
Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc.

(Hyperlinks are active in View Show mode)

Chapter 2 – Combinational 

Logic Circuits
Part 1 – Gate Circuits and Boolean Equations

Logic and Computer Design Fundamentals



Updated by Dr. Waleed Dweik

Chapter 2 - Part 1         2



Combinational Logic Circuits

▪ Digital (logic) circuits are hardware components

that manipulate binary information.

▪ Integrated circuits: transistors and

interconnections.

• Basic circuits is referred to as logic gates

• The outputs of gates are applied to the inputs of other

gates to form a digital circuit

▪ Combinational? Later…
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Overview

▪ Part 1 – Gate Circuits and Boolean Equations

• Binary Logic and Gates

• Boolean Algebra

• Standard Forms

▪ Part 2 – Circuit Optimization

• Two-Level Optimization

• Map Manipulation

• Practical Optimization (Espresso)

• Multi-Level Circuit Optimization

▪ Part 3 – Additional Gates and Circuits

• Other Gate Types

• Exclusive-OR Operator and Gates

• High-Impedance Outputs



Chapter 2 - Part 1         5

Binary Logic and Gates

▪ Binary variables take on one of two values

▪ Logical operators operate on binary values and binary
variables

▪ Basic logical operators are the logic functions AND,
OR and NOT

▪ Logic gates implement logic functions

▪ Boolean Algebra: a useful mathematical system for
specifying and transforming logic functions

▪ We study Boolean algebra as a foundation for
designing and analyzing digital systems!
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Binary Variables

▪ Recall that the two binary values have different
names:

• True/False

• On/Off

• Yes/No

• 1/0

▪ We use 1 and 0 to denote the two values

▪ Variable identifier examples:

• A, B, y, z, or X1 for now

• RESET, START_IT, or ADD1 later
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Logical Operations

▪ The three basic logical operations are:

• AND 

• OR

• NOT

▪ AND is denoted by a dot (·) or (∧)

▪ OR is denoted by a plus (+) or (∨)

▪ NOT is denoted by an over-bar ( ¯ ), a single

quote mark (') after, or (~) before the variable



Notation Examples

▪ Examples:

• 𝑍 = 𝑋 ∙ Y = XY = 𝑋 ∧ 𝑌 : is read “Z is equal to X AND Y”

▪ Z = 1 if and only if X = 1 and Y = 1; otherwise, Z = 0

• 𝑍 = 𝑋 + 𝑌 = 𝑋 ∨ 𝑌 : is read “Z is equal to X OR Y”

▪ Z = 1 if (only X = 1) or if (only Y = 1) or if (X =1 and Y = 1)  

• Z= ത𝑋 = 𝑋′ = ~𝑋 : is read “Z is equal to NOT X”

▪ Z = 1 if X = 0; otherwise, Z = 0
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▪ Notice the difference between arithmetic addition and

logical OR:

• The statement: 

1 + 1 = 2 (read “one plus one equals two”)

is not the same as

1 + 1 = 1 (read “1 or 1 equals 1”)
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Operator Definitions

▪ Operations are defined on the values "0" and "1" for each

operator:

Chapter 2 - Part 1         10

AND

0 . 0 = 0

0 . 1 = 0

1 . 0 = 0

1 . 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

ഥ𝟎 = 𝟏

ഥ𝟏 = 𝟎



Truth Tables

▪ Truth table - a tabular listing of the values of a function

for all possible combinations of values on its arguments

▪ Example: Truth tables for the basic logic operations:

Chapter 2 - Part 1         11

AND

Inputs Output

X Y Z = X . Y

0 0 0

0 1 0

1 0 0

1 1 1

OR

Inputs Output

X Y Z = X + Y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

Inputs Output

X 𝒁 = ഥ𝑿

0 1

1 0
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▪ Using Switches

• For inputs: 

▪ logic 1 is switch closed

▪ logic 0 is switch open

• For outputs:

▪ logic 1 is light on

▪ logic 0 is light off

• NOT uses a switch such that:

▪ logic 1 is switch open

▪ logic 0 is switch closed

Logic Function Implementation

Switches in series => AND

Switches in parallel => OR

ҧ𝐶

Normally-closed switch => NOT
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▪ Example: Logic Using Switches 

▪ Light is 

ON (L = 1) for 𝐿 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 . 𝐵 ҧ𝐶 + 𝐷 = AB ҧ𝐶 + 𝐴𝐷

and OFF (L = 0), otherwise.

