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Chapter 2 Axially Loaded Members

Structural components subjected only to tension or compression: solid bars with straight
longitudinal axes, cables and coil springs — can be seen in truss members, connecting rods,

spokes in bicycle wheels, columns in buildings, and struts in aircraft engine mounts

2.2 Changes in Lengths of Axially Loaded Members

® Springs 3
B~
T

1. If the material of the spring is linear elastic,

P=ké

where k is the stiffness of the spring, or
spring constant, defined as the f

required to produce a unit e

2. The inverse relationship is

6—1P— P
= =f

where f is the flexibility of the spring, or compliance, defined as the e

produced by a unit f
® Prismatic Bars

1. If the load acts through the centroid of
the end cross section (proof at pp. 31-

32), at a point away from the ends

(Saint-Venant’s principle), the normal

stress is uniformly distributed and thus ““ 5 %
P J
o= Z ‘7\P
2. Ifthe baris h , the axial strain is
6
7L

3. Using Hooke’s law ¢ = E¢, the elongation is derived as

6=—— where EA:axial r
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4. The relationship above works for both tension and compression with a proper sign

convention (plus sign for P and & in tension and negative in compression)

5. Stiffness and flexibility of a prismatic bar:

i — EA
L
_ L
I =5
® Cables
1. Important structural elements used when
et OATE B,
lifting/pulling/sustaining heavy objects (elevators, & MAIN SPAN O,

IENGTH OF ONE CABIE . ... 7650 FT. (337m)
DIAMETER OF ONE CABIE .. 34% IN. B24cm)
S IN £

suspension bridges, cable-stayed bridges)

2. Cannotresist ¢ , thus not used against
b

3. Elongation of a cable is greater than that of a solid bar
with the same material because the wires in the cable
“tighten up” (instead of deforming in axial direction) >

the “effective” modulus of elasticity is less than that of

the material

®© Example 2-2: Cross-sectional areas of the bars BD and CE are 1,020 mm? and 520
mm?, respectively. The bars are made of steel having a modulus of elasticity E =
205 GPa. Assume the beam ABC is rigid.

a) Maximum allowable load P if the displacement of point A is limited to 1.0 mm

b) If P = 25KkN, what is the required cross-sectional area of bar CE so that the

displacement at point A is equal to 1.0 mm?
B
'

‘ 450 mm 225 mm

o)
-

600 mm
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2.3 Changes in Lengths under Non-uniform Conditions

® Bars with Intermediate Axial Loads

1. Procedure for a prismatic bar

a [ lNI

A. ldentify the segments based on the py b Py
|
B. Determine the internal axial forces

from equilibrium ¢ l ¢ I ¢ [ s

Fe Fe

intermediate axial loads 2

C. Determine the change in each

segment using 6; = N;L;/EA

D l DT DT D
D. Add the changes to find the total Pp Pp Pp Pp

L . ) . )
elongation, i.e. § =Y, 6; a (b) c )

2. If the bar consists of multiple prismatic bars with different materials and/or cross-

sectional areas, § = ».1-; N;L;/E;A;

® Example 2-3: L; =20.0in.,, L, = 34.8 in,

A, =0.25in2, A, =0.15in.2, E = 29.0 X
10° psi, a = 28in.,, and b = 25in. ‘ |
"

Calculate the vertical displacement 6, at C oD Eg)

— ¥
when the load P; =2,1001b and P, = 5,6001b P,
(Self-weight neglected) L ™4,

| C (a)
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® Bars with Continuously Varying Loads or Dimensions

A p(x)

d

- C (
px) CN(.).‘) N(x) @ N(x) +TN(X]
> dx
XJ —J de

(a) (b) (c)

1. Suppose the axial load P(x), Young’s modulus E(x) or cross-sectional area A(x)

vary over the length
2. Consider the cylinder with the infinitesimal length dx - Figure (c)

