
Chapter 2 An Introduction to Android

2.1 Introduction

If you were not shut off from the world in the past couple of years, you must have heard about
Android. Development in communication has been shrinking the world and thanks to the advance-
ment of Wi Fi technologies, some developing countries are able to leapfrog into the twenty-first
century without the burden of dismantling the infrastructure and equipment of wired communi-
cation. Mobile devices have become ubiquitous and some are even more sophisticated than PCs.
Transitioning from working with PCs to mobile devices such as smart phones and tablet computers
has become a trend. Android is developed in response to this trend. It is an open source operat-
ing system based on the Linux kernel with applications developed using the Java programming
language. The Android operating system was first developed by Android, Inc. Google acquired
Android, Inc. in July 2005, and became the leading developer of the Android OS. In Novem-
ber 2007, the Open Handset Alliance, which initially was a consortium of 34 companies formed
to develop Android. The consortium was later expanded to absorb many more companies in a
joint effort to further develop the platform, which is the real innovation in the mobile technology.
Because of its openness, in less than two years, Android has come from nowhere to become the
dominant smart phone operating system in the US, eclipsing all other major players in the field.
News, details and relevant links of Android can be found from its official web site,

http://www.android.com/

Wikipedia has a good article about the history and miscellaneous information of Android at

http://en.wikipedia.org/wiki/Android (operating system)

Technical information can be obtained from Android’s official developer web site at:

http://developer.android.com/guide/index.html

This site provides a lot of information and how-to for developing Android applications and pub-
lishing them. The site defines Android as follows:

Android is a software stack for mobile devices that includes an operating system, middleware
and key applications. The Android SDK provides the tools and APIs necessary to begin
developing applications on the Android platform using the Java programming language.

The developer site also lists various features of Android, including

1. Application framework enabling reuse and replacement of components
2. Dalvik virtual machine optimized for mobile devices
3. Integrated browser based on the open source WebKit engine
4. Optimized graphics powered by a custom 2D graphics library
5. 3D graphics based on the OpenGL ES 1.0 and ES 2.0 specifications
6. SQLite for structured data storage
7. Media support for common audio, video, and still image formats (MPEG4, H.264, MP3,

AAC, AMR, JPG, PNG, GIF)
8. GSM Telephony (hardware dependent)
9. Bluetooth, EDGE, 3G, and WiFi (hardware dependent)

1

2 Introduction

10. Camera, GPS, compass, and accelerometer (hardware dependent)
11. Rich development environment including a device emulator, tools for debugging, memory

and performance profiling, and a plugin for the Eclipse IDE

The following figure shows the architecture of Android.

Figure 2-1 Android Architecture

In summary, Android is a software stack for mobile devices that includes an operating system,
middleware and key applications. The Android SDK provides the tools and APIs necessary to
develop applications on the Android platform using the Java programming language. Moreover,
Android includes a set of C/C++ libraries that can be used by various components of the Android
system. These capabilities are exposed to developers through the Android application framework
as shown in Figure 2-1.

Figure 2-1 also shows that an Android application runs in its own process, with its own instance
of the Dalvik virtual machine (VM). The Dalvik Executable (.dex) format is used to execute files
in the Dalvik VM; the format is optimized for minimal memory footprint. After a Java program
has been compiled, the classes will be transformed into the .dex format by the dx tool so that it can
be run in the Dalvik VM. The Linux kernel provides underlying functionality such as threading
and low-level memory management for the Dalvik VM.

Like the rest of Android, Dalvik is open source software and is published under the terms
of the Apache License 2.0. Dalvik is known to be a clean-room implementation rather than a

Chapter 2 An Introduction to Android 3

development on top of a standard Java runtime. This could mean that it does not inherit copyright-
based license restrictions from either the standard-edition or open source-edition Java runtimes.

Android has undergone several versions of revision. Each new version is named after a dessert
in increasing alphabetic order:

1. Android 1.6 (Donut)
2. Android 2.02.1 (Eclair)
3. Android 2.2 (Froyo)
4. Android 2.3 (Gingerbread)
5. Android 3.0 (Honeycomb)
6. Android 4.0 (Icecream Sandwich)
7. Android 4.1 (Jelly Bean)
8. Android 4.4 (KitKat)

Version 4.0 (Android Icecream Sandwich) was released in November, 2011. This version merges
Android 2.3 (Gingerbread) and Android 3.0 (Honeycomb) into one operating system for use on all
Android devices. This will allow us to incorporate Honeycomb‘s features such as the holographic
user interface, new launcher and more (previously available only on tablets) into our smart phone
apps, and easily scale our apps to work on different devices. Ice Cream Sandwich will also add
new functionality.

Most of the Android programs presented in this book are developed and tested with Android
version 4.X API level 16 or above with an emulator running in a 64-bit Linux machine, which
runs CentOS 6.4, a 64-bit Linux OS. We mainly use the Eclipse IDE to do the development but
command line tools are also used occasionally and discussed in this book.

Though Android apps are written in Java, 3D graphics programs are written with OpenGL
ES. The graphics functions, OpenGL commands that we use in 3D graphics examples are open
standards in the industry. They have the same form and syntax, whether they are presented in
C/C++ or Android Java. Both of the OpenGL ES versions 1.0 and 2.0 will be discussed.

2.2 Development Tools

The Android official site provides the information and tools to develop Android applications. One
can refer to the site

http://developer.android.com/index.html

to learn the details and download the development tools. The following link shows how to install
Android and set up the development environment for the first time:

http://developer.android.com/sdk/installing.html

Since Android applications are written in java, in most situations developing an Android ap-
plication is simply writing some java programs utilizing the Android libraries. The programs
can be compiled and built with use of Apache Ant, a software tool for automating software build
processes. Ant is similar to Make but it is implemented in java, and is best suited to building
java projects. In many cases it may be more convenient to do the development using Eclipse, a
multi-language open software development environment consisting of an integrated development
environment (IDE) along with an extensible plug-in system. Eclipse is mostly written in java, and
is an ideal IDE for developing java applications; it can be also used to develop applications of other
programming languages such as C/C++ and PHP by means of various plug-ins. However, running
Eclipse consumes a lot of resources. We always have the option of developing Android pro-
grams using a simple traditional editor such as vi, and compiling and running it using the Android
command.

4 Eclipse IDE

2.2.1 Eclipse IDE

One can obtain information of Eclipse and download it from its official web site at

http://www.eclipse.org/

Eclipse can be easily installed and run in any supported platform. Using Linux as an example, the
following steps show how to install Eclipse along with the Android Development Tools (ADT):

1. Go to http://www.eclipse.org/; click Download Eclipse; choose Eclipse for RCP and RAP
Developers, and download the package into a local directory, say, /apps/downloads.