▪ Useful model for relay circuits and for CMOS gate circuits, 
the foundation of current digital logic technology

Logic Function Implementation (Continued)

B

A

D

ҧ𝐶
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Logic Gates

▪ In the earliest computers, switches were opened

and closed by magnetic fields produced by

energizing coils in relays. The switches in turn

opened and closed the current paths

▪ Later, vacuum tubes that open and close current

paths electronically replaced relays

▪ Today, transistors are used as electronic switches

that open and close current paths

▪ Optional: Chapter 6 – Part 1: The Design Space
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Logic Gate Symbols and Behavior

▪ Logic gates have special symbols:

▪ And waveform behavior in time as follows:

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

(a) Graphic symbols

OR gate

X

Y
Z = X + Y

X

Y
Z = X ·Y

AND gate

X Z = ത𝑋

NOT gate or
inverter
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Logic Gate Symbols and Behavior

▪ Logic gates have special symbols:

▪ And waveform behavior in time as follows:

(b) Timing diagram

X 0 0 1 1

Y 0 1 0 1

X ·Y(AND) 0 0 0 1

X + Y(OR) 0 1 1 1

(NOT) ത𝑋 1 1 0 0

(a) Graphic symbols

OR gate

X

Y
Z = X + Y

X

Y
Z = X ·Y

AND gate

X Z = ത𝑋

NOT gate or
inverter
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Gate Delay

▪ In actual physical gates, if one or more input changes

causes the output to change, the output change does not

occur instantaneously

▪ The delay between an input change(s) and the resulting

output change is the gate delay denoted by tG:

tG
tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns



Logic Gates: Inputs and Outputs

▪ NOT (inverter)

• Always one input and one output

▪ AND and OR gates

• Always one output

• Two or more inputs

Chapter 2 - Part 1         18

A

B

C

X = ABC

A

B

C X = A + B + C + D + E

D

E



Boolean Algebra

▪ An algebra dealing with binary variables and logic
operations

• Variables are designated by letters of the alphabet

• Basic logic operations: AND, OR, and NOT

▪ A Boolean expression is an algebraic expression formed
by using binary variables, constants 0 and 1, the logic
operation symbols, and parentheses

• E.g.: X . 1, A + B + C, (A + B)( C + D)

▪ A Boolean function consists of a binary variable
identifying the function followed by equals sign and a
Boolean expression

• E.g.: 𝐹 = 𝐴 + 𝐵 + 𝐶, 𝐿 𝐷, 𝑋, 𝐴 = 𝐷𝑋 + ҧ𝐴
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Logic Diagrams and Expressions

1. Equation: 𝐹 = 𝑋 + ത𝑌𝑍

2. Logic Diagram:

3. Truth Table:
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Logic Diagrams and Expressions

1. Equation: 𝐹 = 𝑋 + ത𝑌𝑍

2. Logic Diagram:

3. Truth Table:

▪ Boolean equations, truth tables and                                                          
logic diagrams describe the same
function!

▪ Truth tables are unique; expressions                                                                                   
and logic diagrams are not. This gives                                          
flexibility in implementing functions.
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Y

Z
X

F

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1



Logic Diagrams and Expressions

1. Equation: 𝐹 = 𝑋 + ത𝑌𝑍

2. Logic Diagram:

3. Truth Table:

▪ Boolean equations, truth tables and                                                          
logic diagrams describe the same
function!

