Chapter 2 Axially Loaded Members

Structural components subjected only to **tension** or **compression**: solid bars with straight longitudinal axes, cables and coil springs – can be seen in truss members, connecting rods, spokes in bicycle wheels, columns in buildings, and struts in aircraft engine mounts

2.2 Changes in Lengths of Axially Loaded Members

- Springs
 - 1. If the material of the spring is linear elastic,

$$P = k\delta$$

where *k* is the **stiffness** of the spring, or spring constant, defined as the f______ required to produce a unit e_____

2. The inverse relationship is

$$\delta = \frac{1}{k}P = fP$$

where f is the **flexibility** of the spring, or compliance, defined as the e______produced by a unit f_____.

- Prismatic Bars
 - If the load acts through the centroid of the end cross section (proof at pp. 31-32), at a point away from the ends (Saint-Venant's principle), the normal stress is uniformly distributed and thus

$$\sigma = \frac{P}{A}$$

2. If the bar is h_____, the axial strain is

$$\varepsilon = \frac{\delta}{L}$$

3. Using Hooke's law $\sigma = E\varepsilon$, the elongation is derived as

$$\delta = ----$$
 where *EA*:axial r_____

- 4. The relationship above works for both tension and compression with a proper sign convention (plus sign for P and δ in tension and negative in compression)
- 5. Stiffness and flexibility of a prismatic bar:

$$k = \frac{EA}{L}$$

$$f = \frac{L}{EA}$$

Cables

- Important structural elements used when lifting/pulling/sustaining heavy objects (elevators, suspension bridges, cable-stayed bridges)
- Cannot resist c_____, thus not used against b_____
- 3. Elongation of a cable is greater than that of a solid bar with the same material because the wires in the cable "tighten up" (instead of deforming in axial direction) → the "effective" modulus of elasticity is less than that of the material

- **Example 2-2**: Cross-sectional areas of the bars BD and CE are 1,020 mm² and 520 mm², respectively. The bars are made of steel having a modulus of elasticity E = 205 GPa. Assume the beam ABC is rigid.
 - a) Maximum allowable load P if the displacement of point A is limited to 1.0 mm
 - b) If P = 25 kN, what is the required cross-sectional area of bar CE so that the displacement at point A is equal to 1.0 mm?

2.3 Changes in Lengths under Non-uniform Conditions

- Bars with Intermediate Axial Loads
 - 1. Procedure for a prismatic bar
 - A. Identify the segments based on the intermediate axial loads
 - B. Determine the internal axial forces from equilibrium
 - C. Determine the change in each segment using $\delta_i = N_i L_i / EA$
 - D. Add the changes to find the total elongation, i.e. $\delta = \sum_{i=1}^{n} \delta_i$

- 2. If the bar consists of multiple prismatic bars with different materials and/or cross-sectional areas, $\delta = \sum_{i=1}^{n} N_i L_i / E_i A_i$
- **Example 2-3:** $L_1 = 20.0$ in., $L_2 = 34.8$ in., $A_1 = 0.25$ in.², $A_2 = 0.15$ in.², $E = 29.0 \times 10^6$ psi, a = 28 in., and b = 25 in.

Calculate the vertical displacement δ_C at C when the load $P_1=2{,}100\,\mathrm{lb}$ and $P_2=5{,}600\,\mathrm{lb}$ (Self-weight neglected)

Bars with Continuously Varying Loads or Dimensions

- 1. Suppose the axial load P(x), Young's modulus E(x) or cross-sectional area A(x) vary over the length
- 2. Consider the cylinder with the infinitesimal length $dx \rightarrow$ Figure (c)
- 3. The elongation of the cylinder is $d\delta = ----$
- 4. The total elongation is $\delta = \int_0^L d\delta = \int_0^L dx$
- 5. Limitations: works when the material is linear elastic and the stress is uniformly distributed the latter many not hold if the angle of the tapered bar is large
- Example 2-4: Determine the elongation of a tapered bar AB of solid circular cross section

