
Chapter 2: Atomic Structure & Interatomic Bonding

Review...

- Atom and related basics
- Atom electron configuration and valence electrons
- Bonding between atoms and types of bonds in materials

Class Exercise: Review of Basics for Atom

and Unit? A=12.011 g/mol Chapter 2 - 2

- Element name? Carbon Atomic number (Z)? Z=6
- # of electrons in a **neutral** atom?=Z=6 (Averaged) Atomic mass (A)
- # protons in such an atom? =Z=6

Atomic Structure

- Atom electrons (-) 9.11 x 10⁻³¹ kg protons neutrons (+) } 1.67 x 10⁻²⁷ kg
- Atomic number (Z) = # of protons in nucleus of atom
 = # of electrons for a neutral atom
- Isotope: same Z, different number of neutrons
- Atomic mass unit (amu), 1/12 mass of ¹²C
- Atomic mass (or weight) A = averaged mass with respect to natural isotopes for an element Unit of atomic mass: <u>g/mol</u> (preferred) or amu/atom
 - 1 mole of atoms: Avogadro number $N_A = 6.022 \times 10^{23}$ of atoms
 - Examples:
 - For C, atomic mass = 12.011 g/mol, i.e., 12.011 g for 6.022×10^{23} of C atoms
 - For H, atomic mass = 1.008 g/mol, i.e., 1.008 g for 6.022×10^{23} of H atoms

Class Exercise – Periodic Table

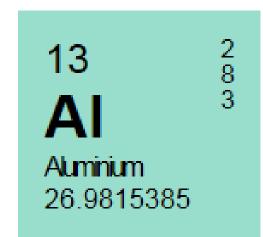
Given information on right from periodic table for aluminum,