▪ Truth tables are unique; expressions                                                                                   
and logic diagrams are not. This gives                                          
flexibility in implementing functions.
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X Y Z F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



Example

▪ Draw the logic diagram and the truth table of the following 

Boolean function: 𝐹 𝑊,𝑋, 𝑌 = 𝑋𝑌 +𝑊ത𝑌

▪ Logic Diagram:

▪ Truth Table:

▪ This example represents a Single Output Function
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W X Y F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



Example

▪ Draw the logic diagram and the truth table of the following 

Boolean function: 𝐹 𝑊,𝑋, 𝑌 = 𝑋𝑌 +𝑊ത𝑌

▪ Logic Diagram:

▪ Truth Table:

▪ This example represents a Single Output Function
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X

W

Y

F

W X Y F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1



Example

▪ Draw the logic diagram and the truth table of the following 

Boolean functions: 𝐹 𝑊,𝑋 = ഥ𝑊 ത𝑋 +𝑊,𝐺 𝑊,𝑋 = 𝑊 + ത𝑋

▪ Logic Diagram: 

▪ Truth Table:
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W X F G

0 0

0 1

1 0

1 1



Example

▪ Draw the logic diagram and the truth table of the following 

Boolean functions: 𝐹 𝑊,𝑋 = ഥ𝑊 ത𝑋 +𝑊,𝐺 𝑊,𝑋 = 𝑊 + ത𝑋

▪ Logic Diagram: 

▪ Truth Table:

▪ This example represents a Multiple Output Function
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W

X

G

F

W X F G

0 0 1 1

0 1 0 0

1 0 1 1

1 1 1 1



Example:

▪ Given the following logic diagram, write the

corresponding Boolean equation:

▪ Logic circuits of this type are called combinational logic

circuits since the variables are combined by logical

operations
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Example:

▪ Given the following logic diagram, write the

corresponding Boolean equation:

▪ Logic circuits of this type are called combinational logic

circuits since the variables are combined by logical

operations
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𝑾. ഥ𝑿

𝑾+ 𝒀

ഥ𝒀. 𝒁
𝑭 = ഥ𝒀. 𝒁

𝑮 = 𝑾. ഥ𝑿 + ( 𝑾+ 𝒀 . ഥ𝒁)

𝑾 + 𝒀 . ഥ𝒁



Basic Identities of Boolean Algebra
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1. 𝑋 + 0 = 𝑋 2. 𝑋 . 1 = 𝑋
Existence of 0 and 1

3. 𝑋 + 1 = 1 4. 𝑋 . 0 = 0

5. 𝑋 + 𝑋 = 𝑋 6. 𝑋 . 𝑋 = 𝑋 Idempotence

7. 𝑋 + ത𝑋 = 1 8. 𝑋 . ത𝑋 = 0 Existence of complement

9. ധ𝑋 = 𝑋 Involution

10.𝑋 + 𝑌 = 𝑌 + 𝑋 11.𝑋𝑌 = 𝑌𝑋 Commutative Laws 

12. 𝑋 + 𝑌 + 𝑍 = 𝑋 + (𝑌 + 𝑍) 13. 𝑋𝑌 𝑍 = 𝑋(𝑌𝑍) Associative Laws

14.𝑋 𝑌 + 𝑍 = 𝑋𝑌 + 𝑋𝑍 15.𝑋 + 𝑌𝑍 = (𝑋 + 𝑌)(𝑋 + 𝑍) Distributive Laws 

16.𝑋 + 𝑌 = ത𝑋. ത𝑌 17.𝑋. 𝑌 = ത𝑋 + ത𝑌 DeMorgan’s Laws



Some Properties of Identities & the Algebra

▪ If the meaning is unambiguous, we leave out the symbol

“·”

▪ The identities above are organized into pairs

• The dual of an algebraic expression is obtained by interchanging

(+) and (·) and interchanging 0’s and 1’s

• The identities appear in dual pairs. When there is only one identity

on a line the identity is self-dual, i. e., the dual expression = the

original expression.
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Some Properties of Identities & the Algebra (Continued)

▪ Unless it happens to be self-dual, the dual of an

expression does not equal the expression itself

▪ Examples:

• 𝐹 = 𝐴 + ҧ𝐶 . 𝐵 + 0
▪ 𝐷𝑢𝑎𝑙 𝐹 =

• 𝐺 = XY + 𝑊 + 𝑍
▪ 𝐷𝑢𝑎𝑙 𝐺 =

• 𝐻 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶
▪ 𝐷𝑢𝑎𝑙 𝐻 =

▪ Are any of these functions self-dual?