2. Unpack the downloaded package into the directory /apps by:

$ cd /apps
$ gunzip -c /apps/download/eclipse-rcp-helios-SR2-linux-gtk.tar.gz | tar xvf -

3. Then start Eclipse by:

$ cd eclipse
$./eclipse

4. From the eclipse IDE, install the Android Development Tools (ADT):

• Click Help > Install New Software
• In the “Work with” box, type http://dl-ssl.google.com/android/eclipse/; hit “Enter”;

select all the “Development Tools”; click Next; click Next; accept the license “agree-
ment to”, and click Finish to install ADT.

5. After the ADT installation, restart Eclipse.
6. Click Window and you should see the entry Android SDK and AVD Manager.
7. Add the Android SDK directory by clicking Preference; select Android and enter the loca-

tion of your Android SDK. Now click on Android SDK and AVD Manager to proceed.
8. If you are new to eclipse, click on Tutorials and follow the instructions to create a Hello

World application.

Hello World Example

As an example of writing Android applications in the Eclipse IDE, we present the steps of
writing a Hello World application. In this example, we will run the application in the Android
Emulator. You can also find this example at the Android tutorial web site at

http://developer.android.com/resources/tutorials/hello-world.html

In the description, we use the specified Android version 4.2.2.

1. Start Eclipse.
2. In the Eclipse IDE, choose Preferences > Android.
3. Install a platform in Eclipse:

(a) Choose Window > Android SDK Manager, which displays a panel showing the
Android platform packages in your system like the screen shot shown in Figure 2-2.

(b) As an example, choose Android 4.2.2(API 17) and its subcomponents “SDK Plat-
form” and “SDK Samples”; then click Install 2 packages; check Accept All; click
Install. Eclipse will download the package from the Internet and install it.

(c) When it is finished you can press the key ‘ESC’ to clear the panel.

Chapter 2 An Introduction to Android 5

Figure 2-2 Sample Packages

4. Create an Android Virtual Device (AVD), which defines the system image and device set-
tings of the emulator:

(a) In Eclipse, choose Window > AVD Manager, which displays the Android Virtual
Device Manager panel.

(b) Click New.., which displays the Create new Android Virtual Device (AVD) dialog.
(c) Enter a name for the AVD, say, “avd422”.
(d) Select the target to be Android 4.2.2 – API Level 17.
(e) Click Create AVD.
(f) Press ‘ESC’ to exit the AVD panel.

5. Create a new Android project:

(a) In Eclipse, select File > New > Project, which displays the New Project dialog as
shown in Figure 2-3 below.

(b) Select Android Project and click Next, which displays the New Android Project dia-
log.

(c) Enter “HelloWorldProject” for Project Name and click Next.
(d) Choose Build Target to be Android 4.2.2 and click Next.
(e) Enter “HelloWorld” for Application Name, “android.hello” for Package Name, “Hel-

loWorld” for Create Activity, select API 17 (Android 4.22) for Minimum and target
SDK, click Next > Next > Next > Finish.

6 Eclipse IDE

Figure 2-3 Eclipse New Project Dialog

The HelloWorldProject Android project is now ready. It should be visible in the Package
Explorer on the left of the Eclipse IDE. (You may need to click Plug-in Device. on the left
to display Package Explorer.)

6. From the Package Explorer, choose HelloWorldProject > src > android.hello > Main-
Activity.java. Double-click on MainActivity.java to open it, which should look like the
following:

package android.hello;

import android.app.Activity;
import android.os.Bundle;

public class HelloWorld extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}
}

7. Revise “MainActivity.java” to the following that constructs a user interface (UI):

package android.hello;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
public class MainActivity extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
tv.setText("Hello, Android!");
setContentView(tv);

}
}

8. Run the application by choosing from Eclipse, Run > Run. Then select Android Applica-
tion and click OK. The Android emulator will start and run the application. You should see
on your screen something like Figure 2-3 below. (You may need to use the mouse to drag
the lock to the right side of the screen to unlock the device.)

Chapter 2 An Introduction to Android 7

Figure 2-3 HelloWorld Android Application

If you do not see the message “Hello, Android!”, click the menu button of the Android
emulator which will run the application.

2.3 Android Basics

2.3.1 Manifest File

One of the most important part of an Android application is the manifest file, which is an xml file
named AndroidManifest.xml. It is a resource file containing all the details needed by the android
system to run and test the application. Every application must have an AndroidManifest.xml file
in its root directory. We can edit it in the Eclipse IDE by clicking on a project in the Package
Explorer and the menus:

Res > AndroidManifest.xml > Manifest General Attributes

The file AndroidManifest.xml outlines the crucial features for an application, including the fol-
lowing information:

1. It presents to the Android system the properties of the application.
2. It describes the application’s components, such as activities, services, broadcast receivers,

and content providers.
3. It specifies the application’s Java package name, which serves as a unique identifier for the

application.
4. It determines the processes that will host the application components.
5. It specifies permissions required to run the applications, such as Internet access, and user

data access.
6. It declares the minimum Android API level that the application needs. The API levels

determine whether the application can run on an Android platform. For example, setting
the minimum API level to 11 would require honeycomb or later Android versions to run the
application.

7. It lists the libraries that the application has to link with.
8. It lists the Instrumentation classes that provide profiling and other information to run the

application. These declarations are for testing and they will be removed when the application
is published.

8 Manifest File

Manifest File Structure

We can edit the manifest file using the Eclipse IDE. Figure 2-3 below shows a screen shot of a
panel for editing the manifest file.

Figure 2-3 Manifest File of Hello World Example

Alternatively, we can edit the xml source file directly. (In Eclipse IDE, click the tab Android-
Manifest.xml shown at the bottom of Figure 2-2.) The listing below shows the source code of the
HelloWorld AndroidManifext.xml file.

Program Listing 2-1 Source Code of HelloWorld AndroidManifext.xml
——————————————————————————————————-

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="android.hello"
android:versionCode="1"
android:versionName="1.0" >
<uses-sdk

android:minSdkVersion="17"
android:targetSdkVersion="17" />

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >
<activity

android:name="android.hello.MainActivity"
android:label="@string/app_name" >
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

Chapter 2 An Introduction to Android 9

The Android developer web site shows a more complete general structure of the manifest file
and every element that it can contain. Each element is documented in a separate file along with all
of its attributes. We can view detailed information about any element by clicking on the element
name.

The following list shows in alphabetical order all the elements that can appear in the manifest
file. They are the only legitimate elements allowed. We are not allowed to add our own elements
or attributes.

<action> <activity> <activity-alias>
<application> <category> <data>
<grant-uri-permission> <instrumentation>
<intent-filter> <manifest> <meta-data>
<permission> <permission-group> <permission-tree>
<provider> <receiver> <service>
<supports-screens> <uses-configuration> <uses-feature>
<uses-library> <uses-permission> <uses-sdk>

2.4 Command Line Development

We always have the option of developing Android applications using command-line terminals
without using any IDE. Using command-line tools could be simpler and lets the developer have
a clearer picture of the working environment. We use a particular working directory to illustrate
this method. In the examples, the symbol ‘$’ denotes the command prompt. In a command, italics
denote variable names, which should be substituted by actual names. This convention only applies
to a command, not a description. Also note that in a command, the symbol – is composed of two
dashes.