•What is the atomic number Z

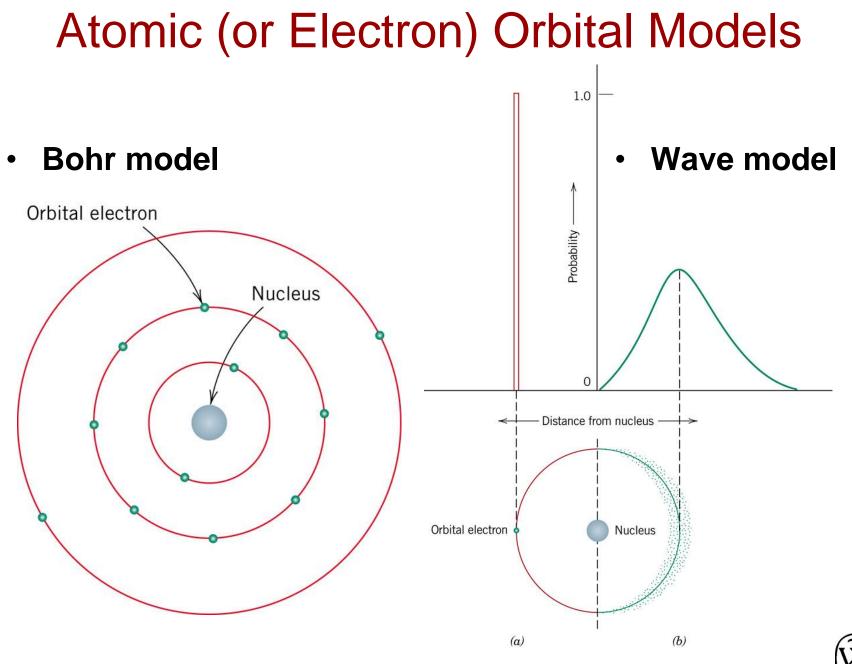
```
13
```

•What is the number of proton in Al nucleus 13

•What is the atomic weight A and the unit for atomic weight A

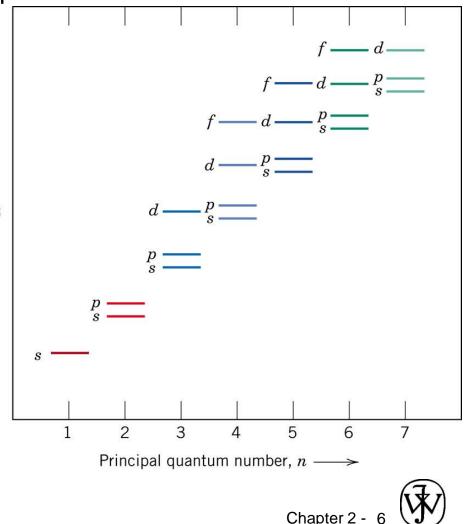

26.98 g/mol

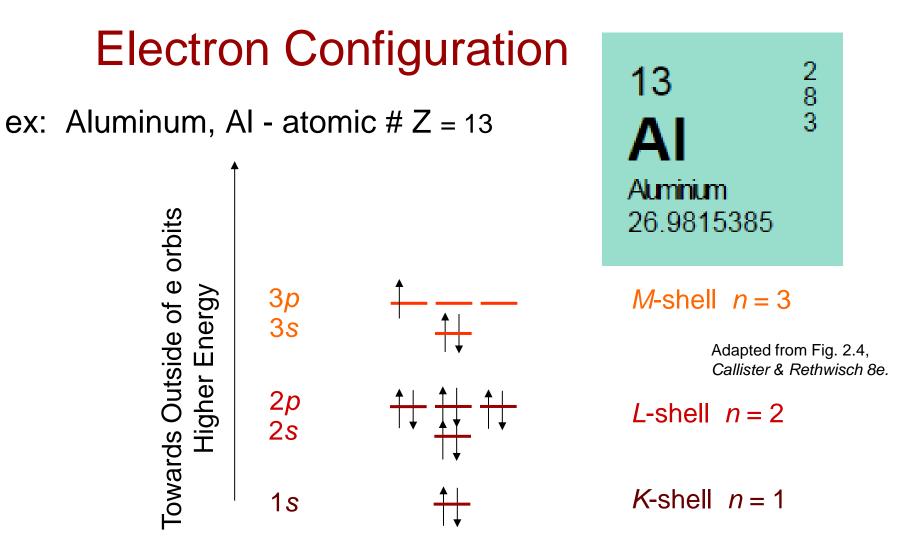
•On average, one gram of AI will contain how many AI atoms? (Knowing Avogadro's number $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$


$$\frac{1}{A} \cdot N_{A} = \frac{1 g}{26.98 g / mol} \cdot 6.02 \times 10^{23} / mol = 2.23 \times 10^{22}$$

•What is the averaged (over naturally occurring isotope) mass (weight) for one aluminum atom?

4
$$\frac{A}{N_A} = \frac{26.98 \ g \ / \ mol}{6.02 \ \times 10^{23} \ / \ mol} = 4.48 \ \times 10^{-23} \ g$$




Electronic Structure for Atoms

In an atom, electrons have certain arrangement/structure:

•Electrons are in a series of orbitals with different, discrete energy states following certain rules

- •Electrons occupy lower available energy states (orbitals) first
 - Shell: K, L, M, (or 1, 2, 3) etc.
 from low to high energy
 - Subshell: s, p, d, f, etc. within a shell from low to high energy
 - Different orientations (orbits) of same energy within each subshell (for an isolated single atom)
- •Follow Pauli exclusion principle: no more than two electrons in the same orbit, with one spin up & one spin down