3. The elongation of the cylinder is d§ = ——

4. The total elongation is § = fOL dé = fOL dx

5. Limitations: works when the material is linear elastic and the stress is uniformly

distributed — the latter many not hold if the angle of the tapered bar is large

® Example 2-4: Determine the B

elongation of a tapered bar AB of A T

L . P
solid circular cross section dp

dA J

Y
~
¥
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2.4 Statically Indeterminate Structures lp. ba,
A
© Statistically Indeterminate Structures mﬁ ! 1 .
1. Statically determinate: r and i
f can be determined solely from free-body
diagrams and equations of e = £
Statically indeterminate: otherwise *R $R‘*
2. Example: axially loaded bar with fixed boundary %R..x R
A
conditions at both ends (=)
A 1 AT
Ry—P+Rz=0 (1)
P P
3. How to solve? l \
C —x C|e
Introduce equation of ¢ K .
Sap = (2) b
4. Equations (1) and (2) are defined in terms of
different terms (force and displacement) - Use B v gl
R
f -d relationship &, = % and Ifﬂ’s 1 ’
Rpb
5. Now, Eq. (2) becomes 8,5 = 8¢ + 8cp = % — % =0 (3)
P Pa

Solving Eq. (1) and (3) together, one can get R, = Tb and R = -
With these reactions, one can obtain the internal forces and the elongations. For

example, the vertical displacement of point C is &, = §4¢ = % = %

Stresses can be found too. For example, the normal stress in the segment AC is

® Terminologies

1.

2.

(a) Equilibrium equations: static or kinetic equations

(b) Compatibility equations: geometric equations, kinematic equations, equations

of consistent deformations
(c) Force-displacement relations: constitutive relations

Stiffness method (displacement method) vs flexibility method (force method)
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® Example 2-5: A vertical load P applied on a horizontal rigid bar ABC is supported by
wires BD and CD with diameters d; and d,, modulus of elasticity E; and E,, and
lengths L; and L, respectively. Obtain formulas for the allowable load P when the

allowable stresses in the wires BD and CD are ¢; and o,, respectively.

A

D
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® Example 2-6: A solid circular P
steel cylinder S (with Young’s
modulus E; and cross-sectional
area Ay) is encased in a hollow R i
’

circular copper tube C (with E,
and A.). When the cylinder and

tube are compressed between

the rigid plates of a testing (b)

machine y compressive forces

P, determine the compressive

forces P, and P, the

(a)

corresponding stresses, and the

shortening of the assembly, §.
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2.5 Thermal Effects-Misfits—and Prestrains

Other sources of deformations than external loads: thermal effects, misfits (imperfections),

prestrains, settlements, intertial loads, etc.
® Thermal Effects (expands when heated; contracted when cooled)

1. For most structural materials, thermal strain &, is proportional to the temperature

change AT
er = a(AT)
2. a: coefficient of thermal expansion (1/K = 1/°C) or (1/°F)
3. Stress that would cause the thermal strain caused by AT: ¢ = Ea(4T)

e.g. the temperature change AT = 100°F causes the same strain produced by

29,000 psi (typical allowable stress of stainless steel)

4. Temperature-displacement relation: 8 = erL = a(AT)L

® Example 2-7: A prismatic bar AB &, 1A AT B Ry
of length L, made of linearly elastic >
material with modulus E and | L
thermal expansion coefficient o is ] (a)

held between immovable supports.

(a) When the temperature is raised R, 14 AT B R,

by AT, derive a formula for the

thermal stress oy L
(b)
(b) Modify the formula in (a) if the

rigid support B is replaced by an elastic support having a spring constant k. Only the

bar is subjected to the temperature change AT.
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©® Example 2-8: A sleeve in the form of a circular tube of length L is placed around a bolt
and fitted between washers at each end. Assume ag > a3. (a) If the temperature is
raised by AT, what are the stresses in the sleeve and bolt, respectively? (b) What is the
increase ¢ inthe length L of the sleeve and bolt?

Nut Washer Sleeve Bolt head

Bolt j

(a)

5y F
AT

(b)

] e
‘ «

©
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2.6 Stresses on Inclined Sections

®© Stresses on Section Perpendicular to Axis

Vv
. .
L = T
P [or F_o _P
—Jor i x —x c o=t

_— L - e _——

= = = A n

1. Normal stress ¢ = P/A (prismatic, homogeneous and axial force at the centroid,

away from the stress concentration at ends)

2. Normal stress only, i.e no

,
S i
R _P
T A ' TTT A
3. “Stress element’(=>): an infinitesimal T L e o
block with its right-hand face lying in 0 x

J

cross section (“C” in the figure above)