Suppose we have created the directory ‘/workspace’, where we will develop our Android pro-
grams. We first go to the directory by the command

$ cd /workspace

The Android SDK comes with a tool called android that is usually integrated into the ADT of
Eclipse. But we can always use this command as a stand alone development tool which lets us to

1. create, view, and delete Android Virtual Devices (AVDs),
2. create and update Android projects,
3. update our Android SDK with new platforms, add-ons, and documentation,
4. and to perform many other project management tasks.

We can find out its usage by issuing the command,

$ android –help

which displays a menu similar to the following:

Usage:
android [global options] action [action options]
Global options:

-h --help : Help on a specific command.
-v --verbose : Verbose mode, shows errors, warnings and all messages.

--clear-cache: Clear the SDK Manager repository manifest cache.
-s --silent : Silent mode, shows errors only.

Valid actions are composed of a verb and an optional direct object:

- sdk : Displays the SDK Manager window.
- avd : Displays the AVD Manager window.
- list : Lists existing targets or virtual devices.

10 Listing Targets

- list avd : Lists existing Android Virtual Devices.
- list target : Lists existing targets.
- list sdk : Lists remote SDK repository.
- create avd : Creates a new Android Virtual Device.
- move avd : Moves or renames an Android Virtual Device.
- delete avd : Deletes an Android Virtual Device.
- update avd : Updates an Android Virtual Device to match the

folders of a new SDK.
- create project : Creates a new Android project.
- update project : Updates an Android project (must already have

an AndroidManifest.xml).
- create test-project : Creates a new Android project for a test package.
- update test-project : Updates the Android project for a test package

(must already have an AndroidManifest.xml).
- create lib-project : Creates a new Android library project.
- update lib-project : Updates an Android library project (must already have

an AndroidManifest.xml).
- create uitest-project: Creates a new UI test project.
- update adb : Updates adb to support the USB devices declared in the

SDK add-ons.
- update sdk : Updates the SDK by suggesting new platforms to install

if available.

2.4.1 Listing Targets

We can list all the image targets in the system using the command,

$ android list targets

which generates a target list similar to the following:

id: 1 or "android-4"

Name: Android 1.6
Type: Platform
API level: 4
Revision: 3
Skins: WVGA854, WVGA800 (default), QVGA, HVGA
ABIs : armeabi

..............

id: 23 or "Google Inc.:Google APIs:17"

Name: Google APIs
Type: Add-On
Vendor: Google Inc.
Revision: 3
Description: Android + Google APIs
Based on Android 4.2.2 (API level 17)
Libraries:

* com.google.android.media.effects (effects.jar)
Collection of video effects

* com.android.future.usb.accessory (usb.jar)
API for USB Accessories

* com.google.android.maps (maps.jar)
API for Google Maps

Skins: WQVGA400, WVGA854, WSVGA, WXGA800-7in, WXGA720, HVGA,
WQVGA432, QVGA, WVGA800 (default), WXGA800

ABIs : armeabi-v7a

id: 24 or "android-18"

Name: Android 4.3
Type: Platform

Chapter 2 An Introduction to Android 11

API level: 18
Revision: 1
Skins: WXGA800, WXGA720, WXGA800-7in, WVGA854, WVGA800 (default),

WSVGA, WQVGA432, QVGA, WQVGA400, HVGA
ABIs : armeabi-v7a

Such a list is generated by the android command, which scans, in our example, the directories,
/android-sdk-linux/platforms/, and /android-sdk-linux/add-ons/ for valid system images.

2.4.2 Creating AVDs

We can list all the available Android Virtual Devices (AVDs) by the command

$ android list avd

To create an avd, we can issue the command

$ android create avd –name name –target targetID [–option value] ...

where name specifies the new AVD and targetID specifies the image we want to run on the emu-
lator when the AVD is invoked. We can specify other options such as the emulated SD card size,
the emulator skin, or a custom location for the user data files. The following is an example of such
a command,

$ android create avd –name comAvd –target 24

which displays a message similar the following:

Auto-selecting single ABI armeabi-v7a
Android 4.3 is a basic Android platform.
Do you wish to create a custom hardware profile [no]
Created AVD ’comAvd’ based on Android 4.3, ARM (armeabi-v7a) processor,
with the following hardware config:
hw.lcd.density=240
vm.heapSize=48
hw.ramSize=512

We can use the tool to delete an AVD. For example,

$ android delete avd –name comAvd

removes comAvd we just created.
We can also specify the path to hold the AVD files. For example,

$ android create avd –name comAvd –target 24 –path /workspace/avds/

generates the files “config.ini” and “userdata.img” for comAvd in the directory /workspace/avds.
We can check this using the UNIX ls command:

$ ls avds

which displays the file names,

config.ini userdata.img

We can examine the configure file “config.ini” using a text editor such as vi, which would display
some text similar to the following:

12 Creating Project

avd.ini.encoding=ISO-8859-1
hw.lcd.density=240
skin.name=WVGA800
skin.path=platforms/android-18/skins/WVGA800
hw.cpu.arch=arm
abi.type=armeabi-v7a
hw.cpu.model=cortex-a8
vm.heapSize=48
hw.ramSize=512
image.sysdir.1=system-images/android-18/armeabi-v7a/

For more details and the use of other options, one can refer to the Android official developer
web site at

developer.android.com/tools/devices/managing-avds-cmdline.html#AVDCmdLine

2.4.3 Creating Project

We can use the android tool to create a project using a command like the following:

$ android create project –target targetID –name appsName \
–path path-to-workspace/appsName –activity mainActivity \
–package packageName

(Remember that the symbol – is composed of two dashes.)
For instance, consider an example of creating a simple HelloWorld application called hel-

loCom. We first make the directory helloCom by

$ mkdir helloCom

(Remember that we are working in the directory /workspace.)
Then we issue the command

$ android create project –target 24 –name helloCom \
–path ./helloCom –activity SayHello –package example.helloCom

to create the project. The command generates the following message:

Created directory /workspace/helloCom/src/example/helloCom
Added file ./helloCom/src/example/helloCom/SayHello.java
Created directory /workspace/helloCom/res
Created directory /workspace/helloCom/bin
Created directory /workspace/helloCom/libs
Created directory /workspace/helloCom/res/values
Added file ./helloCom/res/values/strings.xml
Created directory /workspace/helloCom/res/layout
Added file ./helloCom/res/layout/main.xml
Created directory /workspace/helloCom/res/drawable-xhdpi
Created directory /workspace/helloCom/res/drawable-hdpi
Created directory /workspace/helloCom/res/drawable-mdpi
Created directory /workspace/helloCom/res/drawable-ldpi
Added file ./helloCom/AndroidManifest.xml
Added file ./helloCom/build.xml
Added file ./helloCom/proguard-project.txt

