aligned}
\text { Moles }= & \left(\frac{0.0390 \mathrm{~mol} \mathrm{HNO}_{2}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(23.4 \mathrm{~mL}) \\
& =0.0009126 \mathrm{~mol} \mathrm{HNO}_{2}
\end{aligned}
$$

At the equivalence point, 0.0009126 mol KOH will be added so the moles acid = moles base.
The KOH will react with an equal amount of the acid, $0 \mathrm{~mol} \mathrm{HNO}_{2}$ will remain, and 0.0009126 moles of NO_{2}^{-} will be formed.

	$\mathrm{HNO}_{2}(\mathrm{aq})$	+	$\mathrm{KOH}(a q) \quad \rightarrow$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+	$\mathrm{NO}_{2}{ }^{-}(a q)$	+	$\mathrm{K}^{+}(a q)$
Initial:	0.0009126 mol		0.0009126 mol	-		0		-
Change:	$-0.0009126 \mathrm{~mol}$		$-0.0009126 \mathrm{~mol}$	-		+0.0009	26 mol	-
Final:	0		0			0.0009	26 mol	

Determine the liters of solution present at the equivalence point:
Volume $=[(23.4+15.5204) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.0389204 \mathrm{~L}$ (unrounded)
Concentration of NO_{2}^{-}at equivalence point:
Molarity $=\left(0.0009126 \mathrm{~mol} \mathrm{NO}_{2}^{-}\right) /(0.0389204 \mathrm{~L})=0.023447858 \mathrm{M}$
Calculate K_{b} for NO_{2} :
$K_{\mathrm{a}} \mathrm{HNO}_{2}=7.1 \times 10^{-4}$
$K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(7.1 \times 10^{-4}\right)=1.40845 \times 10^{-11}$ (unrounded)
Using a reaction table for the equilibrium reaction of $\mathrm{NO}_{2}{ }^{-}$:

Determine the hydroxide ion concentration from the K_{b}, and then determine the pH from the pOH .

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.023447858-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.023447858]}=1.40845 \times 10^{-11} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{x}=5.7467 \times 10^{-7} M \text { (unrounded) }} \\
& \mathrm{pOH}=-\log \left(5.7467 \times 10^{-7}\right)=6.240577 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-6.240577=7.759422=7.76
\end{aligned}
$$

b) The balanced chemical equations are:

$$
\begin{aligned}
& \mathrm{KOH}(a q)+\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightarrow \mathrm{K}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{KOH}(a q)+\mathrm{HCO}_{3}(a q) \rightarrow \mathrm{K}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

The potassium ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of KOH needed:

Volume $=$

$$
\left(\frac{0.130 \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(17.3 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{KOH}^{2}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}}\right)\left(\frac{\mathrm{L}}{0.0588 \mathrm{~mol} \mathrm{KOH}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)
$$

$$
=38.248299=38.2 \mathrm{~mL} \mathrm{KOH}
$$

It will require an equal volume to reach the second equivalence point ($\mathbf{7 6 . 4} \mathbf{~ m L}$).
Determine the moles of $\mathrm{HCO}_{3}{ }^{-}$produced:

$$
\begin{aligned}
\text { Moles }= & \left(\frac{0.130 \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(17.3 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{HCO}_{3}^{-}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}}\right) \\
& =0.002249 \mathrm{~mol} \mathrm{HCO}_{3}^{-}(\text {unrounded })
\end{aligned}
$$

An equal number of moles of $\mathrm{CO}_{3}{ }^{2-}$ will be present at the second equivalence point.
Determine the liters of solution present at the first equivalence point:
Volume $=[(17.3+38.248299) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.055548 \mathrm{~L}$ (unrounded)
Determine the liters of solution present at the second equivalence point:
Volume $=[(17.3+38.248299+38.248299) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.0937966 \mathrm{~L}$ (unrounded)
Concentration of $\mathrm{HCO}_{3}{ }^{-}$at equivalence point:
Molarity $=\left(0.002249 \mathrm{~mol} \mathrm{HCO}_{3}^{-}\right) /(0.055548 \mathrm{~L})=0.0404875 \mathrm{M}$ (unrounded)
Concentration of $\mathrm{CO}_{3}{ }^{2-}$ at equivalence point:
Molarity $=\left(0.002249 \mathrm{~mol} \mathrm{CO}_{3}{ }^{2-}\right) /(0.0937966 \mathrm{~L})=0.023977 \mathrm{M}$ (unrounded)
Calculate K_{b} for $\mathrm{HCO}_{3}{ }^{-}: \quad K_{\mathrm{a}} \mathrm{H}_{2} \mathrm{CO}_{3}=4.5 \times 10^{-7}$
$K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(4.5 \times 10^{-7}\right)=2.222 \times 10^{-8}$ (unrounded)
Calculate K_{b} for $\mathrm{CO}_{3}{ }^{2-}: \quad K_{\mathrm{a}} \mathrm{HCO}_{3}{ }^{-}=4.7 \times 10^{-11}$
$K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(4.7 \times 10^{-11}\right)=2.1276595 \times 10^{-4}$ (unrounded)
Determine the hydroxide ion concentration from the K_{b}, and then determine the pH from the pOH .

For the first equivalence point:

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0404875-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0404875]}=2.222 \times 10^{-8} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{x}=2.999387 \times 10^{-5} \mathrm{M}} \\
& \mathrm{pOH}=-\log \left(2.999387 \times 10^{-5}\right)=4.522967492 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-4.522967492=9.4770=\mathbf{9 . 4 8}
\end{aligned}
$$

For the second equivalence point:

$$
\begin{aligned}
& K_{\mathrm{b}}=\frac{\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CO}_{3}^{2-}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.023977-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.023977]}=2.1276595 \times 10^{-4} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{x}=2.2586476 \times 10^{-3} M} \\
& \mathrm{pOH}=-\log \left(2.2586476 \times 10^{-3}\right)=2.646151515 \text { (unrounded) } \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-2.646151515=11.3538=\mathbf{1 1 . 3 5}
\end{aligned}
$$

19.60 a) The balanced chemical equation is:
$\mathrm{HCl}(a q)+\mathrm{NH}_{3}(a q) \rightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
The chloride ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of HCl needed:

Volume $=$

$$
\begin{aligned}
& \left(\frac{0.234 \mathrm{~mol} \mathrm{NH}_{3}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(65.5 \mathrm{~mL})\left(\frac{\left.1 \mathrm{~mol} \mathrm{HCl}^{1 \mathrm{~mol} \mathrm{NH}_{3}}\right)\left(\frac{\mathrm{L}}{0.125 \mathrm{~mol} \mathrm{HCl}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)}{=122.616=\mathbf{1 2 3} \mathbf{~ m L ~ H C l}}\right.
\end{aligned}
$$

Determine the moles of NH_{3} present:

$$
\text { Moles }=\left(\frac{0.234 \mathrm{~mol} \mathrm{NH}_{3}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(65.5 \mathrm{~mL})
$$

$$
=0.015327 \mathrm{~mol} \mathrm{NH}_{3} \text { (unrounded) }
$$

At the equivalence point, 0.05327 mol HCl will be added so the moles acid $=$ moles base.
The HCl will react with an equal amount of the base, $0{\mathrm{~mol} \mathrm{NH}_{3} \text { will remain, and } 0.015327 \text { moles of } \mathrm{NH}_{4}{ }^{+} \text {will be }}$ formed.

	$\mathrm{HCl}(a q) \quad+$	$\mathrm{NH}_{3}(\mathrm{aq})$	$\mathrm{NH}_{4}^{+}(a q)+\mathrm{C}$	$\mathrm{Cl}^{-}(a q)$
Initial:	0.015327 mol	0.015327 mol	0	
Change:	- 0.015327 mol	-0.015327 mol	$+0.015327 \mathrm{~mol}$	
Final:	0	0	0.015327 mol	
Determine the liters of solution present at the equivalence point:				
Concentration of NH_{4}^{+}at equivalence point:				
Calculate K_{a} for NH_{4}^{+}: $\quad K_{\mathrm{b}} \mathrm{NH}_{3}=1.76 \times 10^{-5}$				
Using a reaction table for the equilibrium reaction of NH_{4}^{+}:				
	$\mathrm{NH}_{4}^{+}+$	$\leftrightarrows \quad \mathrm{NH}_{3}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	
Initial:	0.081476 M	0	0	
Change:	-X	+x	+x	
Equilibrium:	$0.081476-\mathrm{x}$	x	x	
Determine the hydrogen ion concentration from the K_{a}, and then determine the pH .				

$$
\begin{aligned}
& K_{\mathrm{a}}= \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.081476-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.081476]}=5.6818 \times 10^{-10} \\
& \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.803911 \times 10^{-6} M(\text { unrounded }) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(6.803911 \times 10^{-6}\right)=5.1672=5.17
\end{aligned}
$$

b) The balanced chemical equation is:

$$
\mathrm{HCl}(a q)+\mathrm{CH}_{3} \mathrm{NH}_{2}(a q) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

The chloride ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of HCl needed:

Volume $=$

$$
\left(\frac{1.11 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{2}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(21.8 \mathrm{~mL})\left(\frac{\left.\left.1 \mathrm{~mol} \mathrm{HCl}^{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{2}}\right)\left(\frac{\mathrm{~L}}{0.125 \mathrm{~mol} \mathrm{HCl}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\right) .}{}\right)\left(\frac{1}{}\right)
$$

$$
=193.584=194 \mathbf{~ m L ~ H C l}
$$

Determine the moles of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ present:

$$
\text { Moles }=\left(\frac{1.11 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{2}}{\mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(21.8 \mathrm{~mL})
$$

$$
=0.024198 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{2} \text { (unrounded) }
$$

At the equivalence point, 0.024198 mol HCl will be added so the moles acid $=$ moles base .
The HCl will react with an equal amount of the base, $0 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{2}$ will remain, and 0.024198 moles of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$will be formed.

	$\mathrm{HCl}(a q)$	+	$\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)$	\rightarrow	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(a q)$
Initial:	0.024198 mol	0.024198 mol	$\mathrm{Cl}^{-}(a q)$		
Change:	-0.024198 mol	-0.024198 mol	0	-	
Final:	0	0	+0.024198 mol	-	
Determine the liters of solution present at the equivalence point:	0.024198 mol				

$$
\text { Volume }=[(21.8+193.584) \mathrm{mL}]\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.215384 \mathrm{~L} \text { (unrounded) }
$$

Concentration of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$at equivalence point:

$$
\text { Molarity }=\left(0.024198 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right) /(0.215384 \mathrm{~L})=0.1123482 \mathrm{M}
$$

Calculate K_{a} for $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}: \quad \quad K_{\mathrm{b}} \mathrm{CH}_{3} \mathrm{NH}_{2}=4.4 \times 10^{-4}$

$$
\left.K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(4.4 \times 10^{-4}\right)=2.2727 \times 10^{-11} \text { (unrounded }\right)
$$

Using a reaction table for the equilibrium reaction of $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$:

	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	+	$\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
Initial:	0.1123482 M				0	0	
Change:	-x				+x	+x	
Cquilibrium:	$0.1123482-\mathrm{x}$				x	x	

Determine the hydrogen ion concentration from the K_{a}, and then determine the pH .

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.1123482-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.1123482]}=2.2727 \times 10^{-11} \\
\left.\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.5979 \times 10^{-6} \mathrm{M} \text { (unrounded }\right) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.5979 \times 10^{-6}\right)=5.7964=\mathbf{5 . 8 0}
\end{gathered}
$$

19.61 a) The balanced chemical equation is:

$$
\mathrm{HNO}_{3}(a q)+\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(a q) \rightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q)
$$

The nitrate ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of HNO_{3} needed:

Volume $=$

$$
\left.\begin{array}{l}
\left(\frac{0.0750 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}}{\mathrm{~L}}\right)(2.65 \mathrm{~L})\left(\frac{1 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}}\right)\left(\frac{\mathrm{L}}{0.447 \mathrm{~mol} \mathrm{HNO}} 33\right.
\end{array}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)
$$

Determine the moles of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$produced:

$$
\begin{aligned}
\text { Moles }= & \left(\frac{0.0750 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}}{\mathrm{~L}}\right)(2.65 \mathrm{~L})\left(\frac{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}}\right) \\
& =0.19875 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \text {(unrounded) }
\end{aligned}
$$

Determine the liters of solution present at the equivalence point:
Volume $=2.65 \mathrm{~L}+(444.63087 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=3.09463 \mathrm{~L}$

Concentration of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$at equivalence point:
Molarity $=\left(0.19875 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right) /(3.09463 \mathrm{~L})=0.064224 \mathrm{M}$ (unrounded)
Calculate K_{a} for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$: $\quad K_{\mathrm{b}} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=1.7 \times 10^{-9}$
$K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(1.7 \times 10^{-9}\right)=5.88235 \times 10^{-6}$ (unrounded)
Determine the hydrogen ion concentration from the K_{a}, and then determine the pH .

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.064224-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.064224]}=5.88235 \times 10^{-6} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.1464 \times 10^{-4} M(\text { unrounded }) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(6.1464 \times 10^{-4}\right)=3.211379=\mathbf{3 . 2 1}
\end{gathered}
$$

b) The balanced chemical equations are:

$$
\begin{aligned}
& \mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \\
& \mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}(a q) \rightarrow \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}(a q)+\mathrm{NO}_{3}^{-}(a q)
\end{aligned}
$$

The nitrate ions on the product side are written as separate species because they have no effect on the pH of the solution. Calculate the volume of HNO_{3} needed:

Volume $=$

$$
\left(\frac{0.250 \mathrm{~mol} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{2}}{\mathrm{~L}}\right)(0.188 \mathrm{~L})\left(\frac{1 \mathrm{~mol} \mathrm{HNO}_{3}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{2}}\right)\left(\frac{\mathrm{L}}{0.447 \mathrm{~mol} \mathrm{HNO}} 33\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)
$$

$$
=105.1454=\mathbf{1 0 5} \mathbf{~ m L ~ H C l}
$$

It will require an equal volume to reach the second equivalence point. (210. $\mathbf{m L}$)
Determine the moles of $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$produced:

$$
\begin{aligned}
\text { Moles }= & \left(\frac{0.250 \mathrm{~mol} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{2}}{\mathrm{~L}}\right)(0.188 \mathrm{~L})\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{2}}\right) \\
& =0.0470 \mathrm{~mol} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}
\end{aligned}
$$

An equal number of moles of $\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$ will be present at the second equivalence point.
Determine the liters of solution present at the first equivalence point:

$$
\text { Volume }=0.188 \mathrm{~L}+(105.1454 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.293145 \mathrm{~L} \text { (unrounded) }
$$

Determine the liters of solution present at the second equivalence point:

$$
\text { Volume }=0.188 \mathrm{~L}+2(105.1454 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.39829 \mathrm{~L} \text { (unrounded) }
$$

Concentration of $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$at equivalence point:
Molarity $=\left(0.0470 \mathrm{~mol} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right) /(0.293145 \mathrm{~L})=0.16033 \mathrm{M}$ (unrounded)
Concentration of $\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$ at equivalence point:
Molarity $=\left(0.0470 \mathrm{~mol} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}\right) /(0.39829 \mathrm{~L})=0.11800 \mathrm{M}$ (unrounded)
Calculate K_{a} for $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$: $\quad K_{\mathrm{b}} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}=8.5 \times 10^{-5}$
$K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(8.5 \times 10^{-5}\right)=1.17647 \times 10^{-10}$ (unrounded)
Calculate K_{a} for $\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{2+}$: $\quad K_{\mathrm{b}} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}=7.1 \times 10^{-8}$

$$
K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=\left(1.0 \times 10^{-14}\right) /\left(7.1 \times 10^{-8}\right)=1.40845 \times 10^{-7}(\text { unrounded })
$$

Determine the hydrogen ion concentration from the K_{a}, and then determine the pH for the first equivalence point.

$$
\begin{aligned}
& K_{\mathrm{a}}= \frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.16033-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.16033]}=1.17647 \times 10^{-10} \\
&\left.\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.3430799 \times 10^{-6} M \text { (unrounded }\right) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(4.3430799 \times 10^{-6}\right)=5.36220=5.36
\end{aligned}
$$

Determine the hydrogen ion concentration from the K_{a}, and then determine the pH for the second equivalence point.

$$
\begin{gathered}
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{2+}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.11800-\mathrm{x}]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.11800]}=1.40845 \times 10^{-7} \\
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.2891745 \times 10^{-4} M(\text { unrounded }) \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.2891745 \times 10^{-4}\right)=3.889688=\mathbf{3 . 8 9}
\end{gathered}
$$

$19.62 \quad \mathrm{M}_{2} \mathrm{X}(s) \quad \leftrightarrows \quad \mathrm{I}^{\top}(a q) \quad \bar{\uparrow} \quad \mathrm{X}^{\ddagger \overline{ }}(a q)$
$K_{\text {sp }}=\left[\mathrm{M}^{+}\right]^{2}\left[\mathrm{X}^{2-}\right]$, assuming $\mathrm{M}_{2} \mathrm{X}$ is a strong electrolyte.
$\mathrm{S}=$ molar solubility $=5 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{M}^{+}\right]=2 \mathrm{~S}=1 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{X}^{2-}\right]=\mathrm{S}=5 \times 10^{-5} \mathrm{M}$
The actual $K_{\text {sp }}$ is lower than the calculated value because the assumption that $\mathrm{M}_{2} \mathrm{X}$ is a strong electrolyte (i.e., exists as $\mathrm{M}^{+}+\mathrm{X}^{2-}$) is in error to some degree. There would be some (probably significant) amount of ion pairing to form $\mathrm{MX}^{-}(a q), \mathrm{M}_{2} \mathrm{X}(a q)$, etc., which reduces the effective concentrations of the ions.
19.63 Fluoride ion in BaF_{2} is the conjugate base of the weak acid HF. The base hydrolysis reaction of fluoride ion

$$
\mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \quad \leftrightarrows \mathrm{HF}(a q)+\mathrm{OH}^{-}(a q)
$$

therefore is influenced by the pH of the solution. As the pH increases, $\left[\mathrm{OH}^{-}\right]$increases and the equilibrium shifts to the left to decrease $\left[\mathrm{OH}^{-}\right]$and increase the $\left[\mathrm{F}^{-}\right]$. As the pH decreases, $\left[\mathrm{OH}^{-}\right]$decreases and the equilibrium shifts to the right to increase $\left[\mathrm{OH}^{-}\right]$and decrease $\left[\mathrm{F}^{-}\right]$. The changes in $\left[\mathrm{F}^{-}\right.$] influence the solubility of BaF_{2}. Chloride ion is the conjugate base of a strong acid so it does not react with water. Thus, its concentration is not influenced by pH , and solubility of BaCl_{2} does not change with pH .
19.64 To use $K_{\text {sp }}$ for comparing solubilities, the $K_{\text {sp }}$ expressions must be of the same mathematical form. Stated differently, AgCl and AgBr are both 1:1 electrolytes, while $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is a 2:1 electrolyte.
19.65 Consider the reaction $\mathrm{AB}(s) \leftrightarrows \mathrm{A}^{+}(a q)+\mathrm{B}^{-}(a q)$, where $Q_{\mathrm{sp}}=\left[\mathrm{A}^{+}\right]\left[\mathrm{B}^{-}\right]$. If $Q_{\mathrm{sp}}>K_{\mathrm{sp}}$, then there are more ions dissolved than expected at equilibrium, and the equilibrium shifts to the left and the compound AB precipitates. The excess ions precipitate as solid from the solution.
19.66 a) $\mathrm{Ag}_{2} \mathrm{CO}_{3}(s) \leftrightarrows 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{A g}^{+}\right]^{2}\left[\mathbf{C O}_{3}{ }^{2-}\right]$
b) $\mathrm{BaF}_{2}(s) \leftrightarrows \mathrm{Ba}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{B a}^{2+}\right]\left[\mathbf{F}^{-}\right]^{2}$
c) $\mathrm{CuS}(s)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{Cu}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{C u}^{2+}\right]\left[\mathbf{H S}^{-}\right]\left[\mathbf{O H}^{-}\right]$
19.67 a) $\mathrm{Fe}(\mathrm{OH})_{3}(s) \leftrightarrows \mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathrm{Fe}^{3+}\right]\left[\mathbf{O H}^{-}\right]^{3}$
b) $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) \leftrightarrows 3 \mathrm{Ba}^{2+}(a q)+2 \mathrm{PO}_{4}^{3-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{B a}^{2+}\right]^{3}\left[\mathbf{P O}_{4}{ }^{3-}\right]^{2}$
c) $\mathrm{SnS}(s)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{Sn}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{S n}^{2+}\right]\left[\mathbf{H S}^{-}\right]\left[\mathbf{O H}^{-}\right]$
19.68
a) $\mathrm{CaCrO}_{4}(s) \leftrightarrows \mathrm{Ca}^{2+}(a q)+\mathrm{CrO}_{4}{ }^{2-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{C a}^{2+}\right]\left[\mathbf{C r O}_{4}{ }^{2-}\right]$
b) $\mathrm{AgCN}(s) \leftrightarrows \mathrm{Ag}^{+}(a q)+\mathrm{CN}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{A g}^{+}\right]\left[\mathbf{C N}^{-}\right]$
c) $\mathrm{NiS}(s)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{Ni}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\mathbf{s p}}=\left[\mathbf{N i}^{2+}\right]\left[\mathbf{H S}^{-}\right]\left[\mathbf{O H}^{-}\right]$
19.69
a) $\mathrm{PbI}_{2}(s) \leftrightarrows \mathrm{Pb}^{2+}(a q)+2 \mathrm{I}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{P b}^{2+}\right]\left[\mathbf{I}^{-}\right]^{2}$
b) $\mathrm{SrSO}_{4}(s) \leftrightarrows \mathrm{Sr}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{S r}^{2+}\right]\left[\mathbf{S O}_{4}{ }^{2-}\right]$
c) $\mathrm{CdS}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{Cd}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q)$

Ion-product expression: $\boldsymbol{K}_{\text {sp }}=\left[\mathbf{C d}^{2+}\right]\left[\mathbf{H S}^{-}\right][\mathbf{O H}]$
19.70 Write a reaction table, where S is the molar solubility of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$:

Concentration (M)	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$	\leftrightarrows	$2 \mathrm{Ag}^{+}(a q)$	+
Initial	-	0	$\mathrm{CO}_{3}{ }^{2-}(a q)$	
Change	-	+2 S	+S	
Equilibrium	-	2 S	S	
$\mathrm{~S}=\left[\mathrm{Ag}_{2} \mathrm{CO}_{3}\right]=0.032 \mathrm{M}$ so $\left[\mathrm{Ag}^{+}\right]=2 \mathrm{~S}=0.064 \mathrm{M}$ and $\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{S}=0.032 \mathrm{M}$				
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]=(0.064)^{2}(0.032)=1.31072 \times 10^{-4}=\mathbf{1 . 3} \times \mathbf{1 0}^{-4}$				

19.71 Write a reaction table, where S is the molar solubility of $\mathrm{ZnC}_{2} \mathrm{O}_{4}$:

Concentration (M)	$\mathrm{ZnC}_{2} \mathrm{O}_{4}(\mathrm{~s})$	Zn^{2+} (aq)	+	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(c$
Initial		0		0
Change		+ S		S
Equilibrium		S		S
$\begin{aligned} & \mathrm{S}=\left[\mathrm{ZnC}_{2} \mathrm{O}_{4}\right]=7.9 \times 10^{-3} \mathrm{M} \text { so }\left[\mathrm{Zn}^{2+}\right]=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\mathrm{S}=7.9 \times 10^{-3} \mathrm{M} \\ & K_{\text {sp }}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left(7.9 \times 10^{-3}\right)\left(7.9 \times 10^{-3}\right)=6.241 \times 10^{-5}=\mathbf{6 . 2} \times \mathbf{1 0}^{-4} \end{aligned}$				

19.72 The equation and ion-product expression for silver dichromate, $\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, is:

$$
\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(s) \leftrightarrows 2 \mathrm{Ag}^{+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \quad K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]
$$

The solubility of $\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, converted from $\mathrm{g} / 100 \mathrm{~mL}$ to M is:
Molar solubility $=\mathrm{S}=\left(\frac{8.3 \times 10^{-3} \mathrm{~g} \mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{100 \mathrm{~mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{431.8 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}\right)=0.00019221861 \mathrm{M}$ (unrounded)
Since 1 mole of $\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ dissociates to form 2 moles of Ag^{+}, the concentration of Ag^{+}is
$2 \mathrm{~S}=2(0.00019221861 M)=0.00038443723 \mathrm{M}$ (unrounded). The concentration of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is $\mathrm{S}=0.00019221861 \mathrm{M}$ because 1 mole of $\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ dissociates to form 1 mole of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$.
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]=(2 \mathrm{~S})^{2}(\mathrm{~S})=(0.00038443723)^{2}(0.00019221861)=2.8408 \times 10^{-11}=\mathbf{2 . 8} \times \mathbf{1 0}^{\mathbf{- 1 1}}$.
19.73 The equation and ion-product expression for calcium sulfate, CaSO_{4}, is:

$$
\mathrm{CaSO}_{4}(s) \leftrightarrows \mathrm{Ca}^{2+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \quad K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]
$$

The solubility of CaSO_{4}, converted from g / 100 mL to M is:
Molar solubility $=\mathrm{S}=\left(\frac{0.209 \mathrm{~g} \mathrm{CaSO}_{4}}{100 \mathrm{~mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CaSO}_{4}}{136.15 \mathrm{~g} \mathrm{CaSO}_{4}}\right)=0.015350716 \mathrm{M}$ (unrounded)
Since 1 mole of CaSO_{4} dissociates to form 1 mole of Ca^{2+}, the concentration of Ca^{2+} is $\mathrm{S}=0.015350716 \mathrm{M}$ (unrounded). The concentration of $\mathrm{SO}_{4}{ }^{2-}$ is $\mathrm{S}=0.015350716 \mathrm{M}$ because 1 mole of CaSO_{4} dissociates to form 1 mole of $\mathrm{SO}_{4}{ }^{2-}$.
$K_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]=(\mathrm{S})(\mathrm{S})=(0.015350716)(0.015350716)=2.35644 \times 10^{-4}=\mathbf{2 . 3 6} \mathbf{~ x ~ 1 0}{ }^{-4}$.
19.74 The equation and ion-product expression for SrCO_{3} is:

$$
\mathrm{SrCO}_{3}(\mathrm{~s}) \leftrightarrows \mathrm{Sr}^{2+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q) \quad K_{\mathrm{sp}}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]
$$

a) The solubility, S , in pure water equals $\left[\mathrm{Sr}^{2+}\right]$ and $\left[\mathrm{CO}_{3}{ }^{2-}\right]$

Write a reaction table, where S is the molar solubility of SrCO_{3} :

Concentration (M)	$\mathrm{SrCO}_{3}(s)$	\leftrightarrows	$\mathrm{Sr}^{2+}(a q)$	+
Initial	-	$\mathrm{CO}_{3}{ }^{2-}(a q)$		
Change	-		+S	0
Equilibrium	-	S	+S	

$$
\begin{aligned}
& K_{\mathrm{sp}}=5.4 \times 10^{-10}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=[\mathrm{S}][\mathrm{S}]=\mathrm{S}^{2} \\
& \mathrm{~S}=2.32379 \times 10^{-5}=\mathbf{2 . 3 \times 1 0 ^ { - 5 }} \boldsymbol{M}
\end{aligned}
$$

b) In $0.13 \mathrm{M} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$, the initial concentration of Sr^{2+} is 0.13 M .

Equilibrium $\left[\mathrm{Sr}^{2+}\right]=0.13+\mathrm{S}$ and equilibrium $\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{S}$ where S is the solubility of SrCO_{3}.

Concentration (M)	$\mathrm{SrCO}_{3}(\mathrm{~s})$	\leftrightarrows	$\mathrm{Sr}^{2+}(a q)$	+	$\mathrm{CO}_{3}{ }^{2-}(a q)$
Initial	-		0.13		0
Change	-		+ S		+S
Equilibrium	-		$0.13+\mathrm{S}$		S

This calculation may be simplified by assuming S is small and setting $0.13+\mathrm{S}=0.13$.

$$
\begin{aligned}
& K_{\mathrm{sp}}=5.4 \times 10^{-10}=(0.13) \mathrm{S} \\
& \mathrm{~S}=4.1538 \times 10^{-9}=4.2 \times 10^{-9} \mathbf{M}
\end{aligned}
$$

19.75 The equation and ion-product expression for BaCrO_{4} is:

$$
\mathrm{BaCrO}_{4}(s) \leftrightarrows \mathrm{Ba}^{2+}(a q)+\mathrm{CrO}_{4}^{2-}(a q) \quad K_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]
$$

a) The solubility, S , in pure water equals $\left[\mathrm{Ba}^{2+}\right]$ and $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$

$$
\begin{aligned}
& K_{\mathrm{sp}}=2.1 \times 10^{-10}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]=\mathrm{S}^{2} \\
& \mathrm{~S}=1.4491 \times 10^{-5}=\mathbf{1 . 4} \times \mathbf{1 0}^{-5} \mathbf{M}
\end{aligned}
$$

b) In $1.5 \times 10^{-3} \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}$, the initial concentration of $\mathrm{CrO}_{4}{ }^{2-}$ is $1.5 \times 10^{-3} \mathrm{M}$.

Equilibrium $\left[\mathrm{Ba}^{2+}\right]=\mathrm{S}$ and equilibrium $\left[\mathrm{CrO}_{4}{ }^{2-}\right]=1.5 \times 10^{-3}+\mathrm{S}$ where S is the solubility of BaCrO_{4}.

$$
K_{\mathrm{sp}}=2.1 \times 10^{-10}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]=\mathrm{S}\left(1.5 \times 10^{-3}+\mathrm{S}\right)
$$

Assume S is small so $1.5 \times 10^{-3}+\mathrm{S}=1.5 \times 10^{-3}$

$$
\begin{aligned}
& K_{\mathrm{sp}}=2.1 \times 10^{-10}=\mathrm{S}\left(1.5 \times 10^{-3}\right) \\
& \mathrm{S}=\mathbf{1 . 4 \times 1 0 ^ { - 7 }} \boldsymbol{M}
\end{aligned}
$$

19.76 The equilibrium is: $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}(s) \leftrightarrows \mathrm{Ca}^{2+}(a q)+2 \mathrm{IO}_{3}{ }^{-}(a q)$. From the Appendix, $K_{\text {sp }}\left(\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}\right)=7.1 \times 10^{-7}$.
a) Write a reaction table that reflects an initial concentration of $\mathrm{Ca}^{2+}=0.060 \mathrm{M}$. In this case, Ca^{2+} is the common ion.

Concentration (M)	$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}(s)$	\leftrightarrows	$\mathrm{Ca}^{2+}(a q)$	+
Initial	-	0.060	0	
Change	-	+S	+2 S	
Cla				
Equilibrium	-	$0.060+\mathrm{S}$	2 S	

Assume that $0.060+\mathrm{S} \approx 0.060$ because the amount of compound that dissolves will be negligible in comparison to 0.060 M .

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{IO}_{3}{ }^{-}\right]^{2}=(0.060)(2 \mathrm{~S})^{2}=7.1 \times 10^{-7} \\
& \mathrm{~S}=1.71998 \times 10^{-3}=1.7 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

Check assumption: $\left(1.71998 \times 10^{-3} M\right) /(0.060 M) \times 100 \%=2.9 \%<5 \%$, so the assumption is good.
S represents both the molar solubility of Ca^{2+} and $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$, so the molar solubility of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ is $\mathbf{1 . 7} \times 10^{-3} \mathbf{M}$.
b) Write a reaction table that reflects an initial concentration of $\mathrm{IO}_{3}{ }^{-}=0.060 \mathrm{M}^{\left(\mathrm{IO}_{3}{ }^{-} \text {is the common ion. }\right.}$

Concentration (M)	$\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}(s)$	\leftrightarrows	$\mathrm{Ca}^{2+}(a q)$	+
Initial	-	0	$2 \mathrm{IO}_{3}^{-}(a q)$	
Change	-		+S	0.060
Equilibrium	-		S	+2 S
			$0.060+2 \mathrm{~S}$	

The equilibrium concentration of Ca^{2+} is S , and the $\mathrm{IO}_{3}{ }^{-}$concentration is $0.060+2 \mathrm{~S}$.

$$
\text { Assume that } 0.060+2 \mathrm{~S} \approx 0.060
$$

$$
\begin{aligned}
& K_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}=(\mathrm{S})(0.060)^{2}=7.1 \times 10^{-7} \\
& \mathrm{~S}=1.97222 \times 10^{-4}=2.0 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

Check assumption: $\left(1.97222 \times 10^{-4} M\right) /(0.060 M) \times 100 \%=0.3 \%<5 \%$, so the assumption is good. S represents both the molar solubility of Ca^{2+} and $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$, so the molar solubility of $\mathrm{Ca}\left(\mathrm{IO}_{3}\right)_{2}$ is $\mathbf{2 . 0} \times 10^{-4} \mathbf{M}$.
19.77 The equilibrium is: $\mathrm{Ag}_{2} \mathrm{SO}_{4}(s) \leftrightarrows 2 \mathrm{Ag}^{+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)$ From the Appendix, $K_{\text {sp }}\left(\mathrm{Ag}_{2} \mathrm{SO}_{4}\right)=1.5 \times 10^{-5}$. a) Write a reaction table that reflects an initial concentration of $\mathrm{Ag}^{+}=0.22 \mathrm{M}$. In this case, Ag^{+}is the common ion.

Concentration (M)	$\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})$	\leftrightarrows	$2 \mathrm{Ag}^{+}(a q)$	+	$\mathrm{SO}_{4}{ }^{2-}(a q)$
Initial	-	0.22	0		
Change	-	+2 S	+S		
Equilibrium	-	$0.22+2 \mathrm{~S}$	S		

Assume that $0.22+2 \mathrm{~S} \approx 0.22$ because the amount of compound that dissolves will be negligible in comparison to 0.22 M.

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}\right]=(0.22)^{2}(\mathrm{~S})=1.5 \times 10^{-5} \\
& \mathrm{~S}=3.099175 \times 10^{-4}=3.1 \times 10^{-4}
\end{aligned}
$$

Check assumption: $\left(3.099175 \times 10^{-4} M\right) /(0.22 M) \times 100 \%=1.4 \%<5 \%$, so the assumption is good. S represents both the molar solubility of $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})$, so the molar solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ is $3.1 \times 10^{-4} \mathrm{M}$.
b) Write a reaction table that reflects an initial concentration of $\mathrm{SO}_{4}{ }^{2-}=0.22 \mathrm{M}$. In this case, $\mathrm{SO}_{4}{ }^{2-}$ is the common ion.

Concentration (M)	$\mathrm{Ag}_{2} \mathrm{SO}_{4}(s)$	\leftrightarrows	$2 \mathrm{Ag}^{+}(a q)$	+	$\mathrm{SO}_{4}{ }^{2-}(a q)$
Initial	-	0	0.22		
Change	-	+2 S		+S	
Equilibrium	-	2 S	$0.22+\mathrm{S}$		

The equilibrium concentration of Ag^{+}is 2 S , and the $\mathrm{SO}_{4}{ }^{2-}$ concentration is $0.22+\mathrm{S}$.
Assume that $0.22+\mathrm{S} \approx 0.22$.
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right]=(2 \mathrm{~S})^{2}(0.22)=1.5 \times 10^{-5}$.
$\mathrm{S}=4.1286 \times 10^{-3}=4.1 \times 10^{-3}$
Check assumption: $\left(4.1286 \times 10^{-3} M\right) /(0.22 M) \times 100 \%=1.9 \%<5 \%$, so the assumption is good.
S represents the molar solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$, so the molar solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is $\mathbf{4 . 1} \mathbf{x 1 0} \mathbf{1 0}^{-3} \mathbf{M}$.
19.78 The larger the $K_{\text {sp }}$, the larger the molar solubility if the number of ions are equal.
a) $\mathbf{M g}(\mathbf{O H})_{2}$ with $K_{\text {sp }}=6.3 \times 10^{-10}$ has higher molar solubility than $\mathrm{Ni}(\mathrm{OH})_{2}$ with $K_{\text {sp }}=6 \times 10^{-16}$.
b) PbS with $K_{\text {sp }}=3 \times 10^{-25}$ has higher molar solubility than CuS with $K_{\text {sp }}=8 \times 10^{-34}$.
c) $\mathbf{A g}_{2} \mathbf{S O}_{4}$ with $K_{\text {sp }}=1.5 \times 10^{-5}$ has higher molar solubility than MgF_{2} with $K_{\text {sp }}=7.4 \times 10^{-9}$.
19.79 The larger the K_{sp}, the larger the molar solubility if the number of ions are equal.
a) SrSO_{4} with $K_{\text {sp }}=3.2 \times 10^{-7}$ has higher molar solubility than BaCrO_{4} with $K_{\text {sp }}=2.1 \times 10^{-10}$.
b) CaCO_{3} with $K_{\mathrm{sp}}=3.3 \times 10^{-9}$ has higher molar solubility than CuCO_{3} with $K_{\mathrm{sp}}=3 \times 10^{-12}$.
c) $\mathbf{B a}\left(\mathbf{I O}_{3}\right)_{2}$ with $K_{\text {sp }}=1.5 \times 10^{-9}$ has higher molar solubility than $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ with $K_{\text {sp }}=2.6 \times 10^{-12}$.
19.80 The larger the $K_{\text {sp }}$, the more water-soluble the compound if the number of ions are equal.
a) CaSO_{4} with $K_{\text {sp }}=2.4 \times 10^{-5}$ is more water-soluble than BaSO_{4} with $K_{\text {sp }}=1.1 \times 10^{-10}$.
b) $\mathbf{M g}_{3}\left(\mathbf{P O}_{4}\right)_{2}$ with $K_{\text {sp }}=5.2 \times 10^{-24}$ is more water soluble than $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ with $K_{\text {sp }}=1.2 \times 10^{-29}$.
c) $\mathbf{P b S O}_{4}$ with $K_{\text {sp }}=1.6 \times 10^{-8}$ is more water soluble than AgCl with $K_{\text {sp }}=1.8 \times 10^{-10}$.
19.81 The larger the K_{sp}, the more water-soluble the compound if the number of ions are equal.
a) $\mathbf{C a}\left(\mathbf{I O}_{3}\right)_{2}$ with $K_{\text {sp }}=7.1 \times 10^{-7}$ is more water-soluble than $\mathrm{Mn}(\mathrm{OH})_{2}$ with $K_{\text {sp }}=1.6 \times 10^{-13}$.
b) SrCO_{3} with $K_{\text {sp }}=5.4 \times 10^{-10}$ is more water soluble than CdS with $K_{\text {sp }}=1.0 \times 10^{-24}$.
c) $\mathbf{C u I}$ with $K_{\text {sp }}=1 \times 10^{-12}$ is more water soluble than AgCN with $K_{\text {sp }}=2.2 \times 10^{-16}$.
$19.82 \quad$ a) $\mathrm{AgCl}(s) \leftrightarrows \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
The chloride ion is the anion of a strong acid, so it does not react with $\mathrm{H}_{3} \mathrm{O}^{+}$. The solubility is not affected by pH .
b) $\mathrm{SrCO}_{3}(s) \leftrightarrows \mathrm{Sr}^{2+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$

The strontium ion is the cation of a strong base, so pH will not affect its solubility.
The carbonate ion is the conjugate base of a weak acid and will act as a base:

$$
\begin{aligned}
& \mathrm{CO}_{3}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{HCO}_{3}{ }^{-}(a q)+\mathrm{OH}^{-}(a q) \\
& \text { and } \mathrm{HCO}_{3}{ }^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}^{-}(a q)
\end{aligned}
$$

The $\mathrm{H}_{2} \mathrm{CO}_{3}$ will decompose to $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(l)$. The gas will escape and further shift the equilibrium. Changes in pH will change the $\left[\mathrm{CO}_{3}{ }^{2-}\right]$, so the solubility of SrCO_{3} will increase with decreasing pH . Solubility increases with addition of $\mathbf{H}_{3} \mathbf{O}^{+}$(decreasing $\mathbf{p H}$). A decrease in pH will decrease $\left[\mathrm{OH}^{-}\right]$, causing the base equilibrium to shift to the right which decreases $\left[\mathrm{CO}_{3}{ }^{2-}\right]$, causing the solubility equilibrium to shift to the right, dissolving more solid.
a) $\mathrm{CuBr}(s) \leftrightarrows \mathrm{Cu}^{+}(a q)+\mathrm{Br}^{-}(a q)$

The bromide ion is the anion of a strong acid, so it does not react with $\mathrm{H}_{3} \mathrm{O}^{+}$. At high pH the copper ion may precipitate.
$\mathrm{Cu}^{+}(a q)+\mathrm{OH}^{-}(a q) \leftrightarrows \mathrm{CuOH}(s)$
b) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) \leftrightarrows 3 \mathrm{Ca}^{2+}(a q)+2 \mathrm{PO}_{4}{ }^{3-}(a q)$

The calcium ion is the cation of a strong base so pH will not affect its solubility.
$\mathrm{PO}_{4}{ }^{3-}$ is the anion of a weak acid, so the following equilibria would be present.
$\mathrm{PO}_{4}{ }^{3-}(a q)+\mathrm{n} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{\mathrm{n}} \mathrm{PO}_{4}{ }^{(3-\mathrm{n})-}(a q)+\mathrm{n} \mathrm{OH}^{-}(a q)(\mathrm{n}=1,2,3)$

Since these involve OH^{-}, the solubility will change with changing pH . Solubility increases with addition of $\mathbf{H}_{3} \mathbf{O}^{+}$(decreasing $\mathbf{p H}$). A decrease in pH will decrease $\left[\mathrm{OH}^{-}\right]$, causing the base equilibrium to shift to the right which decreases $\left[\mathrm{PO}_{4}{ }^{3-}\right.$], causing the solubility equilibrium to shift to the right, dissolving more solid.
a) $\mathrm{Fe}(\mathrm{OH})_{2}(s) \leftrightarrows \mathrm{Fe}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$

The hydroxide ion reacts with added $\mathrm{H}_{3} \mathrm{O}^{+}$:

$$
\mathrm{OH}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)
$$

The added $\mathrm{H}_{3} \mathrm{O}^{+}$consumes the OH^{-}, driving the equilibrium toward the right to dissolve more $\mathrm{Fe}(\mathrm{OH})_{2}$.
Solubility increases with addition of $\mathbf{H}_{3} \mathbf{O}^{+}$(decreasing $\mathbf{p H}$).
b) $\mathrm{CuS}(s)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{Cu}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q)$

Both HS^{-}and OH^{-}are anions of weak acids, so both ions react with added $\mathrm{H}_{3} \mathrm{O}^{+}$. Solubility increases with addition of $\mathrm{H}_{3} \mathrm{O}^{+}$(decreasing pH).
19.85 a) $\mathrm{PbI}_{2}(s) \leftrightarrows \mathrm{Pb}^{2+}(a q)+2 \mathrm{I}^{-}(a q)$.

The iodide ion is the anion of a strong acid, so it does not react with $\mathrm{H}_{3} \mathrm{O}^{+}$. Thus, the solubility does not increase in acid solution. At high pH the lead ion may precipitate.
b) $\mathrm{Hg}_{2}(\mathrm{CN})_{2}(s) \leftrightarrows \mathrm{Hg}_{2}{ }^{2+}(a q)+2 \mathrm{CN}^{-}(a q)$

At high pH the mercury(I) ion may precipitate.
CN^{-}is the anion of a weak acid, so the equilibrium would be
$\mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)$
Since this involves OH^{-}, it would shift with changing pH . Solubility increases with addition of $\mathbf{H}_{3} \mathbf{O}^{+}$
(decreasing $\mathbf{p H}$).
19.86 The equilibrium is: $\mathrm{Cu}(\mathrm{OH})_{2}(s) \leftrightarrows \mathrm{Cu}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$. The ion-product expression is $K_{\text {sp }}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$ and, from the Appendix, $K_{\text {sp }}$ equals 2.2×10^{-20}.
To decide if a precipitate will form, calculate Q_{sp} with the given quantities and compare it to K_{sp}.
$\left[\mathrm{Cu}^{2+}\right]=\left(\frac{1.0 \times 10^{-3} \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cu}}{}{ }^{2+}{ }_{1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}}\right)=1.0 \times 10^{-3} \mathrm{MCu}^{2+}$
$\left[\mathrm{OH}^{-}\right]=\left(\frac{0.075 \mathrm{~g} \mathrm{KOH}}{1.0 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{KOH}}{56.11 \mathrm{~g} \mathrm{KOH}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{KOH}}\right)=1.33666 \times 10^{-3} \mathrm{M} \mathrm{OH}^{-}$(unrounded)
$Q_{\text {sp }}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left(1.0 \times 10^{-3}\right)\left(1.33666 \times 10^{-3}\right)^{2}=1.7866599 \times 10^{-9}$ (unrounded)
$Q_{\text {sp }}$ is greater than $K_{\text {sp }}\left(1.8 \times 10^{-9}>2.2 \times 10^{-20}\right)$, so $\mathbf{C u}(\mathbf{O H})_{2}$ will precipitate.
19.87 The ion-product expression for PbCl_{2} is $K_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$ and, from the Appendix, $K_{\text {sp }}$ equals 1.7×10^{-5}.