Electron configuration for a neutral AI atom

$$1s^2$$
 $2s^2 2p^6$ $3s^2 3p^1$ valence electrons

Chapter 2 - 7

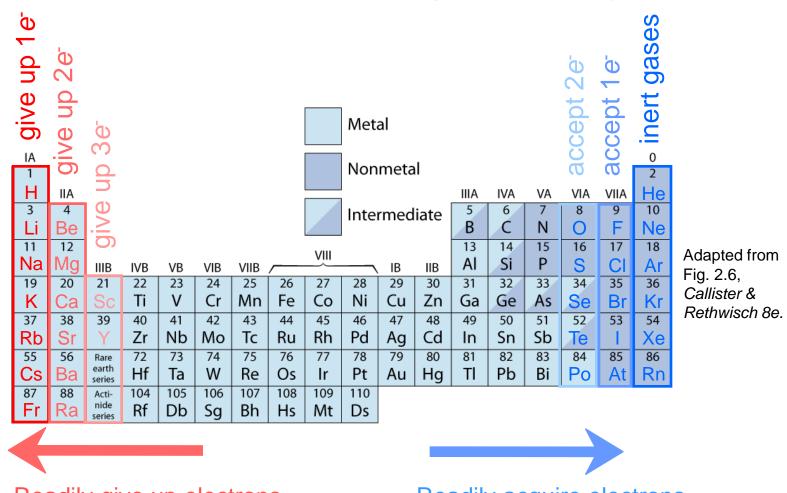
Examples of Electron Configuration

<u>Element</u>	Atomic #	Electron configuration			
Hydrogen	1	1s ¹			
Helium	2	1s ² (stable)			
Lithium	3	1s ² 2s ¹			
Beryllium	4	1 <i>s</i> ² 2 <i>s</i> ²			
Boron	5	$1s^22s^22p^1$ Adapted from Table 2.2,			
Carbon	6	1s ² 2s ² 2p ² Callister & Rethwisch 8e.			
Neon	10	$1s^22s^22p^6$ (stable)			
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹			
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²			
Aluminum	13	$1s^22s^22p^63s^23p^1$			
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (stable)			
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ (stable)			

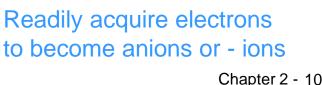
Valence Electrons

- Valence electrons those electrons occupy outmost shells (and, for transition metals, a few of of inner shell electrons in the d-orbits)
- Valence electrons are most available for bonding and tend to control the chemical properties for the atom/element
- example: Neutral CI atom atomic number Z = 17

valence electrons

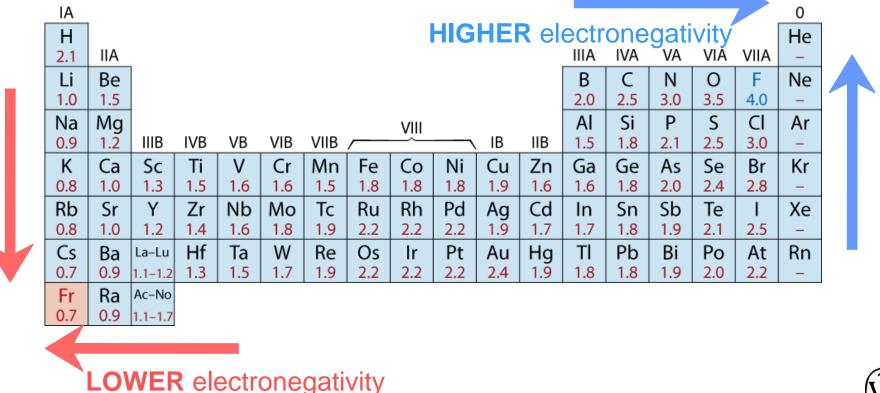

- Valence electrons determine the following properties
- 1) Chemical

 $1s^2 2s^2 2p^6 | 3s^2 3p^5 |$


- 2) Electrical
- 3) Thermal
- 4) Optical
- Atoms/ions with filled outmost shell will be stable: For H, He, Li, Be: two(2) e⁻ for 1s as the outmost shell is stable For others: outmost shell with eight (8) e⁻ is stable
 Chapter 2 - 9

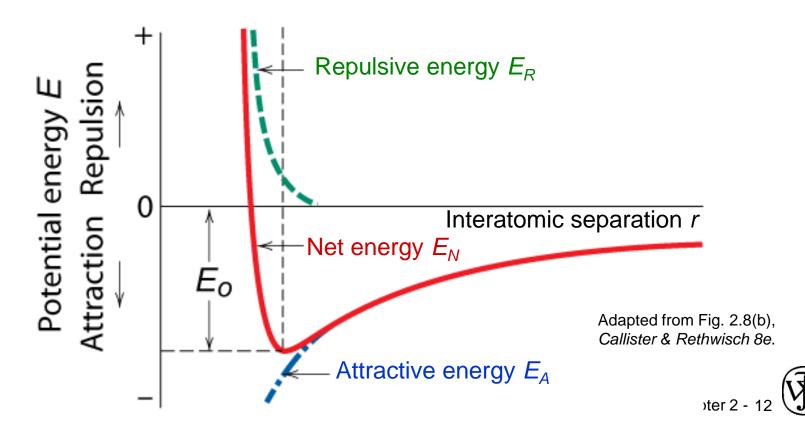
The Periodic Table

- Columns: Similar valence electron structure Group
- <u>Row</u>: Same number of electron shells (not subshells) <u>Period</u>