We can check the file structure created using the command du:

Chapter 2 An Introduction to Android 13

$ du -a helloCom

which displays all the directories and files created for the project:

4 helloCom/src/example/helloCom/SayHello.java
8 helloCom/src/example/helloCom
12 helloCom/src/example
16 helloCom/src
4 helloCom/AndroidManifest.xml
4 helloCom/local.properties
4 helloCom/bin
4 helloCom/libs
4 helloCom/ant.properties
4 helloCom/project.properties
4 helloCom/proguard-project.txt
4 helloCom/res/drawable-ldpi/ic_launcher.png
8 helloCom/res/drawable-ldpi
16 helloCom/res/drawable-xhdpi/ic_launcher.png
20 helloCom/res/drawable-xhdpi
4 helloCom/res/layout/main.xml
8 helloCom/res/layout
4 helloCom/res/values/strings.xml
8 helloCom/res/values
12 helloCom/res/drawable-hdpi/ic_launcher.png
16 helloCom/res/drawable-hdpi
8 helloCom/res/drawable-mdpi/ic_launcher.png
12 helloCom/res/drawable-mdpi
76 helloCom/res
4 helloCom/build.xml
128 helloCom

In particular, the build.xml file will be used by the ant utility to continue to build the project.
To execute the commands specified in build.xml, we go into the helloCom directory by

$ cd helloCom

and execute

$ ant debug

which builds a sample package. If the build is successful, the message “BUILD SUCCESSFUL”
will be displayed at the end of the process.

We can now install the package by issuing the command,

$ adb install bin/helloCom-debug.apk

Most likely, you will see an error message like the following:

* daemon not running. starting it now on port 5037 *
* daemon started successfully *
error: device not found
- waiting for device -

This is because we have not started the android device emulator yet. At this point, you can termi-
nate the command by typing Crtl-C.

We first start the emulator by the command

$ emulator -avd comAvd

14 Creating Project

Then we execute the command

$ adb install bin/helloCom-debug.apk

This time you will see a success message like the following:

* daemon not running. starting it now on port 5037 *
* daemon started successfully *
2544 KB/s (37063 bytes in 0.014s)
pkg: /data/local/tmp/helloCom-debug.apk
Success

The emulator should have an icon showing our application SayHello. (If you cannot find the
application, restart your emulator.) We can run it by clicking on the icon, which displays the
“Hello World, SayHello” message.

The source code of the app, SayHello.java is in the directory src/example/helloCom. We can
view its content using the vi editor:

$ vi src/example/helloCom/SayHello.java

which displays the source code SayHello.java:

package example.helloCom;

import android.app.Activity;
import android.os.Bundle;

public class SayHello extends Activity
{

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}
}

The file main.xml defines the app output. We can view or edit its content using the vi editor:

$ vi res/layout/main.xml

which displays the content of main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Hello World, SayHello"
/>

</LinearLayout>

Chapter 2 An Introduction to Android 15

To verify that this file defines the output, we can change the “Hello World” text to something
else, say, “Hello World the Beautiful!”. For the modification to take effect, we have to recompile
and reintall the app with the “-r” option:

$ ant debug
$ adb install -r bin/helloCom-debug.apk

When we run the SayHello application in the emulator, we should see the message “Hello World
the Beautiful!” displayed.

2.5 Simple Examples

We present some simple examples here to give you a quick start and get familiar with the process
of compiling and running an Android application using an emulator. Discussions of the items,
widgets and attributes are given in the next chapter.

2.5.1 Button and ImageButton

We discuss in this section how to create buttons and in particular how to create an image button,
which is represented by an image. When we click on the button, a text message is displayed.
Through the development of this application, one can learn the layout basics and some funda-
mental techniques of writing an Android application. We will use the Eclipse IDE to create this
application. Suppose we call both the project name and application name ImageButton and the
package name example.imagebutton. The following presents the detailed steps of the process.

1. Create Project ImageButton:

(a) Click File > New > Project > Android > Android Application Project
(b) Specify the names of the project, the application and the package as ImageButton,

ImageButton, and example.imagebutton respectively. Then click Next > Next > Next
> Next to use the defaults of Eclipse. So the names of Activity and Layout are
MainActivity and activity main respectively. The Navigation Type is None. Then
click Finish to create the project ImageButton.

2. Prepare an Image for the Button:
Copy an image, say, icon.png, which is used to represent a button to a drawable directory
inside resource directory res. If you are not sure about the resolution of your screen, simply
copy it to all the listed drawables such as drawable-hdpi and drawable-mdpi. Now your
Eclipse Package Explorer will show a menu similar to the one shown on Figure 2-4(a).

3. Define Buttons in Layout:
Modify the file res/layout/activity main.xml to the following, which defines an ordinary But-
ton named as resetButton and an ImageButton named imageButton1 represented by the im-
age icon.png. The file also specifies a TextView object, which is identified as message. The
main program MainActivity.java will correspondingly define variable to refer to resetButton,
imageButton1, and message objects. A variable name in the Java program is associated with
the corresponding object name defined in the layout XML file through the method find-
ViewById:

variable name = findViewById (R.id.xml object name)

<?xml version="1.0" encoding="utf-8"?>

16 Button and ImageButton

<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical" >

<ImageButton
android:id="@+id/imageButton1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:src="@drawable/icon" />

<Button
android:id="@+id/resetButton"
android:layout_height="wrap_content"
android:layout_width="match_parent"
android:text="Reset"
android:textSize="10pt" >
</Button>

<TextView
android:layout_height="wrap_content"
android:layout_width="match_parent"
android:layout_marginLeft="6pt"
android:layout_marginRight="6pt"
android:textSize="12pt"
android:layout_marginTop="4pt"
android:id="@+id/message"
android:gravity="center_horizontal">

</TextView>
</LinearLayout>

4. Modify Main Java Program:
Modify the Java program src/example/imagebutton/MainActivity.java to the following. The
code is simple and self-explained. The method addListenerOnButton specifies how the
two buttons will respond when they are clicked.

package example.imagebutton;

import android.view.View.OnClickListener;
import android.widget.ImageButton;
import android.widget.TextView;
import android.widget.Button;
import example.imagebutton.R;
import android.app.Activity;
import android.os.Bundle;
import android.view.View;

public class MainActivity extends Activity {
ImageButton imageButton;
Button resetButton;
TextView message;

@Override

Chapter 2 An Introduction to Android 17

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
addListenerOnButton();

}

//define Listeners
public void addListenerOnButton() {

imageButton = (ImageButton) findViewById(R.id.imageButton1);
resetButton = (Button) findViewById(R.id.resetButton);

imageButton.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View view) {
message = (TextView) findViewById(R.id.message);
message.setText("Image Button Clicked!");

}
});

resetButton.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View view) {
message = (TextView) findViewById(R.id.message);
message.setText(" ");

}
});

}
}

The onCreate method is auto-generated by the Eclipse when we create the app’s project.
It is called by the system when an Activity is started. This method typically initializes the
Activity’s instance variables and layout. It should be kept simple so that the app loads
quickly. Actually the system will display an ANR (Application Not Responding) if the
app takes too long to load. We should use a background thread to do time consuming
initializations rather than using onCreate.