To decide if a precipitate will form, calculate $Q_{\text {sp }}$ with the given quantities and compare it to $K_{\text {sp }}$.
$\left[\mathrm{Pb}^{2+}\right]=\left(\frac{0.12 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~Pb}}{}{ }^{2+}\right)\left(1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}\right)=0.12 \mathrm{M} \mathrm{Pb}^{2+}$
$\left[\mathrm{Cl}^{-}\right]=\left(\frac{3.5 \mathrm{mg} \mathrm{NaCl}}{0.250 \mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.45 \mathrm{~g} \mathrm{NaCl}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cl}}{}{ }^{-}\right)=2.3952 \times 10^{-4} \mathrm{M} \mathrm{Cl}^{-}$(unrounded)
$Q_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=(0.12)\left(2.3952 \times 10^{-4}\right)^{2}=6.8843796 \times 10^{-9}$ (unrounded)
$Q_{\text {sp }}$ is smaller than $K_{\text {sp }}\left(6.9 \times 10^{-9}<1.7 \times 10^{-5}\right)$, so $\mathbf{P b C l}_{2}$ will not precipitate.
19.88 The equilibrium is: $\mathrm{Ba}\left(\mathrm{IO}_{3}\right)_{2}(s) \leftrightarrows \mathrm{Ba}^{2+}(a q)+2 \mathrm{IO}_{3}^{-}(a q)$. The ion-product expression for is $K_{\text {sp }}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}$ and, from the Appendix, $K_{\text {sp }}$ equals 1.5×10^{-9}.
To decide if a precipitate will form, calculate Q_{sp} with the given quantities and compare it to K_{sp}.

$$
\left.\begin{array}{rl}
{\left[\mathrm{Ba}^{2+}\right]=} & \left(\frac{7.5 \mathrm{mg} \mathrm{BaCl}}{2}\right. \\
500 \mathrm{~mL}
\end{array}\right)\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{BaCl}_{2}}{208.2 \mathrm{~g} \mathrm{BaCl}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ba}^{2+}}{1 \mathrm{~mol} \mathrm{BaCl}_{2}}\right)
$$

$\left[\mathrm{IO}_{3}^{-}\right]=\left(\frac{0.023 \mathrm{~mol} \mathrm{NaIO}_{3}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{IO}_{3}^{-}}{1 \mathrm{~mol} \mathrm{NaIO}} 33\right)=0.023 \mathrm{M} \mathrm{IO}_{3}^{-}$
$Q_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}=\left(7.204611 \times 10^{-5}\right)(0.023)^{2}=3.81124 \times 10^{-8}$ (unrounded)
Since $Q_{\text {sp }}>K_{\text {sp }}\left(3.8 \times 10^{-8}>1.5 \times 10^{-9}\right), \mathbf{B a}\left(\mathbf{I O}_{3}\right)_{2}$ will precipitate.
19.89 The ion-product expression for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]$ and, from the Appendix, $K_{\text {sp }}$ equals 2.6×10^{-12}. To decide if a precipitate will form, calculate Q_{sp} with the given quantities and compare it to K_{sp}.
$\left[\mathrm{Ag}^{+}\right]=\left(\frac{2.7 \times 10^{-5} \mathrm{~g} \mathrm{AgNO}_{3}}{15.0 \mathrm{~mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{AgNO}_{3}}{169.9 \mathrm{~g} \mathrm{AgNO}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ag}^{+}}{1 \mathrm{~mol} \mathrm{AgNO}_{3}}\right)=1.0594467 \times 10^{-5} \mathrm{M} \mathrm{Ag}^{+}$(unrounded)
$\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\left(\frac{4.0 \times 10^{-4} \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CrO}_{4}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CrO}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CrO}_{4}}\right)=4.0 \times 10^{-4} \mathrm{M} \mathrm{IO}_{3}{ }^{-}$
$Q_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{IO}_{3}{ }^{-}\right]^{2}=\left(1.0594467 \times 10^{-5}\right)^{2}\left(4.0 \times 10^{-4}\right)=4.4897 \times 10^{-14}$ (unrounded)
Since $Q_{\text {sp }}<K_{\text {sp }}\left(4.5 \times 10^{-14}<2.6 \times 10^{-12}\right), \mathrm{Ag}_{2} \mathbf{C r O}_{4}$ will not precipitate.
19.90

Original moles of $\mathrm{Ca}^{2+}=\left(\frac{9.7 \times 10^{-5} \mathrm{~g} \mathrm{Ca}^{2+}}{\mathrm{mL}}\right)(104 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{Ca}^{2+}}{40.08 \mathrm{~g} \mathrm{Ca}^{2+}}\right)=2.5170 \times 10^{-4} \mathrm{~mol} \mathrm{Ca}^{2+}$
Moles of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ added $=\left(\frac{0.1550 \mathrm{~mol} \mathrm{Na}}{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(100.0 \mathrm{~mL})\left(\frac{1 \mathrm{molC}_{2} \mathrm{O}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}\right)=0.01550 \mathrm{~mol} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
The Ca^{2+} is limiting leaving 0 M , and after the reactions there will be $(0.01550-0.00025170) \mathrm{mol}$ of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ left.
$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=\left(\frac{(0.01550-0.00025170) \mathrm{mol} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}}{(104+100.0) \mathrm{mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=0.0747466 \mathrm{M} \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (unrounded)

| Concentration (M) | $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(s)$ | \leftrightarrows | $\mathrm{Ca}^{2+}(a q)$ | + | $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Initial | - | | + | $\mathrm{H}_{2} \mathrm{O}(l)$ | |
| Change | - | | +S | 0.0747466 | - |
| Equilibrium | - | S | +S | - | |

Assume that $0.0747466+\mathrm{S} \approx 0.0747466$ because the amount of compound that dissolves will be negligible in comparison to 0.0747466 M . The K_{sp} from the Appendix is: 2.3×10^{-9}

$$
\begin{aligned}
& K_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]=(\mathrm{S})(0.0747466)=2.3 \times 10^{-9} \\
& \mathrm{~S}=3.07706 \times 10^{-8}=3.1 \times 10^{-8}
\end{aligned}
$$

Check assumption: $\left(3.07706 \times 10^{-8} M\right) /(0.0747466 M) \times 100 \%=0.00004 \%<5 \%$, so the assumption is good. S represents both the molar solubility of Ca^{2+} and $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(s)$, so the concentration of Ca^{2+} is $3.1 \times 10^{-8} \mathbf{M}$.
19.91 a) $\mathbf{F e}(\mathbf{O H})_{3}$ will precipitate first because its $K_{\text {sp }}\left(1.6 \times 10^{-39}\right)$ is smaller than the $K_{\text {sp }}$ for $\mathrm{Cd}(\mathrm{OH})_{2}$ at 7.2×10^{-15}. The precipitation reactions are:

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s) & K_{\text {sp }}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3} \\
\mathrm{Cd}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cd}(\mathrm{OH})_{2}(s) & K_{\text {sp }}=\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}
\end{array}
$$

The concentrations of Fe^{3+} and Cd^{2+} in the mixed solution are found from $M_{\text {conc }} \mathrm{V}_{\text {conc }}=M_{\text {dil }} \mathrm{V}_{\text {dil }}$
$\left[\mathrm{Fe}^{3+}\right]=[(0.50 \mathrm{M})(50.0 \mathrm{~mL})] /[(50.0+125) \mathrm{mL}]=0.142857 \mathrm{M} \mathrm{Fe}^{3+}$ (unrounded)
$\left[\mathrm{Cd}^{2+}\right]=[(0.25 M)(125 \mathrm{~mL})] /[(50.0+125) \mathrm{mL}]=0.178571 \mathrm{M} \mathrm{Cd}^{2+}$ (unrounded)
The hydroxide ion concentration required to precipitate the metal ions comes from the metal ion concentrations and the $K_{\text {sp }}$.
$\left[\mathrm{OH}^{-}\right]_{\mathrm{Fe}}=\sqrt[3]{\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Fe}^{3+}\right]}}=\sqrt[3]{\frac{1.6 \times 10^{-39}}{[0.142857]}}=2.237 \times 10^{-13}=2.2 \times 10^{-13} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]_{\mathrm{Cd}}=\sqrt{\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{Cd}^{2+}\right]}}=\sqrt{\frac{7.2 \times 10^{-15}}{[0.178571]}}=2.0079864 \times 10^{-7}=2.0 \times 10^{-7} \mathrm{M}$
A lower hydroxide ion concentration is required to precipitate the Fe^{3+}.
b) The two ions are separated by adding just enough NaOH to precipitate the iron(III) hydroxide, but precipitating no more than 0.01% of the cadmium. The Fe^{3+} is found in the solid precipitate while the Cd^{2+} remains in the solution.
c) A hydroxide concentration between the values calculated in part (a) will work. The best separation would be when $Q_{\mathrm{sp}}=K_{\mathrm{sp}}$ for $\mathrm{Cd}(\mathrm{OH})_{2}$. This occurs when $\left[\mathrm{OH}^{-}\right]=\mathbf{2 . 0} \times \mathbf{1 0}^{-\mathbf{7}} \boldsymbol{M}$.
19.92 The metal ion can act as a Lewis acid and bond to one or more negatively charged ligands. If the total negative charge of the ligands exceeds the positive charge on the metal ion, the complex will be negative.

$$
\begin{aligned}
& \mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}(a q)+\mathrm{I}^{-}(a q) \leftrightarrows \mathrm{CdI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{CdI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}^{+}(a q)+\mathrm{I}^{-}(a q) \leftrightarrows \mathrm{CdI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{CdI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(a q)+\mathrm{I}^{-}(a q) \leftrightarrows \mathrm{CdI}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{CdI}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}(a q)+\mathrm{I}^{-}(a q) \leftrightarrows \mathrm{CdI}_{4}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
K_{\mathrm{fl}}=\frac{\left[\mathrm{CdI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}^{+}\right]}{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}\right]\left[\mathrm{I}^{-}\right]}
$$

$$
K_{\mathrm{f} 2}=\frac{\left[\mathrm{CdI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]}{\left[\mathrm{CdI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}^{+}\right]\left[\mathrm{I}^{-}\right]}
$$

$$
K_{\mathrm{f} 3}=\frac{\left[\mathrm{CdI}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}\right]}{\left[\mathrm{CdI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{I}^{-}\right]}
$$

$$
K_{\mathrm{f} 4}=\frac{\left[\mathrm{CdI}_{4}{ }^{2-}\right]}{\left[\mathrm{CdI}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}\right]\left[\mathrm{I}^{-}\right]}
$$

Overall: $\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)^{2+}{ }_{4}(a q)+4 \mathrm{I}^{-}(a q) \leftrightarrows \mathrm{CdI}_{4}{ }^{2-}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)$

$$
K_{\mathrm{f}}=\frac{\left[\mathrm{CdI}_{4}{ }^{2-}\right]}{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}\right]\left[\mathrm{I}^{-}\right]^{4}}
$$

$$
\begin{aligned}
& K_{\mathrm{f}}=\frac{\left[\mathrm{CdI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}^{+}\right]}{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}\right]\left[\mathrm{I}^{-}\right]} \times \frac{\left[\mathrm{CdI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]}{\left[\operatorname{CdI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}^{+}\right]\left[\mathrm{I}^{-}\right]} \times \frac{\left[\mathrm{CdI}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}\right]}{\left[\mathrm{CdI}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{I}^{-}\right]} \times \frac{\left[\mathrm{CdI}_{4}^{2-}\right]}{\left[\mathrm{CdI}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)^{-}\right]\left[\mathrm{I}^{-}\right]} \\
& \quad=K_{\mathrm{f} 1} \times K_{\mathrm{f} 2} \times K_{\mathrm{f} 3} \times K_{\mathrm{f} 4}
\end{aligned}
$$

19.94 In the context of this equilibrium only, the increased solubility with added OH^{-}appears to be a violation of Le Châtelier's Principle. Adding OH^{-}should cause the equilibrium to shift towards the left, decreasing the solubility of PbS . Before accepting this conclusion, other possible equilibria must be considered. Lead is a metal ion and hydroxide ion is a ligand, so it is possible that a complex ion forms between the lead ion and hydroxide ion:

$$
\mathrm{Pb}^{2+}(a q)+\mathrm{nOH}^{-}(a q) \leftrightarrows \mathrm{Pb}(\mathrm{OH})_{\mathrm{n}}{ }^{2-\mathrm{n}}(a q)
$$

This decreases the concentration of Pb^{2+}, shifting the solubility equilibrium to the right to dissolve more PbS .
19.95 In many cases, a hydrated metal complex (e.g., $\mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$) will exchange ligands when placed in a solution of another ligand (e.g., CN^{-}),

$$
\mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \leftrightarrows \mathrm{Hg}(\mathrm{CN})_{4}{ }^{2-}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)
$$

Note that both sides of the equation have the same "overall" charge of -2 . The mercury complex changes from +2 to -2 because water is a neutral molecular ligand, whereas cyanide is an ionic ligand.
$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \leftrightarrows \mathrm{Zn}(\mathrm{CN})_{4}{ }^{2-}{ }_{(a q)}+4 \mathrm{H}_{2} \mathrm{O}(l)$
19.97 The two water ligands are replaced by two thiosulfate ion ligands. The +1 charge from the silver ion plus -4 charge from the two thiosulfate ions gives a net charge on the complex ion of -3 .

$$
\mathrm{Ag}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}^{+}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}(a q) \leftrightarrows \mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}^{3-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

19.98
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}(a q)+6 \mathrm{~F}^{-}(a q) \leftrightarrows \mathrm{AlF}_{6}{ }^{3-}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l)$
$19.99 \mathrm{Ag}^{+}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \leftrightarrows \quad \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}(a q)$
The initial concentrations may be determined from $M_{\text {con }} V_{\text {con }}=M_{\text {dil }} V_{\text {dil }}$
$\left[\mathrm{Ag}^{+}\right]=(0.044 \mathrm{M})(25.0 \mathrm{~mL}) /((25.0+25.0) \mathrm{mL})=0.022 \mathrm{M} \mathrm{Ag}^{+}$
$\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right]=(0.57 \mathrm{M})(25.0 \mathrm{~mL}) /((25.0+25.0) \mathrm{mL})=0.285 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ (unrounded)
The reaction gives:
$\begin{array}{lcccc}\text { Concentration }(M) & \mathrm{Ag}^{+}(a q) & + & 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \rightarrow & \mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}(a q) \\ \text { Initial } & 0.022 & 0.285 & 0 & \\ \text { Change } & -0.022 & -2(0.022) & +0.022 & 1: 2: 1 \text { mole ratio }\end{array}$
Equilibrium
To reach equilibrium:
Concentration $(M) \quad \mathrm{Ag}^{+}(a q) \quad+\quad 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(a q) \leftrightarrows \mathrm{Ag}^{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}(a q)$
Initial $00.241 \quad 0.022$
Change $+\mathrm{x} \quad+2 \mathrm{x} \quad-\mathrm{x}$
Equilibrium $+\mathrm{x} \quad 0.241+2 \mathrm{x} \quad 0.022-\mathrm{x}$
K_{f} is large, so $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}\right] \approx 0.022 \mathrm{M}$ and $\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right]_{\text {equil }} \approx 0.241 \mathrm{M}$ (unrounded)
$K_{\mathrm{f}}=\frac{\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}{ }^{3-}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right]^{2}}=\frac{[0.022]}{[\mathrm{x}][0.241]^{2}}=4.7 \times 10^{13}$
$\mathrm{x}=\left[\mathrm{Ag}^{+}\right]=8.0591778 \times 10^{-15}=\mathbf{8 . 1} \times \mathbf{1 0}^{\mathbf{- 1 5}} \boldsymbol{M}$
19.100 The reaction between SCN^{-}and Fe^{3+} produces the red complex FeSCN^{2+}. One can assume from the much larger concentration of SCN^{-}and large K_{f} that all of the Fe^{3+} ions react to form the complex. Calculate the initial concentrations of SCN^{-}and Fe^{3+} and write a reaction table in which x is the concentration of FeSCN^{2+} formed.

$$
\begin{aligned}
& {\left[\mathrm{Fe}^{3+}\right]_{\text {initial }}=\frac{\left(0.0015 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right)(0.50 \mathrm{~L})}{((0.50+0.50) \mathrm{L})}\left(\frac{1 \mathrm{~mol} \mathrm{Fe}^{3+}}{1 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}}\right)=0.00075 \mathrm{M} \mathrm{Fe}^{3+}} \\
& {\left[\mathrm{SCN}^{-}\right]_{\text {initial }}=\frac{(0.20 \mathrm{M} \mathrm{KSCN})(0.50 \mathrm{~L})}{((0.50+0.50) \mathrm{L})}\left(\frac{1 \mathrm{~mol} \mathrm{SCN}^{-}}{1 \mathrm{~mol} \mathrm{KSCN}}\right)=0.10 \mathrm{M} \mathrm{SCN}^{-}}
\end{aligned}
$$

Set up a reaction table:

Concentration (M)	$\mathrm{Fe}^{3+}(a q)$	+	$\mathrm{SCN}^{-}(a q)$	\leftrightarrows	FeSCN^{2+}
Initial	7.5×10^{-4}	0.10	0		
Change	-x	-x		+x	
Equilibrium	$7.5 \times 10^{-4}-\mathrm{x}$	$0.10-\mathrm{x}$	x		

It is reasonable to assume that x is much less than 0.10 , so $0.10-\mathrm{x} \approx 0.10$. However, it is not reasonable to assume that $0.00075-\mathrm{x} \approx 0.00075$, because x may be significant in relation to such a small number. The equilibrium expression and the constant, from the problem, are:

$$
\begin{aligned}
& K_{\mathrm{f}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}=\frac{[\mathrm{x}]}{\left[7.5 \times 10^{-4}-\mathrm{x}\right][0.10-\mathrm{x}]}=\frac{[\mathrm{x}]}{\left[7.5 \times 10^{-4}-\mathrm{x}\right][0.10]}=8.9 \times 10^{2} \\
& \mathrm{x}=\left(7.5 \times 10^{-4}-\mathrm{x}\right)(0.10)\left(8.9 \times 10^{2}\right)=\left(7.5 \times 10^{-4}-\mathrm{x}\right)(89) \\
& \mathrm{x}=6.675 \times 10^{-2}-89 \times(\text { unrounded }) \\
& \mathrm{x}=7.416667 \times 10^{-4} \\
& \text { From the reaction table, }\left[\mathrm{Fe}^{3+}\right]_{\mathrm{eq}}=7.5 \times 10^{-4}-\mathrm{x} . \text { Therefore, }\left[\mathrm{Fe}^{3+}\right]_{\mathrm{eq}}=7.5 \times 10^{-4}-7.416667 \times 10^{-4} \\
& \quad=8.33333 \times 10^{-6}=\mathbf{1} \times 10^{-5} \mathbf{M} .
\end{aligned}
$$

19.101 Write the ion-product equilibrium reaction and the complex-ion equilibrium reaction. Sum the two reactions to yield an overall reaction; multiply the two constants to obtain $K_{\text {overall }}$. Write a reaction table where
$\mathrm{S}=\left[\mathrm{Cr}(\mathrm{OH})_{3}\right]_{\text {dissolved }}=\left[\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}\right]$.
Solubility-Product: $\quad \mathrm{Cr}(\mathrm{OH})_{3}(s) \leftrightarrows \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(a q) \quad K_{\text {sp }}=6.3 \times 10^{-31}$
Complex-Ion $\mathrm{Cr}^{3+}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{f}}=8.0 \times 10^{29}$
Overall: $\quad \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{OH}^{-}(a q) \leftrightarrows \mathrm{Cr}(\mathrm{OH})_{4}^{-}(a q) \quad K=K_{\text {sp }} K_{\mathrm{f}}=0.504$ (unrounded)

At pH 13.0 , the pOH is 1.0 and $\left[\mathrm{OH}^{-}\right]=10^{-1.0}=0.1 \mathrm{M}$.
Reaction table:
$\begin{array}{lll}\text { Concentration }(M) & \mathrm{Cr}(\mathrm{OH})_{3}(s)+\quad \mathrm{OH}^{-}(a q) \leftrightarrows & \mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}(a q) \\ \text { Initial }\end{array}$
Initial $\quad 0.1 \quad 0$
Change $\quad-\mathrm{S} \quad+\mathrm{S}$
Equilibrium
$0.1-\mathrm{S} \quad \mathrm{S}$
Assume that $0.1-\mathrm{S} \approx 0.1$.
$K_{\text {overall }}=\frac{\left[\mathrm{Cr}(\mathrm{OH})_{4}^{-}\right]}{\left[\mathrm{OH}^{-}\right]}=\frac{[\mathrm{S}]}{[0.1]}=0.504$
$\mathrm{S}=\left[\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}\right]=0.0504=\mathbf{0 . 0 5} \mathbf{~ M}$
19.102 Write the ion-product equilibrium reaction and the complex-ion equilibrium reaction. Sum the two reactions to yield an overall reaction; multiply the two constants to obtain $K_{\text {overall }}$. Write a reaction table where
$\mathrm{S}=[\mathrm{AgII}]_{\text {dissolved }}=\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$.
Solubility-product: $\quad \operatorname{AgI}(s) \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(a q) \quad K_{\text {sp }}=8.3 \times 10^{-17}$
Complex-ion: $\quad \underline{\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }_{2}^{+}(a q)} \quad K_{\mathrm{f}}=1.7 \times 10^{7}$
Overall: $\quad \mathrm{AgI}(s)+2 \mathrm{NH}_{3}(a q) \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(a q)+\mathrm{I}^{-}(a q)$
$K_{\text {overall }}=K_{\text {sp }} \times K_{\mathrm{f}}=\left(8.3 \times 10^{-17}\right)\left(1.7 \times 10^{7}\right)=1.411 \times 10^{-9}$ (unrounded)
Reaction table:
$\begin{array}{lllll}\text { Concentration }(M) & \mathrm{AgI}(s) \\ \text { Initial } & - & 2 \mathrm{NH}_{3}(a q) & \leftrightarrows & \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(a q)+\mathrm{I}^{-}(a q) \\ 2.5\end{array}$