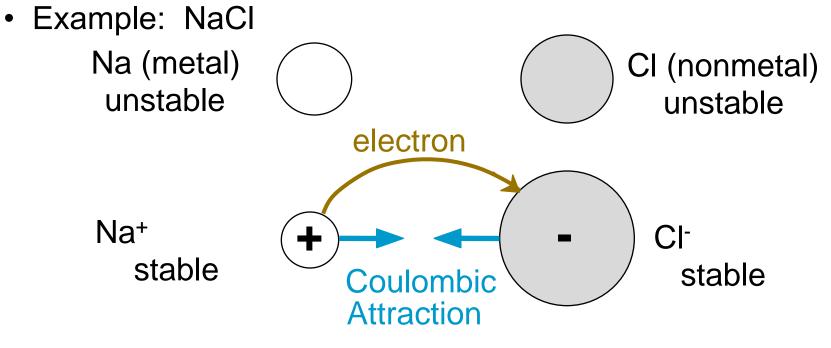

Readily give up electrons to become cations or + ions

Electronegativity

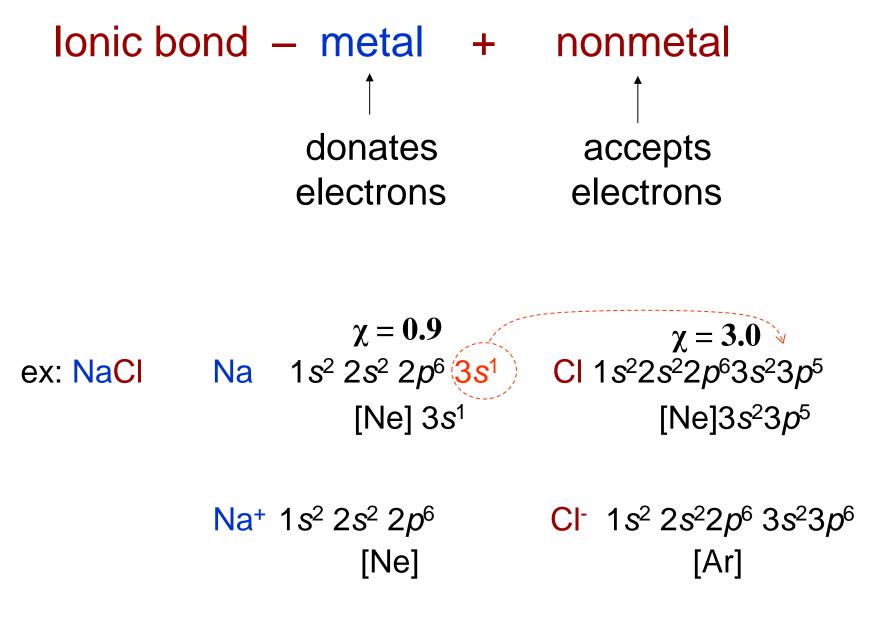
- A number representing the tendency for an atom to **acquire** electrons
- Right side of periodic table & fewer number of shells → HIGHER electronegativity, easier to GET electron(s)
- Left side of periodic table & more number of shells →
 LOWER electronegativity, easier to GIVE OUT electron(s)



Adapted from Fig. 2.7, *Callister & Rethwisch 8e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the* Chapter 2 - 1 *Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