While the app is running, the user could change its device configuration by rotating the
device or sliding out a hard keyboard. To ensure smooth operations during configuration
changes, the system passes a Bundle parameter, savedInstanceState, which contains the
activity’s saved state, to onCreate. Typically, the state information is saved by the Activity’s
onSaveInstanceState method.

The button variables have been defined in the layout file activity main.xml. You may refer
to the explanations of the next example on how the variables defined in the Java program
relate to those defined in the layout file.

5. We can now compile and run the program from the Eclipse IDE by choosing the Run menu.
We can also set the run configuration by choosing Run > Run Configurations.... The
emulator will show an ImageButton represented by the icon image and a regular button
labeled Reset. Clicking on the icon image, which represents the ImageButton will display
the message Image Button Clicked! as shown in Figure 2-4(b). Clicking the Reset Button
clears the message.

18 Interest Calculator

(a) (b)
Figure 2-4 ImageButton Example: (a) Eclipse IDE Project Explorer Menu (b) Sample Screen

Shot of Application Output

2.5.2 Interest Calculator

In this section, we discuss creating an interactive practical application – the Interest Calculator.
This Android app simply calculates the interest of an amount of money entered by the user at a
certain rate. It also calculates and displays the total amount, which is the sum of the principal
and the interest. It is a very simple Android app but through this example, we will explain many
basic Android programming features, such as defining strings and text attributes, some of which
we have explained in previous sections without concrete examples.

We define the app’s GUI in the file res/layout/activity main.xml, where we use a TableLayout to
organize GUI components into cells specified by rows and columns. Each cell in a TableLayout can
be empty or can have one component, which in turn can be a layout containing other components.
A component can span multiple columns. We useTableRow to create the rows.

The number of columns in a TableLayout is defined by the TableRow that contains the most
components. The height of each row is determined by the highest component and the width of
each column is determined by the widest element in the column. However, we can specify the table
columns to stretch to fill the width of the screen, which may result in wider columns. Components
are added to a row from left to right by default. One can refer to the Android developer site for
more details about the class TableLayout at:

http://developer.android.com/reference/android/widget/TableLayout.html
and the class TableRow at

Chapter 2 An Introduction to Android 19

http://developer.android.com/reference/android/widget/TableRow.html
Figure 2-5 shows the table layout and the names of the GUI components of this app.

Col 0 Col 1 Col 2 Col 3

Row 0

Row 1

Row 2

;

3.5%

Principal

Rate

Interest Total

Figure 2-5 . TableLayout of App’s GUI Labeled by Rows and Columns

The following steps guide you through the development of the app along with explanations
of various Android programming features and some classes used. Suppose we use Eclipse IDE,
calling both the project name and application name InterestCalc and the package name exam-
ple.interestcalc.

1. Create Project InterestCalc:

(a) Click File > New > Project > Android > Android Application Project
(b) Specify the names of the project, the application and the package as InterestCalc,

InterestCalc, and example.interestcalc respectively. Then click Next > Next > Next
> Next to use the defaults of Eclipse. So the names of Activity and Layout are
MainActivity and activity main respectively. The Navigation Type is None. Then
click Finish to create the project InterestCalc.

2. Define the GUI Layout:
We define the GUI layout of the app in the XML file res/layout/activity main.xml. Modify
this file to the following.

<?xml version="1.0" encoding="utf-8"?>
<!-- Interest Calculator’s XML Layout -->
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/tableLayout" android:background="#eeeeee"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:stretchColumns="1,2,3" android:padding="5dp">

<!-- row0 -->
<TableRow android:id="@+id/row0"

android:layout_height="wrap_content"
android:layout_width="match_parent">
<TextView android:id="@+id/principalStr"

android:layout_width="wrap_content"
android:layout_height="wrap_content"

20 Interest Calculator

android:text="@string/principal" android:textColor="#000"
android:textSize="14pt" android:gravity="right"
android:paddingRight="5dp">

</TextView>
<EditText android:id="@+id/principalEditText"

android:layout_width="wrap_content" android:textSize="12pt"
android:text="@string/principalValue"
android:layout_height="wrap_content" android:layout_span="3"
android:inputType="numberDecimal" android:layout_weight="1">

</EditText>
</TableRow>

<!-- row1 -->
<TableRow android:id="@+id/row1"

android:layout_height="wrap_content"
android:layout_width="match_parent">
<TextView android:id="@+id/rateStr"

android:layout_width="wrap_content"
android:text="@string/rate" android:textSize="14pt"
android:textColor="#000" android:paddingRight="5dp"
android:gravity="right|center_vertical"
android:layout_height="match_parent"
android:paddingBottom="5dp"
android:focusable="false">

</TextView>
<SeekBar android:id="@+id/seekBar"

android:layout_height="wrap_content"
android:layout_width="match_parent"
android:layout_span="2"
android:max="1000" android:progress="35"
android:paddingLeft="8dp" android:paddingRight="8dp"
android:paddingBottom="5dp"
android:layout_weight="1">

</SeekBar>
<TextView android:id="@+id/rateTextView"

android:layout_width="wrap_content" android:text="3.5%"
android:textColor="#000" android:gravity="center_vertical"
android:textSize="12pt" android:layout_height="match_parent"
android:paddingLeft="5dp" android:paddingBottom="5dp"
android:focusable="false" android:layout_weight="1">

</TextView>
</TableRow>

<!-- row2 -->
<TableRow android:id="@+id/row2"

android:layout_height="wrap_content"
android:layout_width="match_parent">
<TextView android:id="@+id/interestStr"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/interest" android:textSize="14pt"
android:textColor="#00ff00" android:gravity="right"
android:paddingRight="5dp">

</TextView>
<TextView android:id="@+id/interestTextView"

Chapter 2 An Introduction to Android 21

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="3.5" android:gravity="center"
android:focusable="false" android:layout_weight="1"
android:textSize="12pt" android:cursorVisible="false"
android:longClickable="false">

</TextView>
<TextView android:id="@+id/totalStr"

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/total" android:textColor="#ff1111"
android:gravity="right" android:textSize="14pt"
android:paddingRight="5dp" android:layout_weight="1">

</TextView>
<TextView android:id="@+id/totalTextView"

android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:text="@string/totalValue"
android:gravity="center" android:focusable="false"
android:layout_weight="1" android:textSize="12pt"
android:cursorVisible="false" android:longClickable="false">

</TextView>
</TableRow>

</TableLayout>

This file is mostly self-explained. we have purposely used different ways to specify some
attributes to introduce the techniques. By default, the layout width and height attributes are
set to match parent so that the layout fills the entire screen. Each padding attribute is set
to 5dp to ensure that there will be 5 density-independent pixels around the border of the
entire layout. The stretchColumns attribute is set to “1, 2, 3”, indicating that columns 1, 2
and 3 should be stretched horizontally to fill the layout‘s width. The stretch does not include
column 0, so the width of this column is equal to that of the widest element plus any padding
space specified for the element.