Change	-	-2 S	+S	+S
Equilibrium	-	$2.5-2 \mathrm{~S}$	S	S

Assume that $2.5-2 \mathrm{~S} \approx 2.5$ because $K_{\text {overall }}$ is so small.
$K_{\text {overall }}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]\left[\mathrm{I}^{-}\right]}{\left[\mathrm{NH}_{3}\right]^{2}}=\frac{[\mathrm{S}][\mathrm{S}]}{[2.5-\mathrm{S}]^{2}}=\frac{[\mathrm{S}][\mathrm{S}]}{[2.5]^{2}}=1.411 \times 10^{-9}$
$\mathrm{S}=9.3908 \times 10^{-5}=\mathbf{9 . 4 \times 1 0 ^ { - 5 }} \boldsymbol{M}$
19.103 The complex formation equilibrium is:

$$
\mathrm{Zn}^{2+}(a q)+4 \mathrm{CN}^{-}(a q) \leftrightarrows \mathrm{Zn}(\mathrm{CN})_{4}^{2-}(a q) \quad K_{\mathrm{f}}=4.2 \times 10^{19}
$$

First, calculate the initial moles of Zn^{2+} and CN^{-}, then set up reaction table assuming that the reaction first goes to completion, and then calculate back to find the reactant concentrations.
Moles $\mathrm{Zn}^{2+}=\left(0.84 \mathrm{~g} \mathrm{ZnCl}_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{ZnCl}}{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Zn}^{2+}}{136.31 \mathrm{~g} \mathrm{ZnCl}_{2}}\right)=0.0061624 \mathrm{~mol} \mathrm{Zn}^{2+}$ (unrounded)
Moles $\mathrm{CN}^{-}=\left(\frac{0.150 \mathrm{~mol} \mathrm{NaCN}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(245 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{CN}^{-}}{1 \mathrm{~mol} \mathrm{NaCN}}\right)=0.03675 \mathrm{~mol} \mathrm{CN}^{-}$(unrounded)
The Zn^{2+} is limiting because there are significantly fewer moles of this ion, thus, $\left[\mathrm{Zn}^{2+}\right]=0$, and the moles of CN^{-} remaining are: $[0.03675-4(0.0061624)]$.
$\left[\mathrm{CN}^{-}\right]=\frac{[0.03675-4(0.0061624)] \mathrm{mol} \mathrm{CN}^{-}}{(245 \mathrm{~mL})}\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=0.0493894 \mathrm{M} \mathrm{CN}^{-}$
The Zn^{2+} will produce an equal number of moles of the complex with the concentration:

Concentration (M)	$\mathrm{Zn}^{2+}(a q)$	$+\quad 4 \mathrm{CN}^{-}(a q)$	\leftrightarrows	$\mathrm{Zn}(\mathrm{CN})_{4}{ }^{2-}(a q)$
Initial	0	0.0493894	0.025153	
Change	+x		+4 x	-x
Equilibrium	x		$0.0493894+4 \mathrm{x}$	$0.025153-\mathrm{x}$

Assume the -x and the +4 x do not significantly change the associated concentrations.
$K_{\mathrm{f}}=\frac{\left[\mathrm{Zn}(\mathrm{CN})_{4}^{2-}\right]}{\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{CN}^{-}\right]^{4}}=\frac{[0.025153-\mathrm{x}]}{[\mathrm{x}][0.0493894+4 \mathrm{x}]^{4}}=\frac{[0.025153]}{[\mathrm{x}][0493894]^{4}}=4.2 \times 10^{19}$
$\mathrm{x}=1.006481 \times 10^{-16}=1.0 \times 10^{-16}$
$\left[\mathrm{Zn}^{2+}\right]=1.0 \times 10^{-16} \mathrm{M} \mathrm{Zn}{ }^{2+}$
$\left[\mathrm{Zn}(\mathrm{CN})_{4}{ }^{2-}\right]=0.025153-\mathrm{x}=0.025153=\mathbf{0 . 0 2 5} \mathbf{M ~ Z n}(\mathrm{CN})_{4}{ }^{2-}$
$\left[\mathrm{CN}^{-}\right]=0.0493894+4 \mathrm{x}=0.0493894=\mathbf{0 . 0 4 9} \mathbf{M ~ C N}^{-}$
19.104 The complex formation equilibrium is:

$$
\mathrm{Co}^{2+}(a q)+4 \mathrm{OH}^{-}(a q) \leftrightarrows \mathrm{Co}(\mathrm{OH})_{4}{ }^{2-}(a q) K_{\mathrm{f}}=5 \times 10^{9}
$$

First, calculate the initial moles of Co^{2+} and OH^{-}, then set up reaction table assuming that the reaction first goes to completion and then calculate back to find reactant concentrations.
Moles $\mathrm{Co}^{2+}=\left(2.4 \mathrm{~g} \mathrm{Co}^{2}\left(\mathrm{NO}_{3}\right)_{2}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}{182.95 \mathrm{~g} \mathrm{Co}^{2}\left(\mathrm{NO}_{3}\right)_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Co}^{2+}}{1 \mathrm{~mol} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}}\right)=0.013118 \mathrm{~mol} \mathrm{Co}^{2+}$ (unrounded)
Moles $\mathrm{OH}^{-}=\left(\frac{0.22 \mathrm{~mol} \mathrm{KOH}}{\mathrm{L}}\right)(0.350 \mathrm{~L})\left(\frac{1 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{KOH}}\right)=0.077 \mathrm{~mol} \mathrm{OH}^{-}$
The Co^{2+} is limiting, thus, $\left[\mathrm{Co}^{2+}\right]=0$, and the moles of OH^{-}remaining are: $[0.077-4(0.013118)]$
$\left[\mathrm{OH}^{-}\right]=\frac{[0.077-4(0.013118)] \mathrm{molOH}^{-}}{(0.350 \mathrm{~L})}=0.07008 \mathrm{M} \mathrm{OH}^{-}$(unrounded)
The Co^{2+} will produce an equal number of moles of the complex with the concentration:
$\left[\mathrm{Co}(\mathrm{OH})_{4}{ }^{2-}\right]=\left(\frac{0.013118 \mathrm{~mol} \mathrm{Co}^{2+}}{0.350 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Co}(\mathrm{OH})_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{Co}^{2+}}\right)=0.03748 \mathrm{M} \mathrm{Co}(\mathrm{OH})_{4}{ }^{2-}$ (unrounded)

Concentration (M)	$\mathrm{Co}^{2+}(a q)$	+	$4 \mathrm{OH}^{-}(a q)$	\leftrightarrows
Initial	0	0.07008	$\mathrm{Co}(\mathrm{OH})_{4}{ }^{2-}(a q)$	
Change	+x	+4 x	0.03748	
Equilibrium	x	$0.07008+4 \mathrm{x}$	-x	
			$0.03748-\mathrm{x}$	

Assume the -x and the +4 x do not significantly change the associated concentrations.
$K_{\mathrm{f}}=\frac{\left[\mathrm{Co}(\mathrm{OH})_{4}{ }^{2-}\right]}{\left[\mathrm{Co}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{4}}=\frac{[0.03748-\mathrm{x}]}{[\mathrm{x}][0.07008+4 \mathrm{x}]^{4}}=\frac{[0.03748]}{[\mathrm{x}][0.07008]^{4}}=5 \times 10^{9}$
$\mathrm{x}=3.1078 \times 10^{-7}=3.1 \times 10^{-7}$
$\left[\mathrm{Co}^{2+}\right]=3.1 \times 10^{-7} \mathbf{M ~ C o}^{2+}$
$\left.\left[\mathrm{Co}(\mathrm{OH})_{4}{ }^{2-}\right]=0.03748-\mathrm{x}=0.037479689=\mathbf{0 . 0 3 7} \mathbf{M ~ C o (O H}\right)_{4}{ }^{2-}$
$\left[\mathrm{OH}^{-}\right]=0.07008+4 \mathrm{x}=0.070078756=\mathbf{0 . 0 7 0} \mathbf{M ~ O H}^{-}$
19.105 Calculate the pH of the benzoic acid/benzoate buffer, using the Henderson-Hasselbalch equation. The K_{a} for benzoic acid is 6.3×10^{-5} (from the Appendix). The $\mathrm{p} K_{\mathrm{a}}$ is $-\log \left(6.3 \times 10^{-5}\right)=4.201$. The reaction of benzoic acid with sodium hydroxide is:
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
Moles of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}=\left(\frac{0.200 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(475 \mathrm{~mL})=0.0950 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
Moles $\mathrm{NaOH}=\left(\frac{2.00 \mathrm{~mol} \mathrm{NaOH}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(25 \mathrm{~mL})=0.050 \mathrm{~mol} \mathrm{NaOH}$
NaOH is the limiting reagent:

The reaction table gives:

	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$			
Initial	0.0950 mol	0.050 mol	-	0
Reacting	-0.050 mol	-0.050 mol	+0.050 mol	-
Final	0.045 mol	0 mol	0.050 mol	

The concentrations after the reactions are:
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]=\left(\frac{0.045 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}}{(475+25) \mathrm{mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=0.090 M \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
$\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\left(\frac{0.050 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}}{(475+25) \mathrm{mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=0.10 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$
Calculating the pH from the Henderson-Hasselbalch equation:

$$
\mathrm{pH}=\mathrm{pKa}+\log \left(\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{-}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}\right)=4.201+\log \left(\frac{[0.10]}{[0.090]}\right)=4.24676=4.2
$$

Calculations on formic acid (HCOOH) also use the Henderson-Hasselbalch equation. The K_{a} for formic acid is 1.8×10^{-4} and the $\mathrm{p} K_{\mathrm{a}}=-\log \left(1.8 \times 10^{-4}\right)=3.7447$.
The formate to formic acid ratio may now be determined:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pKa}+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right) \\
& 4.24676=3.7447+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right) \\
& 0.50206=\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{\left[\mathrm{HCOOH}^{2}\right]}\right) \\
& \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{\left[\mathrm{HCOOH}^{2}\right]}\right)=3.177313 \\
& {\left[\mathrm{HCOO}^{-}\right]=3.177313[\mathrm{HCOOH}]}
\end{aligned}
$$

Since the conjugate acid and the conjugate base are in the same volume, the mole ratio and the molarity ratios are identical.

Moles $\mathrm{HCOO}^{-}=3.177313 \mathrm{~mol} \mathrm{HCOOH}$
The total volume of the solution is $(500 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.500 \mathrm{~L}$
Let $\mathrm{V}_{\mathrm{a}}=$ volume of acid solution added, and $\mathrm{V}_{\mathrm{b}}=$ volume of base added. Thus:
$\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}=0.500 \mathrm{~L}$
The reaction between the formic acid and the sodium hydroxide is:
$\mathrm{HCOOH}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{HCOONa}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$
The moles of NaOH added equals the moles of HCOOH reacted and the moles of HCOONa formed.
Moles $\mathrm{NaOH}=(2.00 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})\left(\mathrm{V}_{\mathrm{b}}\right)=2.00 \mathrm{~V}_{\mathrm{b}} \mathrm{mol}$
Total moles $\mathrm{HCOOH}=(0.200 \mathrm{~mol} \mathrm{HCOOH} / \mathrm{L})\left(\mathrm{V}_{\mathrm{a}}\right)=0.200 \mathrm{~V}_{\mathrm{a}} \mathrm{mol}$
The stoichiometric ratios in this reaction are all 1:1.
Moles HCOOH remaining after the reaction $=\left(0.200 \mathrm{~V}_{\mathrm{a}}-2.00 \mathrm{~V}_{\mathrm{b}}\right) \mathrm{mol}$
Moles $\mathrm{HCOO}^{-}=$moles $\mathrm{HCOONa}=$ moles $\mathrm{NaOH}=2.00 \mathrm{~V}_{\mathrm{b}}$
Using these moles and the mole ratio determined for the buffer gives:
Moles $\mathrm{HCOO}^{-}=3.177313 \mathrm{~mol} \mathrm{HCOOH}$
$2.00 \mathrm{~V}_{\mathrm{b}} \mathrm{mol}=3.177313\left(0.200 \mathrm{~V}_{\mathrm{a}}-2.00 \mathrm{~V}_{\mathrm{b}}\right) \mathrm{mol}$
$2.00 \mathrm{~V}_{\mathrm{b}}=0.6354626 \mathrm{~V}_{\mathrm{a}}-6.354626 \mathrm{~V}_{\mathrm{b}}$
$8.354626 \mathrm{~V}_{\mathrm{b}}=0.6354626 \mathrm{~V}_{\mathrm{a}}$

The volume relationship given above gives $\mathrm{V}_{\mathrm{a}}=\left(0.500-\mathrm{V}_{\mathrm{b}}\right) \mathrm{L}$.

$$
\begin{aligned}
& 8.354626 \mathrm{~V}_{\mathrm{b}}=0.6354626\left(0.500-\mathrm{V}_{\mathrm{b}}\right) \\
& 8.354626 \mathrm{~V}_{\mathrm{b}}=0.3177313-0.6354626 \mathrm{~V}_{\mathrm{b}} \\
& 8.9900886 \mathrm{~V}_{\mathrm{b}}=0.3177313 \\
& \mathrm{~V}_{\mathrm{b}}=0.0353424=\mathbf{0 . 0 3 5} \mathbf{L} \mathbf{~ N a O H} \\
& \mathrm{V}_{\mathrm{a}}=0.500-0.0353424=0.4646576=\mathbf{0 . 4 6 5} \mathbf{L} \mathbf{~ H C O O H}
\end{aligned}
$$

Limitations due to the significant figures lead to a solution with only an approximately correct pH .
$19.106 \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log 6.3 \times 10^{-8}=7.200659$ (unrounded). The K_{a} comes from Appendix C; it is $K_{\mathrm{a} 2}$ for phosphoric acid.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}\right) \\
& 7.00=7.200659+\log \left(\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}\right) \\
& -0.200659=\log \left(\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}\right) \\
& \frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}=0.63000 \text { (unrounded) }
\end{aligned}
$$

Since they are equimolar, $\frac{\mathrm{V}_{\mathrm{HPO}_{4}{ }^{2-}}}{\mathrm{V}_{\mathrm{H}_{2} \mathrm{PO}_{4}-}}=0.63000$
and $\mathrm{V}_{\mathrm{HPO}_{4}}{ }^{2-}+\mathrm{V}_{\mathrm{H}_{2} \mathrm{PO}_{4}}{ }^{-}=100 . \mathrm{mL}$
so $(0.63000) \mathrm{V}_{\mathrm{H}_{2} \mathrm{PO}_{4}}{ }^{-}+\mathrm{V}_{\mathrm{H}_{2} \mathrm{PO}_{4}}{ }^{-}=100 . \mathrm{mL}$
$\mathrm{V}_{\mathrm{H}_{2} \mathrm{PO}_{4}}{ }^{-}=\mathbf{6 1} \mathbf{~ m L}$ and $\mathrm{V}_{\mathrm{HPO}_{4}}{ }^{2-}=\mathbf{3 9} \mathbf{~ m L}$
19.107 A formate buffer contains formate $\left(\mathrm{HCOO}^{-}\right)$as the base and formic acid (HCOOH) as the acid. From the Appendix, the K_{a} for formic acid is 1.8×10^{-4} and the $\mathrm{p} K_{\mathrm{a}}=-\log \left(1.8 \times 10^{-4}\right)=3.7447$ (unrounded).
a) The Henderson-Hasselbalch equation gives the component ratio, $\left[\mathrm{HCOO}^{-}\right] /[\mathrm{HCOOH}]$:

$$
\begin{aligned}
\mathrm{pH}= & \mathrm{pKa}+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right) \\
& 3.74=3.7447+\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right) \\
& -0.0047=\log \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right) \\
& \left(\frac{\left[\mathrm{HCOO}^{-}\right]}{\left[\mathrm{HCOOH}^{2}\right]}\right)=0.989236=\mathbf{0 . 9 9}
\end{aligned}
$$

b) To prepare solutions, set up equations for concentrations of formate and formic acid with x equal to the volume, in L , of 1.0 M HCOOH added. The equations are based on the neutralization reaction between HCOOH and NaOH that produces HCOO^{-}.

$$
\mathrm{HCOOH}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{HCOO}^{-}(a q)+\mathrm{Na}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

$\left[\mathrm{HCOO}^{-}\right]=(1.0 \mathrm{M} \mathrm{NaOH})\left(\frac{(0.700-\mathrm{x}) \mathrm{L} \mathrm{NaOH}}{0.700 \mathrm{~L} \text { solution }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HCOO}^{-}}{1 \mathrm{~mol} \mathrm{NaOH}}\right)$
$[\mathrm{HCOOH}]=(1.0 \mathrm{M} \mathrm{HCOOH})\left(\frac{\mathrm{x} \mathrm{L} \mathrm{HCOOH}}{0.700 \mathrm{~L} \text { solution }}\right)-(1.0 \mathrm{M} \mathrm{NaOH})\left(\frac{(0.700-\mathrm{x}) \mathrm{L} \mathrm{NaOH}}{0.700 \mathrm{~L} \text { solution }}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HCOO}^{-}}{1 \mathrm{~mol} \mathrm{NaOH}}\right)$

The component ratio equals 0.99 (from part a). Simplify the above equations and plug into ratio:

$$
\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}=\frac{\left[\left(\begin{array}{c}
0.700-\mathrm{x} / 0.700
\end{array}\right) \mathrm{M} \mathrm{HCOO}^{-}\right]}{[(\mathrm{x}-(0.700-\mathrm{x}) / 0.700) \mathrm{M} \mathrm{HCOOH}]}=\frac{0.700-\mathrm{x}}{2 \mathrm{x}-0.700}=0.989236
$$

Solving for x :

$$
x=0.46751=0.468 \mathrm{~L}
$$

Mixing $\mathbf{0 . 4 6 8} \mathbf{L}$ of $1.0 \mathbf{M} \mathbf{H C O O H}$ and $0.700-0.468=\mathbf{0 . 2 3 2} \mathbf{L}$ of $\mathbf{1 . 0} \mathbf{M ~ N a O H}$ gives a buffer of pH 3.74 .
c) The final concentration of HCOOH from the equation in part b :

$$
\begin{aligned}
{[\mathrm{HCOOH}] } & =(1.0 \mathrm{M} \mathrm{HCOOH})\left(\frac{0.468 \mathrm{~L} \mathrm{HCOOH}}{0.700 \mathrm{~L} \text { solution }}\right)-(1.0 \mathrm{M} \mathrm{NaOH})\left(\frac{0.232 \mathrm{~L} \mathrm{NaOH}}{0.700 \mathrm{~L} \text { solution }}\right)\left(\frac{1 \text { mole } \mathrm{HCOO}^{-}}{1 \mathrm{~mole} \mathrm{NaOH}}\right) \\
& =0.33714=\mathbf{0 . 3 4} \mathbf{M} \mathbf{~ H C O O H}
\end{aligned}
$$

19.108 This is because K_{a} depends on temperature (like all other equilibrium constants). In this case, since the pH drops as the temperature increases, K_{a} must increase with temperature, indicating that the dissociation reaction is endothermic.
$19.109 \mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid and will be completely ionized: $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{SO}_{4}{ }^{2-}(a q)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q)$ Calculate the moles of $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$ from the $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the $8.0 \times 10^{3} \mathrm{lb}$ of water and then the amount of sodium acetate trihydrate $\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$ that will be required to neutralize that amount of $\mathrm{H}_{3} \mathrm{O}^{+}(a q)$.
$\left(8.0 \times 10^{3} \mathrm{lb}\right.$ water $)\left(\frac{1 \mathrm{~kg}}{2.205 \mathrm{lb}}\right)\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)=3.628118 \times 10^{6} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$\mathrm{ppm}=\frac{\text { mass of solute }}{\text { mass of solution }} \times 10^{6}$
$10 \mathrm{ppm}=\frac{\text { mass of } \mathrm{H}_{2} \mathrm{SO}_{4}}{3.628118 \times 10^{6} \mathrm{~g}} \times 10^{6}$
Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=36.28118 \mathrm{~g}$
Moles of $\mathrm{H}_{3} \mathrm{O}^{+}=\left(36.28118 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{98.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right)=0.7398 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}$
The reaction between $\mathrm{H}_{3} \mathrm{O}^{+}$and the base sodium acetate is:
$\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{Na}+(a q)$
lb of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ required to neutralize the $\mathrm{H}_{2} \mathrm{SO}_{4}=$
$\begin{aligned}\left(0.7398 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}\right)(& \left.\frac{1 \mathrm{~mol} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}}\right)\left(\frac{136.08 \mathrm{~g} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{2.205 \mathrm{lb}}{1 \mathrm{~kg}}\right) \\ & =0.22198 \mathrm{lb} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\end{aligned}$
Now consider the acetic acid. Calculate the amount of acetic acid in $8.0 \times 10^{3} \mathrm{lb}$ or $3.628118 \times 10^{6} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
Mol of acetic acid $=\left(3.628118 \times 10^{6} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{0.015 \%}{100 \%}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{60.05 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}\right)=9.0627 \mathrm{~mol}$
Find the amount of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$necessary to maintain a pH of 5 .
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}\right)$
$5.0=4.7447+\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{[9.0627 \mathrm{~mol}]}\right)$
$0.2552725=\log \left(\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{[9.0627 \mathrm{~mol}]}\right)$
$1.8=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]}{[9.0627 \mathrm{~mol}]}$
16.31286 mol of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$ will be required to maintain the pH
lb of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ required $=$
$\left(16.31286 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COONa} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{136.08 \mathrm{~g} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{2.205 \mathrm{lb}}{1 \mathrm{~kg}}\right)=4.89478 \mathrm{lb}$
Total amount of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ required $=0.22198 \mathrm{lb}+4.89478 \mathrm{lb}=5.11676=\mathbf{5 . 1} \mathbf{l b}$
19.110 The minimum urate ion concentration necessary to cause a deposit of sodium urate is determined by the $K_{\text {sp }}$ for the salt. Convert solubility in $\mathrm{g} / 100 . \mathrm{mL}$ to molar solubility and calculate $K_{\text {sp }}$. Substituting [Na^{+}] and $K_{\text {sp }}$ into the ion-product expression allows one to find [Ur^{-}].
Molar solubility of NaUr :
$[\mathrm{NaUr}]=\left(\frac{0.085 \mathrm{~g} \mathrm{NaUr}}{100 . \mathrm{mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaUr}}{190.10 \mathrm{~mol} \mathrm{NaUr}}\right)=4.47133 \times 10^{-3} \mathrm{M} \mathrm{NaUr}$ (unrounded)
$4.47133 \times 10^{-3} \mathrm{M} \mathrm{NaUr}=\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Ur}^{-}\right]$
$K_{\text {sp }}=\left[\mathrm{Na}^{+}\right]\left[\mathrm{Ur}^{-}\right]=\left(4.47133 \times 10^{-3}\right)\left(4.47133 \times 10^{-3}\right)=1.999279 \times 10^{-5} \mathrm{M}$ (unrounded)
When $\left[\mathrm{Na}^{+}\right]=0.15 \mathrm{M}$:
$K_{\text {sp }}=1.999279 \times 10^{-5} M=[0.15]\left[\mathrm{Ur}^{-}\right]$
$\left[\mathrm{Ur}^{-}\right]=1.33285 \times 10^{-4}$ (unrounded)
The minimum urate ion concentration that will cause precipitation of sodium urate is $\mathbf{1 . 3} \times \mathbf{1 0}^{-4} \mathbf{M}$.
19.111 $\mathrm{CdS}(s)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{Cd}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q) \quad K_{\text {sp }}=1.0 \times 10^{-24}$
(The sulfide ion S^{2-} reacts in water to form HS^{-}and OH^{-})
$K_{\text {sp }}=1.0 \times 10^{-24}=\left[\mathrm{Cd}^{2+}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{S}^{3}$
$\mathrm{S}=\mathbf{1 . 0} \times \mathbf{1 0}^{-8} \mathrm{M}$
19.112 a. $K=\left[\mathrm{CO}_{2}(a q)\right] /\left[\mathrm{CO}_{2}(g)\right]=3.1 \times 10^{-2}$

$$
\left[\mathrm{CO}_{2}(a q)\right]=K\left[\mathrm{CO}_{2}(a q)\right]=\left(3.1 \times 10^{-2}\right)\left(3 \times 10^{-4}\right)
$$

$$
=9.3 \times 10^{-6} M=\mathbf{9 \times 1 0} 0^{-6} \mathrm{M} \mathrm{CO}_{2}
$$

b. $K=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{HCO}_{3}{ }^{-}\right]^{2} /\left[\mathrm{CO}_{2}(a q)\right]=(\mathrm{x})(2 \mathrm{x})^{2} /\left(9.3 \times 10^{-6}-\mathrm{x}\right)=1 \times 10^{-12}$