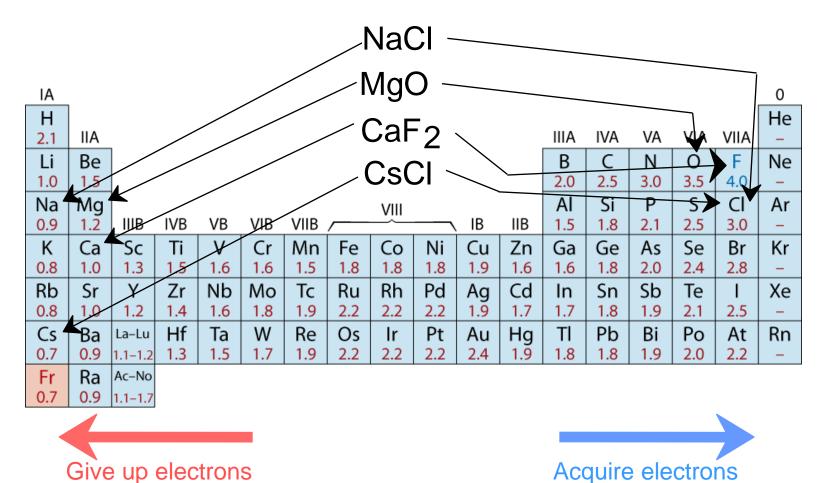

Bonding Energy

- In materials, atoms are bonded together in certain ways
- Bonding energy energy required to <u>break</u> the bonds between atoms
- Result of balance of attractive and repulsive forces
 - minimum energy \rightarrow most stable \rightarrow stable inter-atomic distance


Primary Bond (1) - Ionic Bond


- Occurs between + and ions.
- Requires electron transfer between atoms.
- Large difference in electronegativity between bonded atoms required.

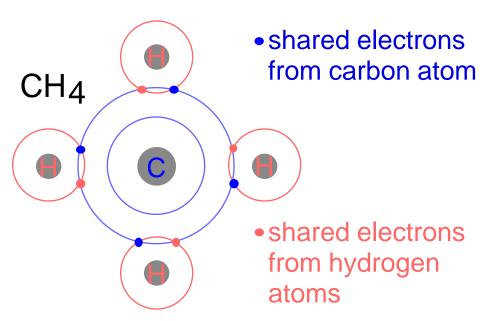
Chapter 2 -


Large bond energy

Examples: Ionic Bond

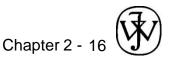
Often found in Ceramics

Adapted from Fig. 2.7, *Callister & Rethwisch 8e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