The background color of the TableLayout is specified near the top of the file by the attribute
and parameter

android:background=“#eeeeee”

where the parameter “#eeeeee” defines a grey color.

Attribute textSize specifies the font size of the displayed text and attribute gravity specifies
the text alignment. For example, in the TextView element of row 0, the statements

android:textSize=“14pt” android:gravity=“right”

specify a font size of 14 points and a right-aligned text.

The statement

android:text=“@string/principal”

defines the string of the TextView to be displayed. The @ sign in the paremeter indicates
that the actual string is defined in the file res/values/strings.xml and in this example, it is
referenced by the variable principal. (See the next step.) If there is no @ sign in the param-
eter, the value for the parameter is simply the text enclosed inside the double quotes. For
example, in column 3 of row 1, the statement

22 Interest Calculator

android:text=“3.5%”

specifies that the string to be displayed is simply 3.5%.

In the <SeekBar> element of row 1, the statement

android:layout span=“2”

means that the SeekBar will occupy two columns as shown in Figure 2-5. The statements

android:max=“1000” android:progress=“35”

specify that the maximum value of the bar is 1000 and the initial value is 35, which cor-
responds to 35/1000 = 3.5%. The values of attribute Focusable in TextView are set to
false so that when the SeekBar’s value is changed by the user, the TextView still maintains
the focus. This helps keep the keyboard on the screen on a device that displays the soft
keyboard.

3. Specify Text Strings:
The strings denoted with an @ sign in the layout can be defined in the the file res/values/strings.xml.
So modify this file to the following.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Interest Calculator</string>
<string name="principal">Principal</string>
<string name="principalValue">100.00</string>
<string name="interest">Interest</string>
<string name="total">Total</string>
<string name="rate">Rate</string>
<string name="totalValue">103.5</string>
<string name="zero">0.00</string>
<string name="action_settings">Settings</string>

</resources>

In the notation here, the text inside a pair of double quotes is a variable name and the text
between the string tags is the actual value of the variable. For example, in

<string name=”principal”>Principal</string>

principal is the variable name and Principal is the actual string represented by the variable,
which is defined in row 0 of the TableLayout discussed above:

android:text=“@string/principal”

4. Modify Main Java Program:
Modify the Java program src/example/interestcalc/MainActivity.java to the following.

//Interest Calculator
package example.interestcalc;

import android.os.Bundle;
import android.app.Activity;
import android.text.Editable;
import android.widget.TextView;
import android.widget.EditText;
import android.text.TextWatcher;

Chapter 2 An Introduction to Android 23

import android.widget.SeekBar;
import android.widget.SeekBar.OnSeekBarChangeListener;

//main Activity class for Interest Calculator
public class MainActivity extends Activity
{
private double principal; //amount entered by the user
private double ratePercent; //inter rate in % set with SeekBar
private EditText principalEditText; //user input for principal
private TextView rateTextView; //displays rate percentage
private TextView totalTextView;
private TextView interestTextView; //displays interest amount

//constants used in saving/restoring state
private static final String PRINCIPAL = "PRINCIPAL";
private static final String INTEREST_RATE = "INTEREST_RATE";

// Called when the activity is first created.
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState); //call superclass’s version
setContentView(R.layout.activity_main); //inflate the GUI

//check whether app just started or is being restored from memory
if (savedInstanceState == null) // the app just started running
{

principal = 100.0; //initialize the principal to 100
ratePercent = 3.5; //initialize the interest rate to 3.5%

} else { // restore app from memory, not executed from scratch
// restore saved values
principal = savedInstanceState.getDouble(PRINCIPAL);
ratePercent = savedInstanceState.getDouble(INTEREST_RATE);

}

// get the TextView displaying the rate percentage
rateTextView = (TextView) findViewById(R.id.rateTextView);

// get the interest and total TextView
interestTextView=(TextView) findViewById(R.id.interestTextView);
totalTextView = (TextView) findViewById(R.id.totalTextView);

// get the principal editText
principalEditText=(EditText)findViewById(R.id.principalEditText);

// editTextWatcher handles editText’s onTextChanged event
principalEditText.addTextChangedListener(editTextWatcher);

// get the SeekBar used to set interest rate
SeekBar seekBar = (SeekBar) findViewById(R.id.seekBar);
seekBar.setOnSeekBarChangeListener(seekBarListener);

} // end method onCreate

// updates the interest and total EditTexts
private void updates()

24 Interest Calculator

{
rateTextView.setText(String.format("%.02f %s",ratePercent,"%"));
// calculate interest
double interest = principal * ratePercent * .01;

// calculate the total, including principal and interest
double total = principal + interest;

// display interest and total amounts
interestTextView.setText(String.format("%.02f", interest));
totalTextView.setText(String.format("%.02f", total));

}

// save values of editText and SeekBar
@Override
protected void onSaveInstanceState(Bundle outState)
{

super.onSaveInstanceState(outState);

outState.putDouble(PRINCIPAL, principal);
outState.putDouble(INTEREST_RATE, ratePercent);

}

// called when the user changes the position of SeekBar
private OnSeekBarChangeListener seekBarListener =

new OnSeekBarChangeListener()
{

// update ratePercent, then call updates
@Override
public void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser)
{

// sets ratePercent to position of the SeekBar’s thumb
ratePercent = seekBar.getProgress() /10.0;
updates(); // update interest and total

}

@Override
public void onStartTrackingTouch(SeekBar seekBar)
{
}

@Override
public void onStopTrackingTouch(SeekBar seekBar)
{
}

}; // end OnSeekBarChangeListener

// event-handling object that responds to editText’s events
private TextWatcher editTextWatcher = new TextWatcher()
{

// called when the user enters a number
@Override
public void onTextChanged(CharSequence s, int start,

int before, int count)

Chapter 2 An Introduction to Android 25

{
// convert editText’s text to a double
try
{

principal = Double.parseDouble(s.toString());
}
catch (NumberFormatException e)
{

principal = 0.0; // default if an exception occurs
}
updates(); // update the values