Neglect-x
$\mathrm{x}=1.325 \times 10^{-6}=\mathbf{1} \times \mathbf{1 0}^{-6} \mathbf{M ~ C a}^{2+}$
c. $K=\left[\mathrm{CO}_{2}(\mathrm{aq})\right] /\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=3.1 \times 10^{-2}$
$\left[\mathrm{CO}_{2}(a q)\right]=K\left[\mathrm{CO}_{2}(a q)\right]=\left(3.1 \times 10^{-2}\right)\left(2 \times 3 \times 10^{-4}\right)$
$=1.86 \times 10^{-5} \mathrm{M}$
$K=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{HCO}_{3}^{-}\right]^{2} /\left[\mathrm{CO}_{2}(a q)\right]=(\mathrm{x})(2 \mathrm{x})^{2} /\left(1.86 \times 10^{-5}-\mathrm{x}\right)=1 \times 10^{-12}$
Neglect - x
$\mathrm{x}=1.669 \times 10^{-6}=2 \times 10^{-6} \mathbf{M} \mathbf{C a}^{2+}$
19.113 The buffer is made by starting with phosphoric acid and neutralizing some of the acid by adding sodium hydroxide:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Present initially is $(0.50 \mathrm{~L})\left(1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}\right)=0.50 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$. Adding 0.80 mol NaOH converts all the phosphoric acid to dihydrogen phosphate ions $(0.50 \mathrm{~mol})$ and 0.30 mol NaOH are left. The remaining OH^{-}will react with the dihydrogen phosphate:

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{HPO}_{4}{ }^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)
$$

The $0.50 \mathrm{~mol} \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$reacts with the $0.30 \mathrm{~mol} \mathrm{OH}^{-}$to produce $0.30 \mathrm{~mol} \mathrm{HPO}{ }_{4}{ }^{2-} .0 .20 \mathrm{~mol} \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$will remain. The pH is determined from the equilibrium involving the conjugate pair $\mathrm{HPO}_{4}{ }^{2-} / \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$.

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{HPO}_{4}^{2-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \quad K_{\mathrm{a}}=6.3 \times 10^{-8}
$$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left[\mathrm{HPO}_{4}{ }^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right] \\
& \mathrm{pH}=-\log \left(6.3 \times 10^{-8}\right)+\log \left(\frac{0.30 \mathrm{~mol} \mathrm{HPO}_{4}{ }^{2-} / 0.50 \mathrm{~L}}{0.20 \mathrm{~mol} \mathrm{H}_{2} \mathrm{PO}_{4}^{-} / 0.50 \mathrm{~L}}\right)=7.37675=7.38
\end{aligned}
$$

19.114 a) The solubility equilibrium for KCl is: $\mathrm{KCl}(s) \leftrightarrows \mathrm{K}^{+}(a q)+\mathrm{Cl}^{-}(a q)$

The solubility of KCl is 3.7 M .
$K_{\text {sp }}=\left[\mathrm{K}^{+}\right]\left[\mathrm{Cl}^{-}\right]=(3.7)(3.7)=13.69=\mathbf{1 4}$
b) Determine the total concentration of chloride ion in each beaker after the HCl has been added. This requires the moles originally present and the moles added.

Original moles from the KCl :

$$
\text { Moles } \mathrm{K}^{+}=\text {Moles } \mathrm{Cl}^{-}=\left(\frac{3.7 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(100 . \mathrm{mL})\left(\frac{1 \mathrm{~mol} \mathrm{Cl}^{-} \text {ion }}{1 \mathrm{~mol} \mathrm{KCl}}\right)=0.37 \mathrm{~mol} \mathrm{Cl}^{-}
$$

Original moles from the 6.0 M HCl in the first beaker:

$$
\text { Moles } \mathrm{Cl}^{-}=\left(\frac{6.0 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(100 . \mathrm{mL})\left(\frac{1 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol} \mathrm{HCl}}\right)=0.60 \mathrm{~mol} \mathrm{Cl}^{-}
$$

This results in $(0.37+0.60) \mathrm{mol}=0.97 \mathrm{~mol} \mathrm{Cl}^{-}$.
Original moles from the 12 M HCl in the second beaker:

$$
\text { Moles } \mathrm{Cl}^{-}=\left(\frac{12 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(100 . \mathrm{mL})\left(\frac{1 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol} \mathrm{HCl}^{2}}\right)=1.2 \mathrm{~mol} \mathrm{Cl}^{-}
$$

This results in $(0.37+1.2) \mathrm{mol}=1.57 \mathrm{~mol} \mathrm{Cl}^{-}$(unrounded)
Volume of mixed solutions $=(100 . \mathrm{mL}+100 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.200 \mathrm{~L}$
After the mixing:
$\left[\mathrm{K}^{+}\right]=\left(0.37 \mathrm{~mol} \mathrm{~K}^{+}\right) /(0.200 \mathrm{~L})=1.85 \mathrm{M} \mathrm{K}^{+}$(unrounded)
From 6.0 M HCl in the first beaker:
$\left[\mathrm{Cl}^{-}\right]=\left(0.97 \mathrm{~mol} \mathrm{Cl}{ }^{-}\right) /(0.200 \mathrm{~L})=4.85 \mathrm{M} \mathrm{Cl}^{-}($unrounded $)$
From 12 M HCl in the second beaker:
$\left[\mathrm{Cl}^{-}\right]=(1.57 \mathrm{~mol} \mathrm{Cl}) /(0.200 \mathrm{~L})=7.85 \mathrm{M} \mathrm{Cl}^{-}$(unrounded)
Determine a $Q_{\text {sp }}$ value to see if $K_{\text {sp }}$ is exceeded. If $Q<K_{\text {sp }}$, nothing will precipitate.
From 6.0 M HCl in the first beaker:

$$
Q_{\mathrm{sp}}=\left[\mathrm{K}^{+}\right]\left[\mathrm{Cl}^{-}\right]=(1.85)(4.85)=8.9725=9.0<14, \text { so no } \mathrm{KCl} \text { will precipitate. }
$$

From 12 M HCl in the second beaker:

$$
Q_{\mathrm{sp}}=\left[\mathrm{K}^{+}\right]\left[\mathrm{Cl}^{-}\right]=(1.85)(7.85)=14.5225=15>14, \text { so } \mathrm{KCl} \text { will precipitate. }
$$

The mass of KCl that will precipitate when 12 M HCl is added:
Equal amounts of K and Cl will precipitate. Let x be the molarity change.

$$
K_{\mathrm{sp}}=\left[\mathrm{K}^{+}\right]\left[\mathrm{Cl}^{-}\right]=(1.85-\mathrm{x})(7.85-\mathrm{x})=13.69
$$

$x=0.088697657=0.09 \quad$ This is the change in the molarity of each of the ions.
Mass $\mathrm{KCl}=\left(\frac{0.088697657 \mathrm{~mol} \mathrm{~K}^{+}}{\mathrm{L}}\right)(0.200 \mathrm{~L})\left(\frac{1 \mathrm{~mol} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{~K}^{+}}\right)\left(\frac{74.55 \mathrm{~g} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{KCl}}\right)=1.32248=\mathbf{1} \mathbf{g ~ K C l}$
19.115 $\left[\mathrm{NH}_{3}\right]+\left[\mathrm{NH}_{4}^{+}\right]=0.15$. If $\left[\mathrm{NH}_{3}\right]=0.01 \mathrm{M}$, then $\left[\mathrm{NH}_{4}^{+}\right]=0.14 \mathrm{M}$.
$K_{\mathrm{b}}=1.76 \times 10^{-5}$ (from the Appendix)
$K_{\mathrm{a}}=K_{\mathrm{w}} / K_{\mathrm{b}}=1.0 \times 10^{-14} / 1.76 \times 10^{-5}=5.6818 \times 10^{-10}$ (unrounded)
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}^{+}\right]$
$\mathrm{pH}=-\log K_{\mathrm{a}}+\log \left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}^{+}\right]$
$\mathrm{pH}=-\log 5.6818 \times 10^{-10}+\log [0.01] /[0.14]$
$=8.099386=\mathbf{8 . 1 0}$
19.116 Determine the solubility of MnS :
$\mathrm{S}=\left(\frac{4.7 \times 10^{-4} \mathrm{~g} \mathrm{MnS}}{100 \mathrm{~mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{MnS}}{87.01 \mathrm{~g} \mathrm{MnS}}\right)=5.4016779 \times 10^{-5} \mathrm{M}$ (unrounded)
$\mathrm{MnS}(s)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{Mn}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q)$
$K_{\mathrm{sp}}=\left[\mathrm{Mn}^{2+}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{S}^{3}=\left(5.4016779 \times 10^{-5}\right)^{3}=1.5761 \times 10^{-13}=\mathbf{1 . 6} \times 10^{-13}$
19.117 a) Use the Henderson-Hasselbalch equation. $\mathrm{K}_{\mathrm{a} 1}=4.5 \times 10^{-7}$
$\mathrm{p} K_{a}=-\log K_{a}=-\log \left(4.5 \times 10^{-7}\right)=6.34679$ (unrounded)

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}\right) \\
& 7.40=6.34679+\log \left(\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}\right) \\
& 1.05321=\log \left(\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}\right) \\
& \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=11.3034235 \text { (unrounded) } \\
& \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=0.0884688=\mathbf{0 . 0 8 8}
\end{aligned}
$$

b) Use the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}\right) \\
& 7.20=6.34679+\log \left(\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}\right) \\
& 0.85321=\log \left(\frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}\right) \\
& \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=7.131978 \text { (unrounded) } \\
& \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=0.14021=\mathbf{0 . 1 4}
\end{aligned}
$$

19.118 The buffer components will be TRIS, $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}$, and its conjugate acid TRISH ${ }^{+}$, $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}$. The conjugate acid is formed from the reaction between TRIS and HCl . Since HCl is the limiting reactant in this problem, the concentration of conjugate acid will equal the starting concentration of $\mathrm{HCl}, 0.095 \mathrm{M}$. The concentration of TRIS is the initial concentration minus the amount reacted.
Mole TRIS $=(43.0 \mathrm{~g}$ TRIS $)\left(\frac{1 \mathrm{~mol} \text { TRIS }}{121.14 \mathrm{~g} \mathrm{TRIS}}\right)=0.354961 \mathrm{~mol}$ (unrounded)
Mole HCl added $=\left(\frac{0.095 \mathrm{~mol} \mathrm{HCl}}{\mathrm{L}}\right)(1.00 \mathrm{~L})=0.095 \mathrm{~mol} \mathrm{HCl}=\mathrm{mol} \mathrm{TRISH}^{+}$
$\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{2}(a q)+\mathrm{HCl}(a q) \leftrightarrows\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{CNH}_{3}{ }^{+}(a q)+\mathrm{Cl}^{-}(a q)$

Initial	0.354961 mol	0.095 mol	0
Reacting	-0.095 mol	-0.095 mol	+0.095 mol
Final	0.259961 mol	0 mol	0.095 mol

Final $0.259961 \mathrm{~mol} 0 \mathrm{~mol} \quad 0.095 \mathrm{~mol}$

Since there is 1.00 L of solution, the moles of TRIS and TRISH ${ }^{+}$equals their molarities.
$\mathrm{pOH}=\mathrm{p} K_{\mathrm{b}}+\log \frac{[\text { acid }]}{[\text { base }]}=5.91+\log \frac{[0.095]}{[0.259961]}=5.472815$ (unrounded)
Therefore, pH of the buffer is $14.00-5.472815=8.527185=\mathbf{8 . 5 3}$
19.119

$\mathrm{mol} \mathrm{HCl} / \mathrm{mol}$ ethylenediamine
19.120 Zinc sulfide, ZnS , is much less soluble than manganese sulfide, MnS . Convert ZnCl_{2} and MnCl_{2} to ZnS and MnS by saturating the solution with $\mathrm{H}_{2} \mathrm{~S} ;\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\text {sat'd }}=0.10 \mathrm{M}$. Adjust the pH so that the greatest amount of ZnS will precipitate and not exceed the solubility of MnS as determined by $K_{\mathrm{sp}}(\mathrm{MnS})$.
$K_{\text {sp }}(\mathrm{MnS})=\left[\mathrm{Mn}^{2+}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]=3 \times 10^{-11}$
$\left[\mathrm{Mn}^{2+}\right]=\left[\mathrm{MnCl}_{2}\right]=0.020 \mathrm{M}$
[HS^{-}] is calculated using the $K_{\mathrm{a} 1}$ expression:
Concentration: $\mathrm{H}_{2} \mathrm{~S}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HS}^{-}(a q)$
Initial $0.10 \mathrm{~mol} \quad 0 \quad 0$
$\begin{array}{lcrr}\text { Reacting } & -\mathrm{x} & +\mathrm{x} & +\mathrm{x} \\ \text { Final } & 0.10-\mathrm{x} & \mathrm{x} & \mathrm{x}\end{array}$
$K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{[0.10-\mathrm{x}]}=9 \times 10^{-8}$ Assume $0.10-\mathrm{x}=0.10$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]=9 \times 10^{-9}$
$\left[\mathrm{HS}^{-}\right]=9 \times 10^{-9} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
Substituting $\left[\mathrm{Mn}^{2+}\right]$ and $\left[\mathrm{HS}^{-}\right]$into the $K_{\mathrm{sp}}(\mathrm{MnS})$ above gives:
$K_{\text {sp }}(\mathrm{MnS})=\left[\mathrm{Mn}^{2+}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]=3 \times 10^{-11}$
$K_{\text {sp }}(\mathrm{MnS})=\left[\mathrm{Mn}^{2+}\right]\left(9 \times 10^{-9} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)\left[\mathrm{OH}^{-}\right]=3 \times 10^{-11}$
Substituting $K_{w} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{OH}^{-}\right]$:
$K_{\text {sp }}(\mathrm{MnS})=\left[\mathrm{Mn}^{2+}\right]\left(\frac{9 \times 10^{-9}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}\right)\left(\frac{\mathrm{K}_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}\right)=3 \times 10^{-11}$
$3 \times 10^{-11} \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=\left[\mathrm{Mn}^{2+}\right]\left(9 \times 10^{-9}\right)\left(\mathrm{K}_{\mathrm{w}}\right)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\frac{\left[\mathrm{Mn}^{2+}\right]\left[9 \times 10^{-9}\right] \mathrm{K}_{\mathrm{w}}}{3 \times 10^{-11}}}=\sqrt{\frac{(0.020)\left(9 \times 10^{-9}\right)\left(1.0 \times 10^{-14}\right)}{3 \times 10^{-11}}}=2.4494897 \times 10^{-7}$ (unrounded)
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.4494897 \times 10^{-7}\right)=6.610924=\mathbf{6 . 6}$
Maintain the pH below 6.6 to separate the ions as their sulfides.
19.121 a) Since $K_{\mathrm{a}}(-\mathrm{COOH})>K_{\mathrm{b}}\left(-\mathrm{NH}_{2}\right)$, the proton will be transferred from the -COOH to the $-\mathrm{NH}_{2}$, producing $-\mathrm{COO}^{-}$and $-\mathrm{NH}_{3}{ }^{+}$
b) $\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log 4.47 \times 10^{-3}=2.34969$ (unrounded)
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log [\mathrm{B}] /\left[\mathrm{BH}^{+}\right]$
$5.5=2.35+\log \left[\left({ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right] /\left[{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]\right.$
$\frac{\left[{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]}{\left[{ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]}=1 \times 10^{3}$
c)

$\mathrm{pH}=1 \quad \mathrm{pH}=7$
$\mathrm{pH}=13$
d) at pH 1: D , at pH 7 : A , at pH 13: B
19.122 a)The equilibrium is: $\mathrm{MCl}_{2}(s) \leftrightarrows \mathrm{M}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)$. The ion-product expression is $K_{\text {sp }}=\left[\mathrm{M}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$ Based on the picture, the ion concentration are:
$\left[\mathrm{M}^{2+}\right]=\frac{(3 \text { spheres })\left(\frac{1.0 \times 10^{-6} \mathrm{~mol}}{1 \text { sphere }}\right)}{250.0 \mathrm{~mL}}\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=1.2 \times 10^{-5} \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=\frac{(10 \text { spheres })\left(\frac{1.0 \times 10^{-6} \mathrm{~mol}}{1 \text { sphere }}\right)}{250.0 \mathrm{~mL}}\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=4.0 \times 10^{-5} \mathrm{M}$
$K_{\text {sp }}=\left[\mathrm{M}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=\left[1.2 \times 10^{-5}\right]\left[4.0 \times 10^{-5}\right]^{2}=\mathbf{1 . 9 \times 1 0} \mathbf{1 0}^{-14}$
b) M^{2+} is a common ion for $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$ and MCl_{2}. If $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}$ is added to the solution, $\left[\mathrm{M}^{2+}\right]$ is increased and, according to Le Chatalier's principle, the solubility equilibrium will shift to the left, precipitating more MCl_{2}. The number of Cl^{-}particles decreases, the mass of MCl_{2} increases and the $K_{s p}$ value remains the same.
19.123 The equilibrium is: $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH}(s) \leftrightarrows 5 \mathrm{Ca}^{2+}(a q)+3 \mathrm{PO}_{4}{ }^{3-}(a q)+\mathrm{OH}^{-}(a q)$

$$
\begin{aligned}
& K_{\text {sp }}=6.8 \times 10^{-37}=\left[\mathrm{Ca}^{2+}\right]^{5}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{3}\left[\mathrm{OH}^{-}\right]=(5 \mathrm{~S})^{5}(3 \mathrm{~S})^{3}(\mathrm{~S})=84375 \mathrm{~S}^{9} \\
& \mathrm{~S}=2.7166443 \times 10^{-5}=2.7 \times 10^{-5} \mathrm{M} \\
& \text { Solubility }=\left(2.7166443 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right)(502.32 \mathrm{~g} / \mathrm{mol})=0.013646248=\mathbf{0 . 0 1 4} \mathbf{g} / \mathbf{L} \mathbf{C a}_{\mathbf{5}}\left(\mathbf{P O}_{4}\right)_{3} \mathbf{O H}
\end{aligned}
$$

The equilibrium is: $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}(s) \leftrightarrows 5 \mathrm{Ca}^{2+}(a q)+3 \mathrm{PO}_{4}{ }^{3-}(a q)+\mathrm{F}^{-}(a q)$

$$
\begin{aligned}
& K_{\text {sp }}=1.0 \times 10^{-60}=\left[\mathrm{Ca}^{2+}\right]^{5}\left[\mathrm{PO}_{4}^{3-}\right]^{3}\left[\mathrm{~F}^{-}\right]=(5 \mathrm{~S})^{5}(3 \mathrm{~S})^{3}(\mathrm{~S})=84375 \mathrm{~S}^{9} \\
& \mathrm{~S}=6.1090861 \times 10^{-8}=6.1 \times 10^{-8} \mathrm{M} \\
& \text { Solubility }=\left(6.1090861 \times 10^{-8} \mathrm{~mol} / \mathrm{L}\right)(504.31 \mathrm{~g} / \mathrm{mol}) \\
& \quad=3.0808732 \times 10^{-5}=\mathbf{3 . 1} \times \mathbf{1 0}^{-5} \mathbf{g} / \mathbf{L} \mathbf{C a}_{5}\left(\mathbf{P O}_{4}\right)_{3} \mathbf{F}
\end{aligned}
$$