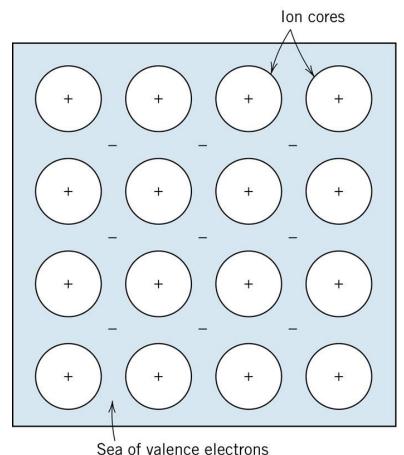


Chapter 2 - 15

Primary Bond (2) - Covalent Bond

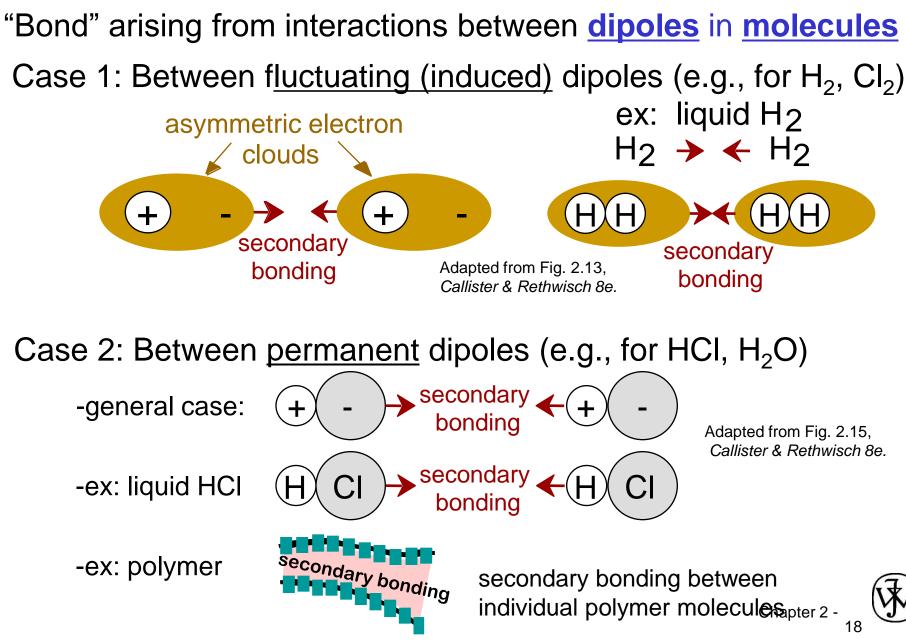

- Between non-metals with similar electronegativity → share electrons
- Bonds determined by valence often s & p orbitals dominate bonding
- Example: CH₄
- C: has 4 valence e⁻, needs 4 more to be stable
- H: has 1 valence e⁻, needs 1 more to be stable

Electronegativities χ are <u>comparable</u>: 2.1 for H and 2.5 for C


Adapted from Fig. 2.10, Callister & Rethwisch 8e.

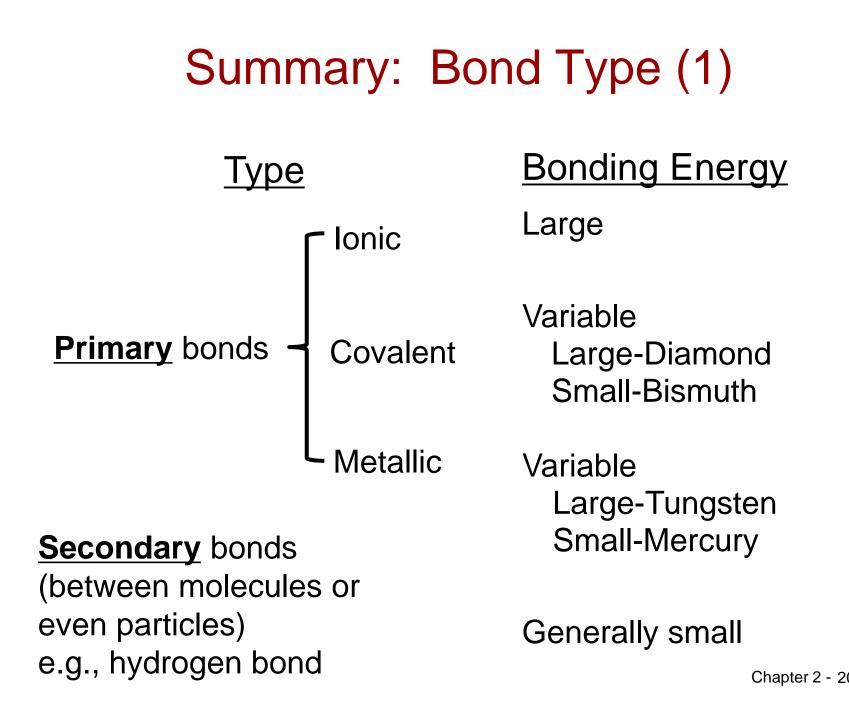
• Bond energy: usually large

Primary Bond (3) - Metallic Bond


 Metallic Bond -- Bonds between metal cations and delocalized electron cloud

Bond energy usually large

Secondary Bonds


Hydrogen Bond – A Special Type of <u>Secondary</u> Bond

- Strongest among all secondary bonds
- A special case of permanent dipole induced bonding
- Between individual molecules in which H is covalently bonded to F (e.g., HF), O (e.g., H₂O), and N (e.g., NH₃)

 Hydrogen bond bonding energy is much higher than other types of secondary bonding but still much weaker than bonding energy for primary bonds (i.e., covalent, ionic, or metallic bonds)

Bond Type & Materials Physical Properties

Table 2.3Bonding Energies and Melting Temperaturesfor Various Substances

2		Bonding Energy		Melting
Bonding Type	Substance	kJ/mol	eV/Atom, Ion, Molecule	Temperatur (°C)
Ionic	NaCl MgO	640 1000	3.3 5.2	801 2800
Covalent	Si C (diamond)	450 713	4.7 7.4	1410 >3550
Metallic	Hg Al Fe W	68 324 406 849	0.7 3.4 4.2 8.8	-39 660 1538 3410
van der Waals	Ar Cl ₂	7.7 31	0.08 0.32	$-189 \\ -101$
Hydrogen	$ NH_3 H_2O $	35 51	0.36 0.52	-78 0