}

@Override
public void afterTextChanged(Editable s)
{
}

@Override
public void beforeTextChanged(CharSequence s, int start,

int count, int after)
{
}

}; // end editTextWatcher
} // end class MainActivity

When the system runs the application, the ADT Plugin tools build and generate a resource
class called R from the resource XML files such as strings.xml and activity main.xml. This
class contains nested static classes representing the resources specified in the project’s res
directory. This class can be found in the project’s gen directory, which contains source-code
files generated by the system. In our case, the file generated is gen/example/interestcalc/R.java.
The class is compiled to binary files in bin/classes/example/interestcalc, which contains the
binary codes of all the classes of the package example.interestcalc. Within the nested classes
of class R, the tools have created static final int constants that let us refer to these resources
programmatically from our app’s Java code, src/example/interestcalc/MainActivity.java. Ex-
amples of the nested classes of R include

(a) class drawable, which contains constants for any drawable items, such as images and
button images, that we put in various drawable directories inside res,

(b) class id, which contains constants for the GUI components defined in your xml layout
files,

(c) class layout, which contains constants that represent each layout file in the project such
as, activity main.xml,

(d) class string, which contains constants for each string defined in strings.xml.

The following is a portion of the generated file gen/example/interestcalc/R.java in this ex-
ample:

package example.interestcalc;
public final class R {

.....
public static final class drawable {

26 Interest Calculator

public static final int ic_launcher=0x7f020000;
}
public static final class id {

public static final int action_settings=0x7f08000d;
public static final int interestStr=0x7f080009;
public static final int interestTextView=0x7f08000a;
public static final int principalEditText=0x7f080003;
public static final int principalStr=0x7f080002;
public static final int rateStr=0x7f080005;
public static final int rateTextView=0x7f080007;
public static final int row0=0x7f080001;
public static final int row1=0x7f080004;
public static final int row2=0x7f080008;
public static final int seekBar=0x7f080006;
public static final int tableLayout=0x7f080000;
public static final int totalStr=0x7f08000b;
public static final int totalTextView=0x7f08000c;

}
public static final class layout {

public static final int activity_main=0x7f030000;
}
public static final class string {

public static final int action_settings=0x7f050008;
public static final int app_name=0x7f050000;
public static final int interest=0x7f050003;
public static final int principal=0x7f050001;
public static final int principalValue=0x7f050002;
public static final int rate=0x7f050005;
public static final int total=0x7f050004;
public static final int totalValue=0x7f050006;
public static final int zero=0x7f050007;

}
.....

}

In OnCreate() of class MainActivity, the call

setContentView (R.layout.activity main);

takes the constant R.layout.activity main as parameter, which in this example is 0x7f030000
as shown in R.java above, and it represents the activity main.xml file. In general, setCon-
tentView uses the constant argument to load the corresponding xml document, which is then
parsed and converted to the app’s GUI components and the process is known as inflating the
GUI.

Once the layout is inflated, we can get references to the individual widgets using the find-
ViewById method as shwon in the MainActivity code above.

In the code of MainActivity.java listed above, we also define an anonymous inner class
that implements interface OnSeekBarChangeListener. which creates the anonymous inner-
class object seekBarListener that responds to seekBar’s events. Java requires us to override
a few methods that include: onProgressChanged, onStartTrackingTouch, and onStop-
TrackingTouch. In our app, we only implement onProgressChanged, which we need, and
simply provide an empty shell for each of the other two, that we do not actually use. In our
code, we use the getProgress method of the class SeekBar to obtain the SeekBar’s indicator

Chapter 2 An Introduction to Android 27

position. The getProgress returns an integer in the range 0 − 1000, which is defined by us
with the statement

android:max=“1000”

in the file activity main.xml discussed above. We divide the returned value by 10 to obtain
the percentage interest rate, which can have a value ranging from 0.0 to 100.9. The method
then calls updates() to calculate the interest and the total amount.

5. Run the Application:
When we run the application, we will see a screen similar to one shown in Figure 2-6. We
can enter a value for principal by clicking the mouse at the text area of principal. If you
want to erase the original value (100.00), you have to point the mouse cursor to the right
side of the number and press the key Backspace to erase the digits.

We can change the interest rate by sliding the seekBar indicator using the mouse.

Figure 2-6 Interest Calculator

2.5.3 Grid View Demo

In this example, we demonstrate the use of GridView to display an array of images. This example
is adopted from the example HelloGridView presented in the official Android developer web site.

GridView is a ViewGroup, which displays items in a two-dimensional and scrollable grid. A
ListAdapter is used to automatically insert grid items to the layout. In this example, we will
construct an image gallery using GridView. Each grid displays an image thumbnail. When an item
is clicked, a toast message will show the position of the grid selected.

We use Eclipse IDE to develop this application and we call the project and application Grid-
ViewDemo, and the package, example.gridviewdemo:

1. Like what we did in previous examples, we create a project named GridViewDemo using
Eclipse IDE.

2. We create the directory res/drawable, find some images from the Internet or other sources.
and save them in the directory, naming the images as sample0.jpg, sample1.jpg, and sam-
ple2.jpg etc.

3. We modify the layout file res/layout/activity main.xml to the following:

<?xml version="1.0" encoding="utf-8"?>
<GridView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/gridview"
android:layout_width="match_parent"
android:layout_height="match_parent"

28 Grid View Demo

android:columnWidth="100dp"
android:numColumns="auto_fit"
android:verticalSpacing="10dp"
android:horizontalSpacing="10dp"
android:stretchMode="columnWidth"
android:gravity="center"

/>

This GridView will fill the entire screen. The numColumns attribute, representing number
of columns, is set to auto fit, which sets the number of columns to fit the screen. One may
set it to a number such as 3 and 4.

4. We modify the main java program, MainActivity.java to the following:

package example.gridviewdemo;

import android.widget.AdapterView.OnItemClickListener;
import android.content.Context;
import android.app.Activity;
import android.os.Bundle;
import android.widget.*;
import android.view.*;

public class MainActivity extends Activity
{

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

GridView gridview = (GridView) findViewById(R.id.gridview);
gridview.setAdapter(new ImageAdapter(this));

gridview.setOnItemClickListener(new OnItemClickListener() {
public void onItemClick(AdapterView<?> parent, View v,

int position, long id) {
Toast.makeText(MainActivity.this, "" + position,

Toast.LENGTH_LONG).show();
}

});
}

}

class ImageAdapter extends BaseAdapter {
private Context context;
// reference the images
private Integer[] imageIds = {
R.drawable.sample2, R.drawable.sample3,
R.drawable.sample4, R.drawable.sample5,
R.drawable.sample6, R.drawable.sample7,
R.drawable.sample0, R.drawable.sample1,
R.drawable.sample2, R.drawable.sample3,
R.drawable.sample4, R.drawable.sample7,