19.124 An indicator changes color when the buffer component ratio of the two forms of the indicator changes from a value greater than 1 to a value less than 1 . The pH at which the ratio equals 1 is equal to $\mathrm{p} K_{\mathrm{a}}$. The midpoint in the pH range of the indicator is a good estimate of the $\mathrm{p} K_{\mathrm{a}}$ of the indicator.

$$
\mathrm{p} K_{\mathrm{a}}=(3.4+4.8) / 2=4.1 \quad K_{\mathrm{a}}=10^{-4.1}=7.943 \times 10^{-5}=\mathbf{8} \times 10^{-5}
$$

19.125

Due to the large range of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, this plot is difficult to prepare and does not easily show the end point. A logarithmic scale (pH versus $\mathrm{mL} \mathrm{OH}^{-}$added) shows this more clearly.
19.126 a) A spreadsheet will help you to quickly calculate $\Delta \mathrm{pH} / \Delta \mathrm{V}$ and average volume for each data point. At the equivalence point, the pH changes drastically when only a small amount of base is added, therefore, $\Delta \mathrm{pH} / \Delta \mathrm{V}$ is at a maximum at the equivalence point.
Example calculation: For the first 2 lines of data: $\Delta \mathrm{pH}=1.22-1.00=0.22 ; \Delta \mathrm{V}=10.00-0.00=10.00$

$$
\frac{\Delta \mathrm{pH}}{\Delta \mathrm{~V}}=\frac{0.22}{10.00}=0.022 \quad \mathrm{~V}_{\text {average }}(\mathrm{mL})=(0.00+10.00) / 2=5.00
$$

$\mathrm{V}(\mathrm{mL}) \quad \mathrm{pH} \quad \frac{\Delta \mathrm{pH}}{\Delta \mathrm{V}} \quad \mathrm{V}_{\text {average }}(\mathrm{mL})$

0.00	1.00		
10.00	1.22	0.022	5.00
20.00	1.48	0.026	15.00
30.00	1.85	0.037	25.00
35.00	2.18	0.066	32.50
39.00	2.89	0.18	37.00
39.50	3.20	0.62	39.25
39.75	3.50	1.2	39.63
39.90	3.90	2.67	39.83
39.95	4.20	6	39.93
39.99	4.90	18	39.97
40.00	7.00	200	40.00
40.01	9.40	200	40.01
40.05	9.80	10	40.03
40.10	10.40	10	40.08
40.25	10.50	0.67	40.18
40.50	10.79	1.2	40.38
41.00	11.09	0.60	40.75
45.00	11.76	0.17	43.00
50.00	12.05	0.058	47.50

60.00	12.30	0.025	55.00
70.00	12.43	0.013	65.00
80.00	12.52	0.009	75.00

b)

Maximum slope (equivalence point) is at $\mathrm{V}=40.00 \mathrm{~mL}$
19.127 Check to see if the concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$ exceeds the $K_{\text {sp }}$.
$M \mathrm{Ca}(\mathrm{OH})_{2}=\left(6.5 \times 10^{-9} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}\right) /(10.0 \mathrm{~L})=6.5 \times 10^{-10} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
Determine the concentration of a saturated calcium hydroxide solution from the $K_{\text {sp }}$.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(s) \leftrightarrows \mathrm{Ca}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)
$$

$K_{\text {sp }}=6.5 \times 10^{-6}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=(\mathrm{S})(2 \mathrm{~S})^{2}=4 \mathrm{~S}^{3}$

$$
S=\sqrt[3]{\frac{6.5 \times 10^{-6}}{4}}=0.01175667=0.012 \mathrm{M}
$$

Thus, the solution is less than saturated so the $K_{\text {sp }}$ does not affect the concentration of $\mathrm{Ca}(\mathrm{OH})_{2}$.
$M \mathrm{OH}^{-}$from $\mathrm{Ca}(\mathrm{OH})_{2}=\left(6.5 \times 10^{-10} \mathrm{MCa}(\mathrm{OH})_{2}\right)\left(2 \mathrm{~mol} \mathrm{OH}^{-} / 1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}\right)=1.3 \times 10^{-9} \mathrm{M} \mathrm{OH}^{-}$ Pure water has $1 \times 10^{-7} \mathrm{M} \mathrm{OH}^{-}$, thus the contribution from the $\mathrm{Ca}(\mathrm{OH})_{2}$ is not significant. pH of pure water $=\mathbf{7 . 0}$.
19.128 The equation that describes the behavior of a weak base in water is:

$$
\mathrm{B}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{BH}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

$K_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}$
$-\log K_{\mathrm{b}}=-\log \frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}$
$-\log K_{\mathrm{b}}=-\log \frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{p} K_{\mathrm{b}}=-\log \frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}+\mathrm{pOH}$
$\mathrm{pOH}=\mathrm{p} K_{\mathrm{b}}+\log \frac{\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}]}$
19.129 Use HLac to indicate lactic acid and Lac^{-}to indicate the lactate ion. The Henderson-Hasselbalch equation gives the pH of the buffer. Determine the final concentrations of the buffer components from $M_{\text {conc }} V_{\text {conc }}=M_{\text {dil }} V_{\text {dil }}$. Determine the $\mathrm{p} K_{\mathrm{a}}$ of the acid from the K_{a}.

$$
\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log 1.38 \times 10^{-4}=3.86012 \text { (unrounded) }
$$

Determine the molarity of the diluted buffer component as $M_{\text {dil }}=M_{\text {conc }} \mathrm{V}_{\text {conc }} / \mathrm{V}_{\text {dil }}$.

$$
[\mathrm{HLac}]=[(0.85 \mathrm{M})(225 \mathrm{~mL})] /[(225+435) \mathrm{mL}]=0.28977 M \text { HLac (unrounded) }
$$

$$
\left[\mathrm{Lac}^{-}\right]=[(0.68 M)(435 \mathrm{~mL})] /[(225+435) \mathrm{mL}]=0.44818 M \mathrm{Lac}^{-}(\text {unrounded })
$$

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{Lac}^{-}\right]}{[\mathrm{HLac}]}\right) \\
& \mathrm{pH}=3.86012+\log \left(\frac{[0.44818]}{[0.28977]}\right)=4.049519=\mathbf{4 . 0 5}
\end{aligned}
$$

19.130 The ion-product equilibrium reaction is:

$$
\mathrm{CaF}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{Ca}^{2+}(a q)+2 \mathrm{~F}^{-}(a q)
$$

F^{-}is a weak base with the following equilibrium reaction:

$$
\mathrm{F}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \quad \mathrm{HF}(a q)+\mathrm{OH}^{-}(a q)
$$

(I) Pure water: There is no common ion effect and the pH is neutral.
(II) 0.01 M HF : Because of the common ion effect, less CaF_{2} would dissolve in this solution than in pure water. (III) 0.01 M NaOH : additional OH^{-}ions shift the base equilibrium reaction to the left, producing more F^{-}. The additional F^{-}shifts the ion-product equilibrium to the left so less CaF_{2} would dissolve.
(IV) $0.01 \mathrm{M} \mathrm{HCl}: \mathrm{H}^{+}$ions remove OH^{-}ions from solution so the base equilibrium reaction shifts to the right, consuming F^{-}. This shifts the ion-product equilibrium to the right so that more CaF_{2} dissolves in this solution than in pure water.
(V) $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$: Because of the common ion effect, less CaF_{2} would dissolve in this solution than in pure water. Additional OH^{-}ions shift the base equilibrium reaction to the left, producing more F^{-}. The additional F^{-} shifts the ion-product equilibrium to the left so less CaF_{2} would dissolve.
a) 0.01 M HCl
b) $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
19.131 a) The NaOH is a strong base, so it dissociates completely.

$$
\begin{aligned}
& \mathrm{NaOH}(s) \\
& 0.050 \mathrm{~mol}
\end{aligned} \quad \rightarrow \quad \begin{array}{ll}
\mathrm{Na}^{+}(a q)+ \\
0.050 \mathrm{~mol}
\end{array} \quad \begin{aligned}
& \mathrm{OH}^{-}(a q) \\
& 0.050 \mathrm{~mol}
\end{aligned}
$$

The OH^{-}ions from NaOH will react with HClO .

$\mathrm{OH}^{-}(a q)+$	$\mathrm{HClO}(a q)$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}(l)+$	$\mathrm{ClO}^{-}(a q)$
0.050 mol	0.13 mol			0
-0.050 mol	-0.050 mol			+0.050 mol
0	0.080 mol			0.050 mol

The initial amount of HClO is $0.13 \mathrm{~mol}-0.050 \mathrm{~mol}=0.08 \mathrm{~mol}$
The initial amount of ClO^{-}is 0.050 mol ClO .
The volume of the solution is $(500 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.500 \mathrm{~L}$

$$
\left.\begin{array}{l}
{[\mathrm{HClO}]_{\mathrm{i}}=(0.080 \mathrm{~mol} \mathrm{HClO}) /(0.500 \mathrm{~L})=0.16 \mathrm{M} \mathrm{HClO}^{-1}} \\
{\left[\mathrm{ClO}^{-}\right]_{\mathrm{I}}=(0.050 \mathrm{~mol} \mathrm{ClO}}
\end{array}\right) /(0.500 \mathrm{~L})=0.10 \mathrm{M} \mathrm{OCl}^{-}-1 .
$$

Concentration (M)	$\mathrm{HClO}(a q)+\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$	+
Initial	0.16	-	$\mathrm{ClO}^{-}(a q)$	
Change	-x	+x	0.10	
Equilibrium	$0.16-\mathrm{x}$		x	+x
x is small, $\mathrm{Co}[\mathrm{HClO}] \approx \mathbf{0 . 1 6 ~} \mathbf{M} \mathbf{~ H C l O}$ and $\left[\mathrm{ClO}^{-}\right] \approx \mathbf{0 . 1 0} \mathbf{M ~ C l O}^{-}$		$0.10+\mathrm{x}$		

x is small, so $[\mathrm{HClO}] \approx \mathbf{0 . 1 6} \mathbf{~ M ~ H C l O}$ and $\left[\mathrm{ClO}^{-}\right] \approx \mathbf{0 . 1 0} \mathbf{~ M ~ C l O}$

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HClO}]}{\left[\mathrm{ClO}^{-}\right]}}
\end{aligned}
$$

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\left(3.0 \times 10^{-8}\right)(0.16)}{(0.10)}=\mathbf{4 . 8} \times \mathbf{1 0}^{-8} \boldsymbol{M} \mathbf{H}_{3} \mathbf{O}^{+}$
$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left(1.0 \times 10^{-14}\right) /\left(4.8 \times 10^{-8}\right)=2.08333 \times 10^{-7}=\mathbf{2 . 1} \times \mathbf{1 0}^{-\mathbf{7}} \mathbf{M} \mathbf{O H}^{-}$
$\left[\mathrm{Na}^{+}\right]=(0.050 \mathrm{~mol}) /(0.500 \mathrm{~L})=\mathbf{0 . 1 0} \mathbf{M ~ N a}^{+}$
b) $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(4.8 \times 10^{-8} M\right)=7.31875876=7.32$
c) If 0.0050 mol HCl is added then the ClO^{-}will react with the H^{+}to form HClO .

$\mathrm{H}^{+}(a q)+$	$\mathrm{ClO}^{-}(a q)$	\rightarrow	$\mathrm{HClO}(a q)$
0.0050 mol	0.050 mol		0.080 mol
-0.0050 mol	-0.0050 mol		+0.0050 mol
0	0.045 mol		0.085 mol

$[\mathrm{HClO}]_{\mathrm{i}}=(0.085 \mathrm{~mol} \mathrm{HClO}) /(0.500 \mathrm{~L})=0.17 \mathrm{M} \mathrm{HClO}$
$\left[\mathrm{ClO}^{-}\right]_{\mathrm{I}}=\left(0.045 \mathrm{~mol} \mathrm{ClO}^{-}\right) /(0.500 \mathrm{~L})=0.090 \mathrm{M} \mathrm{OCl}^{-}$

Concentration (M)	$\mathrm{HClO}(a q)+\mathrm{H}_{2} \mathrm{O}$	\leftrightarrows	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)$	+
Initial	0.17	-	$\mathrm{ClO}^{-}(a q)$	
Change	-x		+x	0.090
Equilibrium	$0.17-\mathrm{x}$	x	+x	
				$0.090+\mathrm{x}$

x is small, so $[\mathrm{HClO}] \approx 0.17 \mathrm{M}$ and $\left[\mathrm{ClO}^{-}\right] \approx 0.090 \mathrm{M}$

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}[\mathrm{HClO}]}{\left[\mathrm{ClO}^{-}\right]}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{\left(3.0 \times 10^{-8}\right)(0.17)}{(0.090)}=5.6667 \times 10^{-8} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+} \text {(unrounded) }} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(5.6667 \times 10^{-8} \mathrm{M}\right)=7.246669779=7.25
\end{aligned}
$$

19.132 In both cases the equilibrium is: $\mathrm{CaCO}_{3}(s) \leftrightarrows \mathrm{Ca}^{2+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$

$$
K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]=\mathrm{S}^{2}
$$

At $10^{\circ} \mathrm{C}$

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{S}^{2}=4.4 \times 10^{-9} \\
& \mathrm{~S}=6.6332495 \times 10^{-5}=\mathbf{6 . 6} \times \mathbf{1 0}^{-5} \mathbf{M} \mathbf{C a C O}_{3}
\end{aligned}
$$

At $30^{\circ} \mathrm{C}$

$$
\begin{aligned}
& K_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{S}^{2}=3.1 \times 10^{-9} \\
& \mathrm{~S}=5.5677643 \times 10^{-5}=\mathbf{5 . 6} \times \mathbf{1 0}^{-5} \mathbf{M} \mathbf{C a C O}_{3}
\end{aligned}
$$

$19.133 \mathrm{Hg}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{~s}) \leftrightarrows \mathrm{Hg}_{2}{ }^{2+}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q)$

$$
\begin{aligned}
& K_{\mathrm{sp}}=1.75 \times 10^{-13}=\left[\mathrm{Hg}_{2}{ }^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=(0.13+\mathrm{S}) \mathrm{S} \approx(0.13) \mathrm{S} \\
& \mathrm{~S}=1.3461538 \times 10^{-12}=\mathbf{1 . 3} \times \mathbf{1 0}^{-\mathbf{1 2}} \boldsymbol{M}
\end{aligned}
$$

$19.134 \mathrm{CaCO}_{3}(s) \leftrightarrows \mathrm{Ca}^{2+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q)$

$$
\begin{aligned}
& K_{\mathrm{sp}}=3.3 \times 10^{-9}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{S}^{2} \\
& \mathrm{~S}=\left[\mathrm{Ca}^{2+}\right]=5.7445626 \times 10^{-5}=5.7 \times \mathbf{1 0}^{-5} \mathbf{M}
\end{aligned}
$$

$19.135\left[\mathrm{H}^{+}\right]=10^{-9.5}=3.1622776 \times 10^{-10} \mathrm{M} \mathrm{H}^{+}$(unrounded)
$\mathrm{pOH}=14.0-\mathrm{pH}=14.0-9.5=4.5$
$\left[\mathrm{OH}^{-}\right]=10^{-4.5}=3.1622776 \times 10^{-5} \mathrm{M} \mathrm{OH}^{-}$(unrounded)
$\left[\mathrm{HCO}_{3}^{-}\right]=\left(\frac{65.0 \mathrm{mg} \mathrm{HCO}_{3}^{-}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HCO}_{3}^{-}}{61.02 \mathrm{~g} \mathrm{HCO}_{3}^{-}}\right)=1.0652245 \times 10^{-3} M \mathrm{HCO}_{3}^{-}$(unrounded)
$\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left(\frac{26.0 \mathrm{mg} \mathrm{CO}_{3}{ }^{2-}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{3}{ }^{2-}}{60.01 \mathrm{~g} \mathrm{CO}_{3}{ }^{2-}}\right)=4.3326112 \times 10^{-4} \mathrm{M} \mathrm{CO}_{3}{ }^{2-}$ (unrounded)
Alkalinity $=\left[\mathrm{HCO}_{3}{ }^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
Alkalinity $=\left(1.0652245 \times 10^{-3}\right)+2\left(4.3326112 \times 10^{-4}\right)+\left(3.1622776 \times 10^{-5}\right)-\left(3.1622776 \times 10^{-10}\right)$
Alkalinity $=1.9633692 \times 10^{-3}=\mathbf{1 . 9 6} \times \mathbf{1 0}^{-\mathbf{3}} \boldsymbol{M}$
19.136 To determine which species are present from a buffer system of a polyprotic acid, check the $\mathrm{p} K_{\mathrm{a}}$ values for the one that is closest to the pH of the buffer. The two components involved in the equilibrium associated with this K_{a} are the principle species in the buffer. For carbonic acid, $\mathrm{p} K_{\mathrm{a} 1}\left[-\log \left(8 \times 10^{-7}\right)=6.1\right]$ is closest to the pH of 7.4 , so $\mathrm{H}_{2} \mathrm{CO}_{3}$ and HCO_{3}^{-}are the species present. For phosphoric acid, $\mathrm{p} K_{\mathrm{a} 2}\left[-\log \left(2.3 \times 10^{-7}\right)=6.6\right]$ is closest to the pH , so $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and $\mathrm{HPO}_{4}{ }^{2-}$ are the principle species present.
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{HPO}_{4}{ }^{2-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7.4}=3.98107 \times 10^{-8} \mathrm{M}$ (unrounded)
$K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]}$

$$
\frac{\left[\mathrm{HPO}_{4}{ }^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}=\frac{\mathrm{K}_{\mathrm{a} 2}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{2.3 \times 10^{-7}}{3.98107 \times 10^{-8}}=5.777341=5.8
$$

19.137 The pH 3 buffer holds the pH close to 3 and the litmus changes color accordingly. The 0.001 M HCl is initially at pH 3 , but it is diluted when added to the litmus. Due to the dilution the pH rises above 3, and will not cause the litmus to change color.
19.138 Litmus paper indicates the pH is below 7. The result from thymol blue, which turns yellow at a pH above 2.5 , indicates that the pH is above 2.5. Bromphenol blue is the best indicator as it is green in a fairly narrow range of $3.5<\mathrm{pH}<4$. Methyl red turns red below a pH of 4.3. Therefore, a reasonable estimate for the rainwater pH is 3.5 to 4.
19.139 Determine the minimum pH needed to cause the initial precipitation of NiS.

$$
\begin{aligned}
& \mathrm{NiS}(s)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{Ni}^{2+}(a q)+\mathrm{HS}^{-}(a q)+\mathrm{OH}^{-}(a q) \\
& K_{\text {sp }}(\mathrm{NiS})=3 \times 10^{-16}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

$\left[\mathrm{Ni}^{2+}\right]=0.15 \mathrm{M}$, so $\left[\mathrm{HS}^{-}\right]$and $\left[\mathrm{OH}^{-}\right]$must be found.
From $\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.050 \mathrm{M}$ and $K_{\mathrm{a} 1}$ in the Appendix:

$$
\mathrm{H}_{2} \mathrm{~S}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{HS}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

$$
K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{[0.050-\mathrm{x}]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right]}{[0.050]}=9 \times 10^{-8}
$$

$$
\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.5 \times 10^{-9} \text { or }\left[\mathrm{HS}^{-}\right]=4.5 \times 10^{-9} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$\left[\mathrm{OH}^{-}\right]=K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$K_{\text {sp }}(\mathrm{NiS})=3 \times 10^{-16}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]$
$K_{\text {sp }}(\mathrm{NiS})=3 \times 10^{-16}=(0.15)\left(4.5 \times 10^{-9} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)\left(K_{\mathrm{w}} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
$\left.3 \times 10^{-16}=(0.15)\left(4.5 \times 10^{-9}\right)\left(1.0 \times 10^{-14}\right) /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}\right)$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=\left[(0.15)\left(4.5 \times 10^{-9}\right)\left(1.0 \times 10^{-14}\right)\right] /\left(3 \times 10^{-16}\right)=2.25 \times 10^{-8}$ (unrounded)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.5 \times 10^{-4} M$ (unrounded)
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.5 \times 10^{-4} M\right)=3.8239=3.8$
19.140 a) Combine the separate equilibria to produce the desired equilibrium. The K values are in the Appendix.
$2 \mathrm{AgCl}(\mathrm{s}) \leftrightarrows 2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(a q) \quad K^{\prime}=\left(K_{\mathrm{sp}}\right)^{2}=\left(1.8 \times 10^{-10}\right)^{2}=3.24 \times 10^{-20} \quad$ (unrounded)
$Z \mathrm{Ag}^{+}(a q)+\mathrm{CrO}_{4}{ }^{2-}(a q) \leftrightarrows \mathrm{Ag}_{2} \mathrm{CrO}_{4}(s) \quad K^{\prime \prime}=1 / K_{\text {sp }}=1 / 2.6 \times 10^{-12}=3.846 \times 10^{11}$ (unrounded)
$2 \mathrm{AgCl}(s)+\mathrm{CrO}_{4}^{-2-}(a q) \leftrightarrows \mathrm{Ag}_{2} \mathrm{CrO}_{4}^{-}(s)+2 \mathrm{Cl}^{-}(a q) \quad K=K^{\prime} K^{\prime \prime}=1.2461 \times 10^{-8}=\mathbf{1 . 2} \mathbf{x 1 0} 0^{-8}$
b) Since the above reaction has such a small K, it lies far to the left as written.
c) The mixing of equal amounts of equal molar solutions would precipitate all the AgCl , thus the silver ion concentration comes entirely from the $K_{\text {sp }}$ of AgCl .

$$
\begin{aligned}
& K_{\mathrm{sp}}=1.8 \times 10^{-10}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\mathrm{S}^{2} \\
& \mathrm{~S}=\left[\mathrm{Ag}^{+}\right]=1.34164 \times 10^{-5} \mathrm{M}=\mathbf{1 . 3} \times \mathbf{1 0}^{-5} \mathbf{M ~ A g}^{+}
\end{aligned}
$$

Use the $K_{\text {sp }}$ for silver chromate.

$$
\begin{aligned}
& K_{\mathrm{sp}}=2.6 \times 10^{-12}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right] \\
& {\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\left(2.6 \times 10^{-12}\right) /\left(1.34164 \times 10^{-5}\right)^{2}=0.01444=0.014 \mathrm{M}}
\end{aligned}
$$