2.4 Statically Indeterminate Structures

- Statistically Indeterminate Structures
 - Statically determinate: r_____ and i____

 f___ can be determined solely from free-body diagrams and equations of e____

 Statically indeterminate: otherwise

 Example: axially loaded bar with fixed boundary conditions at both ends (→)

$$R_A - P + R_B = 0 \tag{1}$$

How to solve?Introduce equation of c______, i.e.

$$\delta_{AB} =$$
 (2)

- 5. Now, Eq. (2) becomes $\delta_{AB} = \delta_{AC} + \delta_{CB} = \frac{R_A a}{EA} \frac{R_B b}{EA} = 0$ (3)
- 6. Solving Eq. (1) and (3) together, one can get $R_A = \frac{Pb}{L}$ and $R_B = \frac{Pa}{L}$
- 7. With these reactions, one can obtain the internal forces and the elongations. For example, the vertical displacement of point C is $\delta_C = \delta_{AC} = \frac{R_A a}{EA} = \frac{Pab}{LEA}$
- 8. Stresses can be found too. For example, the normal stress in the segment AC is $\sigma_{AC} = \frac{R_A}{A} = \frac{Pb}{AL}$
- Terminologies
 - 1. (a) Equilibrium equations: static or kinetic equations
 - (b) Compatibility equations: geometric equations, kinematic equations, equations of consistent deformations
 - (c) Force-displacement relations: constitutive relations
 - 2. Stiffness method (displacement method) vs flexibility method (force method)

Example 2-5: A vertical load P applied on a horizontal rigid bar ABC is supported by wires BD and CD with diameters d_1 and d_2 , modulus of elasticity E_1 and E_2 , and lengths L_1 and L_2 respectively. Obtain formulas for the allowable load P when the allowable stresses in the wires BD and CD are σ_1 and σ_2 , respectively.

Steel cylinder S (with Young's modulus E_s and cross-sectional area A_s) is encased in a hollow circular copper tube C (with E_c and A_c). When the cylinder and tube are compressed between the rigid plates of a testing machine y compressive forces P, determine the compressive forces P_s and P_c , the corresponding stresses, and the shortening of the assembly, δ.

2.5 Thermal Effects, Misfits, and Prestrains

Other sources of deformations than external loads: thermal effects, misfits (imperfections), prestrains, settlements, intertial loads, etc.

- Thermal Effects (expands when heated; contracted when cooled)
 - 1. For most structural materials, thermal strain ε_T is proportional to the temperature change ΔT

$$\varepsilon_T = \alpha(\Delta T)$$

- 2. α : coefficient of thermal expansion $(1/K = 1/^{\circ}C)$ or $(1/^{\circ}F)$
- 3. Stress that would cause the thermal strain caused by ΔT : $\sigma = E\alpha(\Delta T)$ e.g. the temperature change $\Delta T = 100^{\circ} F$ causes the same strain produced by 29,000 psi (typical allowable stress of stainless steel)
- 4. Temperature-displacement relation: $\delta_T = \varepsilon_T L = \alpha(\Delta T)L$
- Example 2-7: A prismatic bar AB of length L, made of linearly elastic material with modulus E and thermal expansion coefficient α is held between immovable supports.
 - (a) When the temperature is raised by ΔT , derive a formula for the thermal stress σ_T

 ΔT

(b) Modify the formula in (a) if the rigid support B is replaced by an elastic support having a spring constant k. Only the bar is subjected to the temperature change ΔT .

Example 2-8: A sleeve in the form of a circular tube of length L is placed around a bolt and fitted between washers at each end. Assume $\alpha_S > \alpha_B$. (a) If the temperature is raised by ΔT , what are the stresses in the sleeve and bolt, respectively? (b) What is the increase δ in the length L of the sleeve and bolt?

2.6 Stresses on Inclined Sections

Stresses on Section Perpendicular to Axis

- 1. Normal stress $\sigma = P/A$ (prismatic, homogeneous and axial force at the centroid, away from the stress concentration at ends)
- Normal stress only, i.e no s
- "Stress element"(→): an infinitesimal block with its right-hand face lying in cross section ("C" in the figure above)

- Stresses on Inclined Sections
 - Orientation of the inclined section: determined by θ ~ angle between x-axis and the normal vector n
 - Two force components for the inclined section pq:

$$N = P$$
.

$$V = P$$
.