};
public ImageAdapter(Context context0) {

Chapter 2 An Introduction to Android 29

context = context0;
}
public int getCount() {

return imageIds.length;
}
public Object getItem(int position) {

return null;
}
public long getItemId(int position) {

return 0;
}
// create a new ImageView for each item referenced by the Adapter
public View getView(int position,View convertView,ViewGroup parent){

ImageView imageView;
if (convertView == null) {//Initialize attributes for first time

imageView = new ImageView(context);
imageView.setLayoutParams(new GridView.LayoutParams(220, 220));
imageView.setScaleType(ImageView.ScaleType.CENTER_CROP);
imageView.setPadding(6, 6, 6, 6);

} else {
imageView = (ImageView) convertView;

}
imageView.setImageResource(imageIds[position]);

return imageView;
}

}

We have defined the content view in the layout file activity main.xml. The class MainAc-
tivity captures the GridView from the layout with findViewById(int). The setAdapter()
method then sets a custom adapter, ImageAdapter, as the source for all items to be dis-
played in the grid. The ImageAdapter is a class defined in the same file. We pass a new
AdapterView.OnItemClickListener to the setOnItemClickListener() so that a task will
be peformed when an element in the grid is clicked. This anonymous instance defines the
onItemClick() callback method, which displays a Toast message indicating the position of
the element in the grid.

The custom adapter class ImageAdapter extends the class BaseAdapter, and is thus required
to implement some methods inherited from BaseAdapter. The constructor and the method
getCount() are self-explained. In general, getItem(int) returns the actual object at the spec-
ified position in the adapter, but it is not used in this example. Also, getItemId(int) returns
the row id of the item, but again they are not needed here.

The first useful method is getView(), which creates a new View for each image added to the
ImageAdapter. When it is called, a View is passed in, which normally is a recycled object,
and thus we need to check whether the object is null. If it is null, an ImageView object is
created and configured with desired properties for the image presentation including:

q) setLayoutParams (ViewGroup.LayoutParams) that sets the height and width for the
View. This ensures that, regardless of the image sizes, each image is resized and
cropped to fit in the dimensions.

b) setScaleType(ImageView.ScaleType), which declares that images should be cropped
toward the center if necessary.

c) setPadding(int, int, int, int) that defines the padding for all sides. Normally, images
with different aspect-ratios, will have more cropping with less padding if its dimen-
sions do not match those of the ImageView. At the end of the getView() method, an

30 Grid View Demo

image from the image array, specified by the paramter position, is set as the image
resource for the ImageView.

5. When we run the application, we should see an image gallery. Figure 2-7 shows a sample of
the display. If we click on an image, its position in the image array is displayed for a short
while as a Toast message.

Figure 2-7 Image Gallary Using GridView

Chapter 2 An Introduction to Android 31

2.6 Running On a Real Android Device

When we build a mobile application, it is important that we test the application on a real device
before releasing it to users. To do the test, we need to have an Android phone or device that can be
used for testing but not all Android phones have this function. So when you purchase an Android
phone, make sure that it can be used for development. One can refer to the Android developers
web site for detailed information about using hardware devices:

http://developer.android.com/tools/device.html

The phone that we have used for testing is Samsung’s Galaxy III, and we will use this as an
example to explain how to upload and run an app on the mobile phone.

First, we connect our Samsung mobile phone to our PC (a 64-bit Linux machine) via a USB
port and turn on the phone. We can check whether the phone has been attached to the PC using
the adb command in a terminal, which will list all the attached Android devices:

$ adb devices
List of devices attached
479004ad3e8ecfbc device

Second, we configure our Eclipse IDE to run the app in the phone by clicking Run > Run Con-
figurations.. > Target. Then check Always prompt to pick device and click Apply. Now when
we click run, we will see the Android Device Chooser dialog as shown in Figure 2-8.

Figure 2-8 Android Device Chooser

We simply select the Samsung device and click OK. The app will be uploaded to the Galaxy
phone and we can swipe across its screen to unlock to run it. Figure 2-9 shows the GridViewDemo
app discussed above running on a Samsung Galaxy III phone.

32 Running On a Real Android Device

Figure 2-9 Running App on Real Mobile Phone

Chapter 2 An Introduction to Android 33

2.7 Notes on Using Eclipse IDE

Most readers may use Eclipse IDE to learn or develop Android applications as it is a convenient
IDE that helps us import the necessary libraries and pinpoints the errors. However, Eclipse is not
a very user-friendly IDE and many navigation paths are non-intuitive, requiring a lot of trials to
get familiar with its usage. There are also some situations that the IDE may lead us to a wrong
direction in the development process, and in this case, you may want to use the command line
tools to assist you to find the right ways. For example, occasionally Eclipse may suggest a wrong
library to import, which is not the one your application needs, leading to subtle errors, which are
hard to debug.

If your machine runs a newly installed operating system such as 64-bit Linux, some generic
libraries such as the C++ glib required by the system to run the Android plugins may be missing.
The Eclipse IDE could run normally but when it builds the Android environment, it may need a
dynamic library that depends on another library, which is missing. The IDE may not generate
the correct error messages informing you the missing library, or worse, it may generate an error
message that points you to a wrong direction. This can be avoided if you build and compile
your Android project using the command-line tools. They will tell you exactly what libraries are
missing.

Sometimes, it may import the wrong library for a statement when you click on the error indi-
cator caused by a missing library. For example, you may need the OpenGL Matrix class, which
requires the import statement,

import android.opengl.Matrix;

However, if not careful, you may have imported the wrong one:

import android.graphics.Matrix;

and you are not aware of it; you may then wonder why errors still occur after you have included
the Matrix import statement.

If sometimes when you start Eclipse and see red dot error indicators in a project that you did
not see last time, you may fix them by simply doing a cleaning of the project (Click Project >
Clean.. > Clean all projects > OK) or restarting Eclipse again.

While working on a project using Eclipse, if you have changed a file of the project using another
editor, you have to click your project name in Package Explorer, and then click File > Refresh
for the changes to take effect in Eclipse.

To change the editor font size, you have to click Window > Preferences > General > Ap-
pearance > Colors and Fonts > Java > Java Text Editor Fonts > Edit

34 Notes on Using Eclipse IDE

Chapter 2 An Introduction to Android 35

	Chapter 2 An Introduction to Android
	2.1 Introduction
	2.2 Development Tools
	2.2.1 Eclipse IDE

	2.3 Android Basics
	2.3.1 Manifest File

	2.4 Command Line Development
	2.4.1 Listing Targets
	2.4.2 Creating AVDs
	2.4.3 Creating Project

	2.5 Simple Examples
	2.5.1 Button and ImageButton
	2.5.2 Interest Calculator
	2.5.3 Grid View Demo

	2.6 Running On a Real Android Device
	2.7 Notes on Using Eclipse IDE