If the chromate ion concentration exceeds $0.014 \mathrm{M}, \mathrm{Ag}_{2} \mathrm{CrO}_{4}$ will precipitate.
19.141 a) To find the concentration of HCl after neutralizing the quinidine, calculate the concentration of quinidine and the amount of HCl required to neutralize it, remembering that the mole ratio for the neutralization is $2 \mathrm{~mol} \mathrm{HCl} / 1 \mathrm{~mol}$ quinidine.

$$
\begin{aligned}
& \text { Moles quinidine }=(33.85 \mathrm{mg} \text { quinidine })\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mathrm{~mol} \text { quinidine }}{324.41 \mathrm{~g} \text { quinidine }}\right) \\
& \left.\qquad=1.0434326 \times 10^{-4} \mathrm{~mol} \text { quinidine (unrounded }\right) \\
& \text { Moles } \mathrm{HCl} \text { excess }=(6.55 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.150 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~L}}\right) \\
& \quad-\left(1.0434326 \times 10^{-4} \mathrm{~mol} \text { quinidine }\right)\left(\frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \text { quinidine }}\right)=7.7381348 \times 10^{-4} \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

(unrounded)

$$
\text { Volume needed }=\left(7.7381348 \times 10^{-4} \mathrm{~mol} \mathrm{HCl}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{HCl}}\right)\left(\frac{1 \mathrm{~L}}{0.0133 \mathrm{~mol} \mathrm{NaOH}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)
$$

$$
=58.18146=58.2 \mathbf{~ m L ~ N a O H} \text { solution }
$$

b) Use the moles of quinidine and the concentration of the NaOH to determine the milliliters.

$$
\text { Volume }=\left(1.043436 \times 10^{-4} \text { mol quinidine }\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \text { quinidine }}\right)\left(\frac{1 \mathrm{~L}}{0.0133 \mathrm{~mol} \mathrm{NaOH}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)
$$

$$
=7.84538=7.84 \mathrm{~mL} \mathrm{NaOH} \text { solution }
$$

c) When quinidine (QNN) is first acidified, it has the general form $\mathrm{QNH}^{+} \mathrm{NH}^{+}$. At the first equivalence point, one of the acidified nitrogen atoms has completely reacted, leaving a singly protonated form, QNNH^{+}. This form of quinidine can react with water as either an acid or a base, so both must be considered. If the concentration of quinidine at the first equivalence point is greater than $K_{\mathrm{b} 1}$, then the $\left[\mathrm{OH}^{-}\right]$at the first equivalence point can be estimated as:

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b} 1} \mathrm{~K}_{\mathrm{b} 2}}=\sqrt{\left(4.0 \times 10^{-6}\right)\left(1.0 \times 10^{-10}\right)}=2.0 \times 10^{-8} M} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(2.0 \times 10^{-8}\right)=5.0 \times 10^{-7} \mathrm{M}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(5.0 \times 10^{-7} M\right)=6.3010=\mathbf{6 . 3 0}
\end{aligned}
$$

19.142 K values from the Appendix:
c. The higher pH would favor precipitation.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \leftrightarrows \mathrm{H}^{+}(a q)+\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq}) \\
& \mathrm{HC}_{2} \underline{\mathrm{O}}_{4}-(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \underline{\mathrm{O}}_{4}{ }^{2-}(\mathrm{aq}) \\
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \leftrightarrows 2 \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \\
& K=\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] \\
& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=K\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] /\left[\mathrm{H}^{+}\right]^{2}} \\
& \text { a. At } \mathrm{pH}=5.5: \quad\left[\mathrm{H}^{+}\right]=10^{-5.5}=3.162 \times 10^{-6} M \text { (unrounded) } \\
& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=K\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] /\left[\mathrm{H}^{+}\right]^{2}=\left(3.024 \times 10^{-6}\right)\left(3.0 \times 10^{-13}\right) /\left(3.162 \times 10^{-6}\right)^{2}} \\
& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=9.07359 \times 10^{-8} \mathrm{M} \text { (unrounded) }} \\
& Q=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] \\
& Q=\left(2.6 \times 10^{-3}\right)\left(9.07359 \times 10^{-8}\right)=2.3591 \times 10^{-10}=2.4 \times 10^{-10}<K_{\text {sp }}=\text { No precipitate } \\
& \text { b. At } \mathrm{pH}=7.0: \quad\left[\mathrm{H}^{+}\right]=10^{-7.0}=1 \times 10^{-7} \mathrm{M} \\
& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=K\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] /\left[\mathrm{H}^{+}\right]^{2}=\left(3.024 \times 10^{-6}\right)\left(3.0 \times 10^{-13}\right) /\left(1 \times 10^{-7}\right)^{2}} \\
& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=9.072 \times 10^{-5} \mathrm{M} \text { (unrounded) }} \\
& Q=\left(2.6 \times 10^{-3}\right)\left(9.072 \times 10^{-5}\right)=2.35872 \times 10^{-7}=2.4 \times 10^{-7}>K_{\text {sp }}=\text { Precipitate forms }
\end{aligned}
$$

19.143 The Henderson-Hasselbalch equation demonstrates that the pH changes when the ratio of acid to base in the buffer changes ($\mathrm{p} K_{\mathrm{a}}$ is constant at a given temperature):

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)
$$

The pH of the $\mathrm{A}^{-} / \mathrm{HA}$ buffer cannot be calculated because the identity of " A " and, thus, the value of $\mathrm{p} K_{\mathrm{a}}$ are unknown. However, the change in pH can be described:

$$
\Delta \mathrm{pH}=\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)_{\text {final }}-\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)_{\text {initial }}
$$

Since both $[\mathrm{HA}]$ and $\left[\mathrm{A}^{-}\right]=0.10 \mathrm{M}, \log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)_{\text {initial }}=0$ because $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$, and $\log (1)=0$
So the change in pH is equal to the concentration ratio of base to acid after the addition of $\mathrm{H}_{3} \mathrm{O}^{+}$.
Consider the buffer prior to addition to the medium.

$\mathrm{H}_{3} \mathrm{O}^{+}(a q)+$	$\mathrm{A}^{-}(a q) \rightarrow$	$\mathrm{HA}(a q)$
0.0010 mol	0.10 mol	0.10 mol
-0.0010 mol	-0.0010 mol	+0.0010 mol
0	0.099 mol	0.101 mol

When $0.0010 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}$is added to 1 L of the undiluted buffer, the $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]$ ratio changes from $0.10 / 0.10$ to $(0.099) /(0.101)$. The change in pH is:

$$
\Delta \mathrm{pH}=\log (0.099 / 0.101)=-0.008686(\text { unrounded })
$$

If the undiluted buffer changes 0.009 pH units with addition of $0.0010 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}$, how much can the buffer be diluted and still not change by 0.05 pH units ($\Delta \mathrm{pH}<0.05$)?
Let $x=$ fraction by which the buffer can be diluted. Assume $0.0010 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}$is added to 1 L .

$$
\begin{aligned}
& \log \frac{[\text { base }]}{[\text { acid }]}=\log \left(\frac{(0.10 \mathrm{x}-0.0010)}{(0.10 \mathrm{x}+0.0010)}\right)=-0.05 \\
& \left(\frac{(0.10 \mathrm{x}-0.0010)}{(0.10 \mathrm{x}+0.0010)}\right)=10^{-0.05}=0.89125 \text { (unrounded) } \\
& 0.10 \mathrm{x}-0.0010=0.89125(0.10 \mathrm{x}+0.0010) \\
& x=0.173908=0.17
\end{aligned}
$$

The buffer concentration can be decreased by a factor of 0.17 , or $\mathbf{1 7 0} \mathbf{~ m L}$ of buffer can be diluted to 1 L of medium. At least this amount should be used to adequately buffer the pH change.
19.144
a) $K_{\mathrm{a}}=6.8 \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=\frac{\mathrm{x}^{2}}{0.2500-\mathrm{x}} \approx \frac{\mathrm{x}^{2}}{0.2500}$
$\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0130384 \mathrm{M}$ (unrounded)

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (0.0130384 \mathrm{M})=1.8847757=\mathbf{1 . 8 8}
$$

b) Volume $=(35.00 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.2500 \mathrm{~mol} \mathrm{HF}}{1 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{HF}}\right)\left(\frac{1 \mathrm{~L}}{0.1532 \mathrm{~mol} \mathrm{NaOH}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)$

$$
=57.11488=57.11 \mathbf{~ m L ~ N a O H}
$$

c) Moles HF $($ original $)=(35.00 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.2500 \mathrm{~mol} \mathrm{HF}}{1 \mathrm{~L}}\right)=8.750 \times 10^{-3} \mathrm{~mol} \mathrm{HF}$

Moles NaOH added $=((57.11488-0.50) \mathrm{mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.1532 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}}\right)=8.673 \times 10^{-3} \mathrm{~mol} \mathrm{NaOH}$
Moles F^{-}formed $=$moles NaOH
Moles HF remaining $=\left(8.750 \times 10^{-3}-8.673 \times 10^{-3}\right) \mathrm{mol}=7.7 \times 10^{-5} \mathrm{~mol} \mathrm{HF}$
Volume of solution $=(35.00+57.11488-0.50)\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.09161 \mathrm{~L}$
$[\mathrm{HF}]=\left(7.7 \times 10^{-5} \mathrm{~mol} \mathrm{HF}\right) /(0.09161 \mathrm{~L})=0.0008405 \mathrm{M} \mathrm{HF}$
$\left[\mathrm{F}^{-}\right]=\left(8.673 \times 10^{-3} \mathrm{~mol} \mathrm{~F}^{-}\right) /(0.09161 \mathrm{~L})=0.09467 \mathrm{M} \mathrm{F}^{-}$

$$
\begin{aligned}
& \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=-\log 6.8 \times 10^{-4}=3.1675(\text { unrounded }) \\
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left[\mathrm{F}^{-}\right] /[\mathrm{HF}] \\
& =3.1675+\log (0.09467) /\left(8.405 \times 10^{-4}\right) \\
& =5.21917=5.22
\end{aligned}
$$

d) At this point there are $8.750 \times 10^{-3} \mathrm{~mol}$ of F^{-}in $(35.00+57.11488) \mathrm{mL}$ of solution.

The molarity of F^{-}is

$$
\begin{aligned}
& \quad M \mathrm{~F}^{-}=\left(\frac{8.750 \times 10^{-3} \mathrm{~mol} \mathrm{~F}^{-}}{(35.00+57.11488) \mathrm{mL}}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)=0.09499 \mathrm{M} \mathrm{~F}^{-} \text {(unrounded) } \\
& K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=\left(1.0 \times 10^{-14}\right) /\left(6.8 \times 10^{-4}\right)=1.470588 \times 10^{-11}(\text { unrounded }) \\
& K_{\mathrm{b}}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]}=\frac{\mathrm{x}^{2}}{0.09499-\mathrm{x}} \approx \frac{\mathrm{x}^{2}}{0.09499}=1.470588 \times 10^{-11} \\
& \mathrm{x}=\left[\mathrm{OH}^{-}\right]=1.1819 \times 10^{-6} M(\text { unrounded }) \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(1.1819 \times 10^{-6}\right)=8.4609527 \times 10^{-9} M \text { (unrounded) }} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(8.4609527 \times 10^{-9} M\right)=8.07258=\mathbf{8 . 0 7}
\end{aligned}
$$

e) Moles NaOH excess $=(0.50 \mathrm{~mL})\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.1532 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~L}}\right)=7.66 \times 10^{-5} \mathrm{~mol} \mathrm{NaOH}$ (unrounded)

Volume of solution $=(35.00+57.11488+0.50)\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.09261 \mathrm{~L}$
$\left[\mathrm{OH}^{-}\right]=\left(7.66 \times 10^{-5} \mathrm{~mol} \mathrm{~F}^{-}\right) /(0.09261 \mathrm{~L})=8.271 \times 10^{-4} \mathrm{M} \mathrm{OH}^{-}$(unrounded)
The excess OH^{-}will predominate and essentially control the pH .

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(8.271 \times 10^{-4}\right)=1.2090436 \times 10^{-11} M \text { (unrounded) }} \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.2090436 \times 10^{-11} M\right)=10.917558=\mathbf{1 0 . 9 2}
\end{aligned}
$$

19.145 a) The formula is $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ which simplifies to the empirical formula $\mathbf{H g C l}$.
b) The equilibrium is: $\mathrm{Hg}_{2} \mathrm{Cl}_{2}(s) \leftrightarrows \mathrm{Hg}_{2}{ }^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \quad K_{\text {sp }}=1.5 \times 10^{-18}$

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Hg}_{2}{ }^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=(\mathrm{S})(2 \mathrm{~S})^{2}=4 \mathrm{~S}^{3}=1.5 \times 10^{-18} \\
& \mathrm{~S}=7.2112478 \times 10^{-7}=\mathbf{7 . 2} \times \mathbf{1 0}^{-7} \boldsymbol{M}
\end{aligned}
$$

c) $\left[\mathrm{Hg}_{2}{ }^{2+}\right]=K_{\text {sp }} /\left[\mathrm{Cl}^{-}\right]^{2}=$

$$
1.5 \times 10^{-18}
$$

$\overline{\left[\left(\frac{0.20 \mathrm{lb} \mathrm{NaCl}}{\mathrm{gal}}\right)\left(\frac{1 \mathrm{~kg}}{2.205 \mathrm{lb}}\right)\left(\frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol} \mathrm{NaCl}}\right)\left(\frac{1 \mathrm{gal}}{4 \mathrm{qt}}\right)\left(\frac{1.057 \mathrm{qt}}{1 \mathrm{~L}}\right)\right]^{2}}$

$$
=8.9174129 \times 10^{-18}=\mathbf{8 . 9} \times \mathbf{1 0}^{-\mathbf{1 8}} \mathbf{M ~ H g}_{2}{ }^{2+}
$$

d) Use the value of S for a saturated solution (see part (b)).

$$
\begin{aligned}
\text { Mass }= & \left(\frac{7.2112478 \times 10^{-7} \mathrm{~mol} \mathrm{Hg}_{2} \mathrm{Cl}_{2}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~L}}{10^{-3} \mathrm{~m}^{3}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{3}\left(4900 \mathrm{~km}^{3}\right)\left(\frac{472.1 \mathrm{~g} \mathrm{Hg}_{2} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Hg}_{2} \mathrm{Cl}_{2}}\right) \\
& =1.6681707 \times 10^{12}=\mathbf{1 . 7} \times \mathbf{1 0}^{\mathbf{1 2}} \mathbf{g ~ H g}_{2} \mathbf{C l}_{\mathbf{2}}
\end{aligned}
$$

e) Use the value determined in part (c).

$$
\begin{gathered}
\text { Mass }=\left(\frac{8.9174129 \times 10^{-18} \mathrm{~mol} \mathrm{Hg}_{2}{ }^{2+}}{\mathrm{L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Hg}_{2} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Hg}_{2}{ }^{2+}}\right)\left(\frac{1 \mathrm{~L}}{10^{-3} \mathrm{~m}^{3}}\right)\left(\frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}\right)^{3}\left(4900 \mathrm{~km}^{3}\right)\left(\frac{472.1 \mathrm{~g} \mathrm{Hg}_{2} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Hg}_{2} \mathrm{Cl}_{2}}\right) \\
=20.62856=\mathbf{2 1} \mathbf{~ g ~ H g}_{2} \mathbf{C l}_{2}
\end{gathered}
$$

19.146 To find the volume of rain, first convert the inches to yards and find the volume in yd^{3}. Then convert units to cm^{3} and on to L.
$(10.0$ acres $)\left(\frac{4.840 \times 10^{3} \mathrm{yd}^{2}}{1 \text { acre }}\right)\left(\frac{36 \mathrm{in}}{1 \mathrm{yd}}\right)^{2}(1.00 \mathrm{in})\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3}\left(\frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)=1.0279015 \times 10^{6} \mathrm{~L}$ (unrounded)
a) At $\mathrm{pH}=4.20,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-4.20}=6.3095734 \times 10^{-5} \mathrm{M}$ (unrounded)

$$
\mathrm{Mol} \mathrm{H}_{3} \mathrm{O}^{+}=\left(6.3095734 \times 10^{-5} M\right)\left(1.0279015 \times 10^{6} \mathrm{~L}\right)=64.8562=\mathbf{6 5} \mathrm{mol}
$$

b) Volume $=(10.0$ acres $)\left(\frac{4.840 \times 10^{3} \mathrm{yd}^{2}}{1 \text { acre }}\right)\left(\frac{36 \mathrm{in}}{1 \mathrm{yd}}\right)^{2}(10.0 \mathrm{ft})\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3}\left(\frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)$
$=1.23348 \times 10^{8} \mathrm{~L}$ (unrounded)
Total volume of lake after rain $=1.23348 \times 10^{8} \mathrm{~L}+1.0279015 \times 10^{6} \mathrm{~L}=1.243759 \times 10^{8} \mathrm{~L}$ (unrounded) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=64.8562 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+} / 1.243759 \times 10^{8} \mathrm{~L}=5.214531 \times 10^{-7} \mathrm{M}$ $\mathrm{pH}=-\log \left(5.214531 \times 10^{-7}\right)=6.2827847=6.28$
c) Each mol of $\mathrm{H}_{3} \mathrm{O}^{+}$requires one mole of $\mathrm{HCO}_{3}{ }^{-}$for neutralization.

$$
\text { Mass }=\left(64.8562 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HCO}_{3}^{-}}{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{O}^{+}}\right)\left(\frac{61.02 \mathrm{~g} \mathrm{HCO}_{3}^{-}}{1 \mathrm{~mol} \mathrm{HCO}_{3}^{-}}\right)=3.97575 \times 10^{3}=\mathbf{4 . 0} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{g ~ H C O}_{3}^{-}
$$

19.147 a) $\mathbf{C a F}_{2}$ with $K_{\text {sp }}=3.2 \times 10^{-11}$ will precipitate before BaF_{2} with $K_{\text {sp }}=1.5 \times 10^{-6}$.
b) Add KF until $\left[\mathrm{F}^{-}\right]$is such that the CaF_{2} precipitates but just lower than the concentration required to precipitate BaF_{2}.
c) Determine the barium concentration after mixing from $M_{\text {con }} V_{\text {con }}=M_{\text {dil }} V_{\text {dil }}$.
$\left[\mathrm{Ba}^{2+}\right]=[(0.090 M)(25.0 \mathrm{~mL})] /[(25.0+35.0) \mathrm{mL}]=0.0375 M$ (unrounded)
Use the barium ion concentration and the K_{sp} to find the fluoride ion concentration.

$$
\begin{aligned}
& {\left[\mathrm{F}^{-}\right]^{2}=K_{\text {sp }} /\left[\mathrm{Ba}^{2+}\right]=\left(1.5 \times 10^{-6}\right) /(0.0375)=4.0 \times 10^{-5}} \\
& {\left[\mathrm{~F}^{-}\right]=6.324555 \times 10^{-3}=\mathbf{6 . 3} \times 10^{-3} \mathrm{M} \text { or less }}
\end{aligned}
$$

19.148 Carbon dioxide dissolves in water to produce $\mathrm{H}_{3} \mathrm{O}^{+}$ions:

$$
\begin{aligned}
& \mathrm{CO}_{2}(g) \leftrightarrows \mathrm{CO}_{2}(a q) \\
& \mathrm{CO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{H}_{2} \mathrm{CO}_{3}(a q) \\
& \mathrm{H}_{2} \mathrm{CO}_{3}(a q) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)
\end{aligned}
$$

The molar concentration of $\mathrm{CO}_{2},\left[\mathrm{CO}_{2}\right]$, depends on how much $\mathrm{CO}_{2}(g)$ from the atmosphere can dissolve in pure water. At $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm} \mathrm{CO}_{2}, 88 \mathrm{~mL}$ of CO_{2} can dissolve in 100 mL of $\mathrm{H}_{2} \mathrm{O}$. The number of moles of CO_{2} in 88 mL of CO_{2} is:
Moles $\mathrm{CO}_{2}=\mathrm{PV} / \mathrm{RT}=\frac{(1 \mathrm{~atm})(88 \mathrm{~mL})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)((273+25) \mathrm{K})}\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)\left(\frac{0.033 \%}{100 \%}\right)$
$=1.186963 \times 10^{-6} \mathrm{~mol} \mathrm{CO}_{2}$ (unrounded)
Since air is not pure CO_{2}, account for the volume fraction of air $(0.033 \mathrm{~L} / 100 \mathrm{~L})$ when determining the moles. $\left[\mathrm{CO}_{2}\right]=\left(1.186963 \times 10^{-6} \mathrm{~mol} \mathrm{CO}_{2}\right) /\left[(100 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)\right]=1.186963 \times 10^{-5} \mathrm{M} \mathrm{CO}_{2}$ (unrounded)

$$
K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]}=4.5 \times 10^{-7}
$$

Let $\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]$

$$
\begin{gathered}
\frac{[\mathrm{x}][\mathrm{x}]}{\left[1.186963 \times 10^{-5}-\mathrm{x}\right]}=4.5 \times 10^{-7} \\
\mathrm{x}^{2}+4.5 \times 10^{-7} \times-5.341336 \times 10^{-12}=0 \\
\mathrm{x}=2.0970596 \times 10^{-6} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {(unrounded) } \\
\mathrm{pH}=-\log \left(2.0970596 \times 10^{-6}\right)=5.678389=\mathbf{5 . 6 8}
\end{gathered}
$$