Then the normal and shear stresses on the inclined section are:

$$\sigma =$$
—, $\tau =$ —

where
$$A_1 =$$

 Sign conventions: normal stress positive in tension, and shear stress positive when it produces counterclockwise rotation

5. Thus, the normal and shear stresses on inclined section with the orientation θ are

$$\sigma_{\theta} = \frac{P}{A}\cos^2\theta = \sigma_{x}\cos^2\theta = \frac{\sigma_{x}}{2}(1+\cos 2\theta)$$

$$\tau_{\theta} = -\frac{P}{A}\sin\theta\cos\theta = -\sigma_{x}\sin\theta\cos\theta = -\frac{\sigma_{x}}{2}(\sin 2\theta)$$

- Maximum Normal and Shear Stresses
 - 1. Plots of σ_{θ} and τ_{θ} (\rightarrow)
 - 2. Maximum normal stress:

$$\sigma_{max} =$$
 at $\theta =$

Corresponding shear stress =

3. Maximum shear stress:

$$\tau_{max} = ---$$
 at $\theta = \pm$

Corresponding normal stress =

 $2\tau_{max}$, a bar can fail in shear if the material is more vulnerable to the shear failure.

Examples: shear failure of wood block in compression (\rightarrow) , and "slip bands" of flat bar of low carbon steel $(\rightarrow \rightarrow)$

A

 $\langle \hat{B} \rangle$

• Example 2-10: A prismatic bar with $L = 0.5 \,\mathrm{m}$ and $A = 1,200 \,\mathrm{mm^2}$ is compressed by an axial load $P = 90 \,\mathrm{kN}$. (a) Complete state of stress acting on section pq (angle $\theta = 25^\circ$); (b) Bar fixed between supports A and B under temperature change $\Delta T = 33^\circ\mathrm{C}$. The compressive shear stress on section rs is 65 MPa. Find the shear stress τ_θ on plane rs,

and angle θ (E = 110 GPa, $\alpha = 20 \times 10^{-6}$ /°C)

2.7 Strain Energy

- Strain Energy
 - 1. Suppose a tensile force P caused a prismatic bar to elongate by δ . The work done by the force P is

$$W = \int_0^{\delta} P_1 d\delta$$

where P_1 is the load at $\delta = \delta_1$ in the loaddisplacement diagram (\rightarrow)

- 2. The strain caused by the work W increases the energy level (or the potential to do work) of the bar.
- 3. Strain energy: the energy absorbed by the bar during the loading process
- 4. From the principle of conservation of energy, the strain energy is

$$U = W = \int_0^\delta P_1 d\delta$$

- 5. Unit of strain energy: $J=N\cdot m,\ \text{ft-lb,}\ \text{ft-kips,}\ \text{in.-lb,}$ in.-k.
- 6. **Elastic strain energy**: energy recovered in the form of work during unloading

Inelastic strain energy: energy not recovered

- Linearly Elastic Behavior
 - 1. Strain energy: U = ----
 - 2. Strain energy in terms of load or elongation (using force-displacement relation):

$$U =$$
 or

- Nonuniform Bars
 - 1. Prismatic bar segments: $U = \sum_{i=1}^{n} U_i = \sum_{i=1}^{n} \frac{N_i^2 L_i}{2E_i A_i}$
 - 2. Continuously varying bar: $U = \int_0^L \frac{[N(x)]^2 dx}{2EA(x)}$

• Example 2-13: Determine the strain energy of a prismatic bar under the loads: (a) the weight of the bar itself; and (b) the weight of the bar plus a load *P* at the lower end.

Displacements Caused by a Single Load

The displacement of a linearly elastic structure supporting only one load can be determined from its strain energy. From the system shown below, $U = P\delta/2$. Therefore, the displacement is $\delta = 2U/P$.

Example 2-14: Determine the vertical displacement δ_B of joint B of the truss under the vertical load P. Both members of the truss have the same axial rigidity EA.