• Higher bonding energy \rightarrow Higher melting point

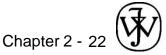
Materials Class & Bonding Type

Ceramics

Ionic & covalent bonding

Generally large bonding energy High T_m High E (Elastic modulus, see Chapter 6)

Metals


Metallic bonding

Generally large bonding energy High T_m High E

Polymers Covalent/secondary bond

Generally low bonding energy
 Secondary bonds dominate interaction between molecules small *T_m* small *E*

Class Exercise - Bonds

- Given the following electronegativity numbers
 - $-\chi$ (Na)=0.9;
 - $-\chi$ (F)=4.0;
 - χ (Si)=1.8;
 - $-\chi$ (C)=2.5;
 - χ (Mg)=1.2;

Determine the predominant primary bond type in the follow materials

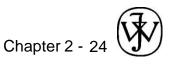
- Sodium fluoride (NaF) Ionic bond
- Silicon carbide (SiC) Covalent bond
- Pure magnesium (Mg) Metallic bond

Class Exercise – Bonds (2)

• What is the bonding type between Oxygen and Oxygen atoms WITHIN a single oxygen molecule?

Covalent bond

• Is the bonding between different oxygen molecules in liquid oxygen primary bonding or secondary bonding?


Secondary bond

 What is the bonding type between Hydrogen (H) and oxygen WITHIN a single water molecule?

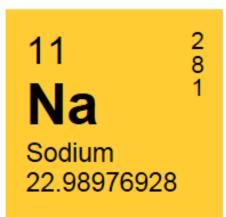
Covalent bond

What is the bonding type BETWEEN different water molecules in ice?

Secondary bond (Hydrogen bond, in particular)

Class Exercise

Given information on right from periodic table for sodium,


•What is the atomic number Z

11

•What is the number of proton in Na nucleus

11

•What is the atomic weight A and the unit for atomic weight A

22.99 g/mol

•On average, one gram of Na will contain how many Na atoms? $1g/(22.99 \text{ g/mol}) \times (6.02 \times 10^{23} \text{/mol}) = 2.62 \times 10^{22}$

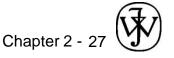
•What is the averaged (over naturally occurring isotope) mass (weight) for one sodium atom?

 $(22.99 \text{ g/mol}) / (6.02 \times 10^{23} \text{/mol}) = 3.82 \times 10^{-23} \text{ g}$

•Knowing F has electron configuration of 1s²2s²2p⁵ and atomic weight of 19.0, give the chemical formula for the stable compounds between Na and F and calculate the mass for one mole of that compound Na has 1 valence e ([Ne]3s¹), F has 7 valence e ([Ne]2s²2p⁵) One Na atom gives one e to one F atom, both become stable \rightarrow NaF Chapter 2 - $_{25}$ Mass for one mole of NaF: 19.0g + 23.0g = 42.0 g

Chapter 2 homework

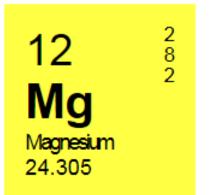
- Read chapter 2 and give an honor statement confirm reading
- Calister 8ed, hw 2.7, 2.22, and one additional problem


• Calister 8ed, 2.7

Give the electron configurations for the following ions: Fe²⁺, Al³⁺, Cu⁺, Ba²⁺, Br, and O²⁻.

• Calister 8ed, 2.22

What type(s) of bonding would be expected for each of the following materials: brass (a copper-zinc alloy), rubber, barium sulfide (BaS), solid xenon, bronze, nylon, and aluminum phosphide (AIP)?


• One additional problem see attached

Homework

Given information on right from periodic table for magnesium,

- •What is the atomic number Z
- •What is the number of proton in Mg nucleus
- •What is the atomic weight A and the unit for atomic weight A

•On average, one gram of Mg will contain how many Mg atoms?

•What is the averaged (over naturally occurring isotope) mass (weight) for one magnesium atom?

•Knowing F has electron configuration of 1s²2s²2p⁵ and atomic weight of 19.0, give the chemical formula for the stable compounds between Mg and F and calculate the mass for one mole of that c²⁸mpound