19.149 a) For $\mathrm{H}_{2} \mathrm{CO}_{3}$,
$\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$
$\mathrm{p} K_{\mathrm{a} 1}=-\log 4.5 \times 10^{-7}=6.3468$ (unrounded)
$\mathrm{p} K_{\mathrm{a} 2}=-\log 4.7 \times 10^{-11}=10.3279$ (unrounded)
$\mathrm{p} K_{\mathrm{a} 1}=6.35$ and $\mathrm{p} K_{\mathrm{a} 2}=10.33$. Since $\mathrm{p} K_{\mathrm{a} 1}>\mathrm{pH}<\mathrm{p} K_{\mathrm{a} 2}$, the base in the first dissociation $\left(\mathrm{HCO}_{3}{ }^{-}\right)$and the acid in the second dissociation (also HCO_{3}^{-}) will predominate.
b) $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log [$ base $] /[$ acid $]$
$8.5=6.35+\log \left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
$\left[\mathrm{HCO}_{3}{ }^{-}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=1.4125 \times 10^{2}=1 \times 10^{2} \mathrm{M}$ (unrounded) (8.5 limits the significant figures)
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log$ [base] $/$ [acid]
$8.5=10.33+\log \left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$
$\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]=1.4791 \times 10^{--}=1 \times 10^{-2} \mathrm{M}$ (unrounded)
c) In deep water, animals can exist but plants, which depend on light for photosynthesis, cannot. Photosynthesis converts carbon dioxide to oxygen; animals convert oxygen to carbon dioxide. Near the surface, plants remove carbon dioxide (which, in water, can be represented as the weak acid $\mathrm{H}_{2} \mathrm{CO}_{3}$) and thus the pH is higher than in deep water, where higher concentrations of carbon dioxide $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ accumulate. Also, at greater depths, the pressure is higher and so is the concentration of CO_{2} (Henry's Law).
19.150 Initial concentrations of Pb^{2+} and $\mathrm{Ca}(E D T A)^{2-}$ before reaction based on mixing 100 . mL of 0.10 M Na 2 Ca (EDTA) with 1.5 L blood:

$$
\left.\left.\begin{array}{l}
{\left[\mathrm{Pb}^{2+}\right]=\left(\frac{120 \mu \mathrm{~g} \mathrm{~Pb}}{}{ }^{2+}\right.} \\
100 \mathrm{~mL}
\end{array}\right)\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1.5 \mathrm{~L} \text { blood }}{1.6 \mathrm{~L} \text { mixture }}\right)\left(\frac{10^{-6} \mathrm{~g}}{1 \mu \mathrm{~g}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~Pb}^{2+}}{207.2 \mathrm{~g} \mathrm{~Pb}^{2+}}\right)=5.4295366 \times 10^{-6} \mathrm{M} \mathrm{~Pb}^{2+} \text { (unrounded) }\right) ~ \begin{aligned}
& M_{\text {con }} \mathrm{V}_{\text {con }}=M_{\text {dil }} \mathrm{V}_{\text {dil }} \\
& \quad\left[\mathrm{Ca}(\mathrm{EDTA})^{2-}\right]=M_{\text {con }} \mathrm{V}_{\text {con }} / \mathrm{V}_{\text {dil }}=\left[(0.10 M)(100 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)\right] /(1.6 \mathrm{~L}) \\
& \left.\quad=6.25 \times 10^{-3} M \text { (unrounded }\right)
\end{aligned}
$$

Set up a reaction table assuming the reaction goes to completion:

Concentration (M)	$[\mathrm{Ca}(\mathrm{EDTA})]^{2-}(a q)+\mathrm{Pb}^{2+}(a q)$	$\leftrightarrows \mathrm{Pb}(\mathrm{EDTA})]^{2-}(a q)+\mathrm{Ca}^{2+}(a q)$		
Initial	6.25×10^{-3}	5.4295366×10^{-6}	0	0
React	$-5.4295366 \times 10^{-6}$	$-5.4295366 \times 10^{-6}$	$+5.4295366 \times 10^{-6}$	$+5.4295366 \times 10^{-6}$
	6.24457×10^{-3}	0	5.4295366×10^{-6}	5.4295366×10^{-6}

Now set up a reaction table for the equilibrium process:

Concentration (M)	$[\mathrm{Ca}(\text { EDTA })]^{2-}(a q)+\mathrm{Pb}^{2+}(a q)$		\leftrightarrows	$[\mathrm{Pb}(\text { EDTA })]^{2-}(a q)+\mathrm{Ca}^{2+}(a q)$	
Initial	6.24457×10^{-3}	0	0		5.4295366×10^{-6}
Change	+x		+x		5.4295366×10^{-6}
Cquilibrium	$6.24457 \times 10^{-3}+\mathrm{x}$	x		$5.4295366 \times 10^{-6}-\mathrm{x}$	$5.4295366 \times 10^{-6}-\mathrm{x}$

$K_{\mathrm{c}}=2.5 \times 10^{7}=\frac{\left[\mathrm{Pb}(\mathrm{EDTA})^{2-}\right]\left[\mathrm{Ca}^{2+}\right]}{\left[\mathrm{Ca}(\text { EDTA })^{2-}\right]\left[\mathrm{Pb}^{2+}\right]}=\frac{\left[5.4295366 \times 10^{-6}\right]\left[5.4295366 \times 10^{-6}\right]}{\left[6.24457 \times 10^{-3}\right][\mathrm{x}]}$
$\mathrm{x}=\left[\mathrm{Pb}^{2+}\right]=1.8883521 \times 10^{-16} \mathrm{M}$ (unrounded)
Convert concentration from M to $\mu \mathrm{g}$ in 100 mL :
$\left(\frac{1.8883521 \times 10^{-16} \mathrm{~mol} \mathrm{~Pb}^{2+}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(100 \mathrm{~mL})\left(\frac{207.2 \mathrm{~g} \mathrm{~Pb}^{2+}}{1 \mathrm{~mol} \mathrm{~Pb}^{2+}}\right)\left(\frac{1 \mu \mathrm{~g}}{10^{-6} \mathrm{~g}}\right)=3.9126655 \times 10^{-9} \mu \mathrm{~g} \mathrm{~Pb}{ }^{2+}$ (unrounded)
The final concentration is $\mathbf{3 . 9 \times 1 0 ^ { - 9 }} \boldsymbol{\mu g} / \mathbf{1 0 0} \mathbf{~ m L}$.
19.151 Assume that $\mathrm{p} K_{\mathrm{a}}$ is in the center of the range, and calculate the K_{a} from the average $\mathrm{p} K_{\mathrm{a}}$.

$$
\text { Average } \mathrm{p} K_{\mathrm{a}}(\text { center of range })=(7.9+6.5) / 2=7.2
$$

$$
K_{\mathrm{a}} 10^{-7.2}=6.3095734 \times 10^{-8}=\mathbf{6 \times 1 0 ^ { - 8 }}
$$

There is only one digit after the decimal point in the $\mathrm{p} K_{\mathrm{a}}$ values; thus, there is only one significant figure.
19.152 The molarity of a saturated NaCl solution must be found.
$M \mathrm{NaCl}=\left(\frac{317 \mathrm{~g} \mathrm{NaCl}}{\mathrm{L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}}\right)=5.42436687 \mathrm{M} \mathrm{NaCl}$ (unrounded)
Determine the $K_{\text {sp }}$ from the molarity just calculated.
$\mathrm{NaCl}(s) \leftrightarrows \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)$.
$K_{\text {sp }}=\left[\mathrm{Na}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\mathrm{S}^{2}=(5.42436687)^{2}=29.42375594=29.4$

Moles of Cl^{-}initially $=\left(\frac{5.4236687 \mathrm{~mol} \mathrm{NaCl}}{\mathrm{L}}\right)(0.100 \mathrm{~L})\left(\frac{1 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol} \mathrm{NaCl}}\right)=0.54236687 \mathrm{~mol} \mathrm{Cl}^{-}$(unrounded)
This is the same as the moles of Na^{+}in the solution.
Moles of Cl^{-}added $=\left(\frac{8.65 \mathrm{~mol} \mathrm{HCl}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(28.5 \mathrm{~mL})\left(\frac{1 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol} \mathrm{HCl}}\right)=0.246525 \mathrm{~mol} \mathrm{Cl}^{-}$(unrounded)
0.100 L of saturated solution contains 0.542 mol each Na^{+}and Cl^{-}, to which you are adding 0.246525 mol of additional Cl^{-}from HCl .
Volume of mixed solutions $=0.100 \mathrm{~L}+(28.5 \mathrm{~mL})\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.1285 \mathrm{~L}$ (unrounded)
Molarity of Cl^{-}in mixture $=\left[(0.54236687+0.246525) \mathrm{mol} \mathrm{Cl}^{-}\right] /(0.1285 \mathrm{~L})=6.13924 \mathrm{M} \mathrm{Cl}^{-}$(unrounded)
Molarity of Na^{+}in mixture $=\left(0.54236687 \mathrm{~mol} \mathrm{Na}^{+}\right) /(0.1285 \mathrm{~L})=4.220754 \mathrm{M} \mathrm{Na}^{+}$(unrounded)
Determine a Q value and compare this value to the $K_{\text {sp }}$ to determine if precipitation will occur.
$Q_{\text {sp }}=\left[\mathrm{Na}^{+}\right]\left[\mathrm{Cl}^{-}\right]=(4.220754)(6.13924)=25.91222=25.9$
Since $Q_{\text {sp }}<K_{\text {sp }}$, no NaCl will precipitate.
19.153 a) For the solution to be a buffer, both HA and A^{-}must be present in the solution. This situation occurs in \mathbf{A} and \mathbf{D}. b) Box A:

The amounts of HA and A^{-}are equal.
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) \quad\left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)=1$ when the amounts of HA and A^{-}are equal
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log 1$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=-\log \left(4.5 \times 10^{-5}\right)=4.346787=4.35$
Box B:
Only A ${ }^{-}$is present at a concentration of 0.10 M .
The K_{b} for A^{-}is needed.

$$
K_{\mathrm{b}}=K_{\mathrm{w}} / K_{\mathrm{a}}=1.0 \times 10^{-14} / 4.5 \times 10^{-5}=2.222 \times 10^{-10} \text { (unrounded) }
$$

$$
\mathrm{A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrows \mathrm{OH}^{-}(a q)+\mathrm{HA}(a q)
$$

Initial:	0.10 M	0	0
Change:	-x	-x	-x
Equilibrium:	$0.10-\mathrm{x}$	x	x

$K_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=2.222 \times 10^{-10}$
$K_{\mathrm{b}}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.10-\mathrm{x}]}=2.222 \times 10^{-10} \quad$ Assume that x is small compared to 0.10
$K_{\mathrm{b}}=2.222 \times 10^{-10}=\frac{(\mathrm{x})(\mathrm{x})}{(0.10)}$
$\mathrm{x}=4.7138095 \times 10^{-6} \mathrm{M} \mathrm{OH}^{-}$(unrounded)
Check assumption: $\left(4.7138095 \times 10^{-6} / 0.10\right) \times 100 \%=0.005 \%$ error, so the assumption is
valid.
$\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}=K_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]=\left(1.0 \times 10^{-14}\right) /\left(4.7138095 \times 10^{-6}\right)$
$=2.1214264 \times 10^{-9} \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$(unrounded)
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.1214264 \times 10^{-9}\right)=8.67337=\mathbf{8 . 6 7}$
Box C:
This is a 0.10 MHA solution. The hydrogen ion, and hence the pH , can be determined from the K_{a}.

(The $\mathrm{H}_{3} \mathrm{O}^{+}$contribution from water has been neglected.)

$$
\begin{aligned}
& K_{\mathrm{a}}=4.5 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& K_{\mathrm{a}}=4.5 \times 10^{-5}=\frac{(\mathrm{x})(\mathrm{x})}{(0.10-\mathrm{x})} \quad \text { Assume that } \mathrm{x} \text { is small compared to } 0.10 . \\
& K_{\mathrm{a}}=4.5 \times 10^{-5}=\frac{(\mathrm{x})(\mathrm{x})}{(0.10)} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{x}=2.12132 \times 10^{-3} \text { (unrounded) }}
\end{aligned}
$$

Check assumption: $\left(2.12132 \times 10^{-3} / 0.10\right) \times 100 \%=2 \%$ error, so the assumption is valid.
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.12132 \times 10^{-3}\right)=2.67339=2.67$

Box D:

This is a buffer with a ratio of $\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]=5 / 3$.
Use the Henderson-Hasselbalch equation for this buffer.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right) \\
& \mathrm{pH}=-\log \left(4.5 \times 10^{-5}\right)+\log \left[\frac{5}{3}\right]=4.568636=4.57
\end{aligned}
$$

c) The initial stage in the titration would only have HA present. The amount of HA will decrease, and the amount of A^{-}will increase until only A^{-}remains. The sequence will be: $\mathbf{C}, \mathbf{A}, \mathbf{D}$, and \mathbf{B}.
d) At the equivalence point, all the HA will have reacted with the added base. This occurs in scene B.
19.154 a) The dissolution of MX will produce equal amounts of M^{2+} and X^{2-}. The only way unequal amounts of these ions could be present would be either if one of the ions were already present or if one of the ions were removed from the solution. Distilled water will neither add nor remove ions, thus the M^{2+} and X^{2-} must be equal; this is in box \mathbf{B}.
b) Using box B; there are $4\left(2.5 \times 10^{-6} \mathrm{M}\right)=1.0 \times 10^{-5} \mathrm{M}$ for each ion.

$$
K_{\mathrm{sp}}=\left[\mathrm{M}^{2+}\right]\left[\mathrm{X}^{2-}\right]=\left(1.0 \times 10^{-5}\right)\left(1.0 \times 10^{-5}\right)=\mathbf{1 . 0} \times \mathbf{1 0}^{-10}
$$

c) The addition of $\mathrm{Na}_{\mathrm{a}} \mathrm{X}$ would increase the X^{2-}. There will be more X^{2-} than M^{2+}. This occurs in box \mathbf{C}.
d) Lowering the pH will protonate some X^{2-}. This will decrease the X^{2-} concentration, thus, $\mathrm{X}^{2-}<\mathrm{M}^{2+}$. This occurs in box \mathbf{A}.
19.155 a) Ag^{+}ions come from the dissolution of $\mathrm{AgCl}(s)$.

$$
\begin{aligned}
& K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.8 \times 10^{-10} \\
& {\left[\mathrm{Ag}^{+}\right]=\frac{1.8 \times 10^{-10}}{\left[\mathrm{Cl}^{-}\right]}} \\
& {\mathrm{AgCl}(\mathrm{~s}) \leftrightarrows \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \quad \quad K_{\mathrm{sp}}=1.8 \times 10^{-10}}_{\mathrm{Ag}^{\ddagger}(a q)+2 \mathrm{Cl}^{-}(a q) \leftrightarrows \mathrm{AgCl}_{2}^{-}(a q) K_{\mathrm{f}}=1.8 \times 10^{5}}^{\mathrm{AgCl}^{5}(\mathrm{~s})+\mathrm{Cl}^{-}(a q) \leftrightarrows \mathrm{AgCl}_{2}^{-}(a q)} \mathrm{K}=K_{\mathrm{sp}} K_{\mathrm{f}}=\left(1.8 \times 10^{-10}\right)\left(1.8 \times 10^{5}\right)=3.24 \times 10^{-5} \text { (unrounded) } \\
& K=3.24 \times 10^{-5}=\frac{\left[\mathrm{AgCl}_{2}^{-}\right]}{\left[\mathrm{Cl}^{-}\right]} \\
& {\left[\mathrm{AgCl}_{2}^{-}\right]=\left(3.24 \times 10^{-5}\right)\left[\mathrm{Cl}^{-}\right]=\left(3.2 \times 10^{-5}\right)\left[\mathrm{Cl}^{-}\right]} \\
& =\left[\mathrm{AgCl}_{2}^{-}\right] \\
& \frac{1.8 \times 10^{-10}}{\left[\mathrm{Cl}^{-}\right]}=\left(3.24 \times 10^{-5}\right)\left[\mathrm{Cl}^{-}\right]
\end{aligned}
$$

b) $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{AgCl}_{2}^{-}\right]$

$$
\begin{aligned}
& {\left[\mathrm{Cl}^{-}\right]^{2}=\frac{1.8 \times 10^{-10}}{3.24 \times 10^{-5}}} \\
& {\left[\mathrm{Cl}^{-}\right]=2.3570226 \times 10^{-3}=\mathbf{2 . 4} \times \mathbf{1 0}^{-\mathbf{3}} \mathbf{~ M ~ C l}}
\end{aligned}
$$

c) Both equilibria shift to the right as Cl^{-}ion concentration increases. At low Cl^{-}ion concentration, Ag^{+}ions are present in solution. As Cl^{-}ion concentration increases, more $\mathrm{AgCl}(\mathrm{s})$ is formed. At even higher Cl^{-}ion concentrations, AgCl_{2}^{-}ions are present in solution.

d) The solubility of $\mathrm{AgCl}(s)=\left[\mathrm{Ag}^{+}\right]+\left[\mathrm{AgCl}_{2}{ }^{-}\right]$

You can use either equation from part a) to calculate $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{AgCl}_{2}{ }^{-}\right]$.
$\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{AgCl}_{2}^{-}\right]=\left(3.24 \times 10^{-5}\right)\left(2.3570226 \times 10^{-3}\right)=7.6367532 \times 10^{-8}=7.6 \times 10^{-8} \mathrm{M}$
The solubility of $\mathrm{AgCl}(s)=\left(7.6367532 \times 10^{-8}+7.6367532 \times 10^{-8}\right) M=1.52735 \times 10^{-7}=\mathbf{1 . 5} \mathbf{x 1 0} \mathbf{1 0}^{-7} \boldsymbol{M}$
$19.156 \mathrm{Co}^{2+}(a q)+\mathrm{EDTA}^{4-}(a q) \leftrightarrows[\mathrm{Co}(\mathrm{EDTA})]^{2-}(a q)$
$K_{\mathrm{f}}=10^{16.31}=2.0417379 \times 10^{16}$ (unrounded)
$K_{\mathrm{f}}=\frac{\left[\mathrm{Co}(\mathrm{EDTA})^{2-}\right]}{\left[\mathrm{Co}^{2+}\right]\left[\mathrm{EDTA}^{4-}\right]}$
Moles $\mathrm{Co}^{2+}($ original $)=\left(\frac{0.048 \mathrm{~mol} \mathrm{Co}^{2+}}{\mathrm{L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(50.0 \mathrm{~mL})=0.0024 \mathrm{~mol} \mathrm{Co}^{2+}$
a) Moles EDTA added $=\left(\frac{0.050 \mathrm{~mol} \mathrm{EDTA}}{}{ }^{4-}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(25.0 \mathrm{~mL})=0.00125 \mathrm{~mol}$ EDTA (unrounded)

The moles of EDTA added equals the moles of $[\operatorname{Co}(\text { EDTA })]^{2-}$ formed.
The EDTA is limiting so no EDTA is left after the reaction and the remaining Co^{2+} :
$\mathrm{Co}^{2+}=(0.0024-0.00125)=0.00115 \mathrm{~mol} \mathrm{Co}^{2+}$
Total volume $=(50.0+25.0) \mathrm{mL}\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.0750 \mathrm{~L}$
$\left[\mathrm{Co}^{2+}\right]=\left(0.00115 \mathrm{~mol} \mathrm{Co}{ }^{2+}\right) /(0.0750 \mathrm{~L})=0.015333 \mathrm{M} \mathrm{Co}^{2+}$ (unrounded)
$\left[\operatorname{Co}(\text { EDTA })^{2-}\right]=\left(0.00125 \mathrm{~mol}[\mathrm{Co}(\text { EDTA })]^{2-}\right) /(0.0750 \mathrm{~L})=0.016667 M$ (unrounded)
To reach equilibrium the concentrations of the species involved are:

$$
\begin{aligned}
& {\left[\mathrm{EDTA}^{4-}\right]=\mathrm{x}} \\
& {\left[\mathrm{Co}^{2+}\right]=0.015333+\mathrm{x}} \\
& {\left[\mathrm{Co}(\mathrm{EDTA})^{2-}\right]=0.016667-\mathrm{x}} \\
& K_{\mathrm{f}}=\frac{\left[\mathrm{Co}(\mathrm{EDTA})^{2-}\right]}{\left[\mathrm{Co}^{2+}\right]\left[\mathrm{EDTA}^{4-}\right]}=\frac{[0.016667-\mathrm{x}]}{[0.01533+\mathrm{x}][\mathrm{x}]}=\frac{[0.016667]}{[0.01533][\mathrm{x}]}=2.0417379 \times 10^{16} \\
& \mathrm{x}=5.3249468 \times 10^{-17} \text { (unrounded) } \\
& {\left[\mathrm{EDTA}^{2+}=5.3 \times \mathbf{1 0}^{-17} \boldsymbol{M}\right.} \\
& {\left[\mathrm{Co}^{2+}\right]=\mathbf{0 . 0 1 5} \mathbf{M}}
\end{aligned}
$$

b) Moles EDTA added $=\left(\frac{0.050 \mathrm{~mol} \mathrm{EDTA}}{}{ }^{4-}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right)(75.0 \mathrm{~mL})=0.00375 \mathrm{~mol}$ EDTA (unrounded)

The Co^{2+} is limiting so no Co^{2+} is left. The original moles Co^{2+} equals the moles of complex formed.
Moles EDTA remaining $=(0.00375-0.0024) \mathrm{mol}=0.00135 \mathrm{~mol}$ EDTA (unrounded)
Total volume $=(50.0+75.0) \mathrm{mL}\left(10^{-3} \mathrm{~L} / 1 \mathrm{~mL}\right)=0.1250 \mathrm{~L}$
[EDTA] $=(0.00135 \mathrm{~mol}$ EDTA $) /(0.1250 \mathrm{~L})=0.0108 \mathrm{M} \mathrm{EDTA}$ (unrounded)
$\left[\mathrm{Co}(\text { EDTA })^{2-}\right]=\left(0.0024 \mathrm{~mol}[\mathrm{Co}(\text { EDTA })]^{2-}\right) /(0.1250 \mathrm{~L})=0.0192 \mathrm{M}$ (unrounded)
To reach equilibrium the concentrations of the species involved are:

$$
\begin{aligned}
& {\left[\mathrm{EDTA}^{4}\right]=0.0108+\mathrm{x} } \\
& {\left[\mathrm{Co}^{2+}\right]=\mathrm{x} } \\
& {\left[\mathrm{Co}(\mathrm{EDTA})^{2-}\right]=0.0192-\mathrm{x} } \\
& K_{\mathrm{f}}=\frac{\left[\mathrm{Co}(\mathrm{EDTA})^{2-}\right]}{\left[\mathrm{Co}^{2+}\right]\left[\mathrm{EDTA}^{4-}\right]}=\frac{[0.0192-\mathrm{x}]}{[\mathrm{x}][0.0108+\mathrm{x}]}=\frac{[0.0192]}{[\mathrm{x}][0.0108]}=2.0417379 \times 10^{16} \\
& \mathrm{x}=8.7071792 \times 10^{-17}(\text { unrounded }) \\
& {\left[\mathrm{EDTA}^{4}\right]=00108+\mathrm{x}=\mathbf{0 . 0 1 0 8} \boldsymbol{M} } \\
& {\left[\mathrm{Co}^{2+}\right]=\mathbf{8 . 7} \mathbf{~ x ~ 1 0} } \\
&
\end{aligned}
$$