® Stresses on Inclined Sections

3 n
1. Orientation of the inclined section: A\ /’(e/
determined by 6 ~ angle between — y = —
x-axis and the normal vector n ! \q ’
(a)
2. Two force components for the y N X ’//{ 6
inclined section pgq: by : \/’ P |
N=P- g N b

v=p-

3. Then the normal and shear

stresses on the inclined section Ao A \q

1= Cosg
are: (c)
Py
— _ \
o=—"7\ T=—0 \ y
h X
where 4; = ' P \g

4. Sign conventions: normal stress
positive in tension, and shear stress o N

positive when it produces P o Rk \/ '
counterclockwise rotation
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5. Thus, the normal and shear stresses on inclined section with the

P, ) Oy
0g = —co0s“ 6 = g, cos“ 0 =?(1+c0529)

Junho Song
junhosong@snu.ac.kr

orientation 0 are

A
. . O-x .
Tg = —Zsme cosf = —g, sinf cosf = —7(sm29)
® Maximum Normal and Shear
Stresses
1. Plots of og and tg ()
1 1
1 1
1 1
2. Maximum normal stress: - i | | |
-90° —45° 0 459 6 90°
Ty
Omax = at 0 = 4 !
—0.50; f--——-——--=
Corresponding shear stress =
.\A
3. Maximum shear stress:
P 0 P
Tax = — at 6 = + —8 —
. (a)
Corresponding normal
stress = = 5
\ / =450
4. The most important L / \ :
\
Ty Ty |
orientations for uniaxial — 2 N

stress condition is 8 =

and 0 =+
(b
5. Even though o4y = P
2Tmax, @ bar can fail in shear if the material is l
more vulnerable to the shear failure.

Examples: shear failure of wood block in
compression (=), and “slip bands” of flat bar
of low carbon steel (=-)

Load

(ch
Load

I

Load
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® Example 2-10: A prismatic bar ¥
with L=0.5m and A = P

* 6= 25°

1,200 mm? is compressed by p O \ E—

an axial load P = 90 kN. (a)

Complete state of stress acting q

on section pq (angle 8 = 25°); @
(b) Bar fixed between supports y
A and B under temperature r\ AT

change AT = 33°C. The Ry \ Ry

compressive shear stress on

section rs is 65 MPa. Find the 7 s

shear stress 7y on plane rs, (b)
and angle 8 (E = 110 GPa, o = 20 X 107¢/°C)
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2.7 Strain Energy

P
® Strain Energy
1. Suppose a tensile force P caused a dpP, i
———————— 1
prismatic bar to elongate by §. The work I S Eii |
I
done by the force P is P |
P i
5 |
0
0 S ‘ Lﬁé' 8
. . -— l—>
where P, is theload at § = §; in the load-
8 \

displacement diagram (=)

2. The strain caused by the work W increases the energy level (or the potential to do

work) of the bar.
3. Strain energy: the energy absorbed by the bar during the loading process
4. From the principle of conservation of energy, the strain energy is

S5
U=W=fP1d5 P
0

B .
A Inelastic
strain

5. Unit of strain energy: ] = N-m, ft-lb, ft-kips, in.-lb, energy

in-k. e Elastic
strain
A/

6. Elastic strain energy: energy recovered in the form energy

of work during unloading 0 D C B

Inelastic strain energy: energy not recovered

® Linearly Elastic Behavior P

A

1. Strain energy: U = —— 1 |
| = PO
. . . 1 )
2. Strain energy in terms of load or elongation p /:./ -

(using force-displacement relation): i

1

1

U= or e | B
I
1

® Nonuniform Bars

2y
1. Prismatic bar segments: U = Y[~ U; = ?=1évg—;fi
L [N(x)]?dx

2. Continuously varying bar: U = fo 2EA(X)
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® Example 2-13: Determine the strain energy

of a prismatic bar under the loads: (a) the | |
weight of the bar itself; and (b) the weight of
the bar plus a load P at the lower end. i i
L L
L A 1
dx dx

Y P
(a) (b)
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® Displacements Caused by a Single Load

The displacement of a linearly elastic structure supporting only
one load can be determined from its strain energy. From the
system shown below, U = Pé6/2. Therefore, the displacement is
6 =2U/P.

® Example 2-14: Determine the vertical
displacement 45 of joint B of the
truss under the vertical load P. Both
members of the truss have the same

axial rigidity EA.
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