• Yes, H is self-dual
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Some Properties of Identities & the Algebra (Continued)

▪ Unless it happens to be self-dual, the dual of an

expression does not equal the expression itself

▪ Examples:

• 𝐹 = 𝐴 + ҧ𝐶 . 𝐵 + 0
▪ 𝐷𝑢𝑎𝑙 𝐹 = 𝐴 . ҧ𝐶 + B . 1 = A . ҧ𝐶 + 𝐵 (Not Accurate)

▪ 𝐷𝑢𝑎𝑙 𝐹 = 𝐴 . ҧ𝐶 + B . 1 = A . ҧ𝐶 + 𝐵 (Accurate)

• 𝐺 = XY + 𝑊 + 𝑍
▪ 𝐷𝑢𝑎𝑙 𝐺 = 𝑋 + 𝑌 .𝑊𝑍 = 𝑋 + 𝑌 . ( ഥ𝑊 + ҧ𝑍)

• 𝐻 = 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶
▪ 𝐷𝑢𝑎𝑙 𝐻 = 𝐴 + 𝐵 𝐴 + 𝐶 𝐵 + 𝐶 = 𝐴 + 𝐵𝐶 𝐵 + 𝐶

=𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶

▪ Are any of these functions self-dual?

• Yes, H is self-dual Chapter 2 - Part 1         32



Boolean Operator Precedence

▪ The order of evaluation in a Boolean expression is:

1. Parentheses

2. NOT

3. AND

4. OR

▪ Consequence: Parentheses appear around OR expressions

▪ Examples:

• 𝐹 = 𝐴(𝐵 + 𝐶)(𝐶 + ഥ𝐷)

• 𝐹 = ~𝐴𝐵 = ҧ𝐴𝐵

• 𝐹 = 𝐴𝐵 + 𝐶

• 𝐹 = 𝐴(𝐵 + 𝐶)

Chapter 2 - Part 1         33



Useful Boolean Theorems

Theorem Dual Name

𝑥. 𝑦 + ҧ𝑥. 𝑦 = 𝑦 𝑥 + 𝑦 ҧ𝑥 + 𝑦 = 𝑦 Minimization

𝑥 + 𝑥. 𝑦 = 𝑥 𝑥. (𝑥 + 𝑦) = 𝑥 Absorption

𝑥 + ҧ𝑥. 𝑦 = 𝑥 + 𝑦 𝑥. ҧ𝑥 + 𝑦 = 𝑥. 𝑦 Simplification

𝑥. 𝑦 + ҧ𝑥. 𝑧 + 𝑦. 𝑧 = 𝑥. 𝑦 + ҧ𝑥. 𝑧
Consensus

𝑥 + 𝑦 ҧ𝑥 + 𝑧 𝑦 + 𝑧 = (𝑥 + 𝑦)( ҧ𝑥 + 𝑧)
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Example 1: Boolean Algebraic Proof

▪ A + A·B = A (Absorption Theorem)

▪ Our primary reason for doing proofs is to learn:

• Careful and efficient use of the identities and theorems of Boolean
algebra

• How to choose the appropriate identity or theorem to apply to
make forward progress, irrespective of the application
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Proof Steps Justification (identity or theorem)

A + A·B

= A · 1 + A · B X = X · 1 

= A · ( 1 + B) Distributive Law

= A · 1 1 + X = 1

= A X · 1 = X



Example 2: Boolean Algebraic Proofs

▪ 𝐴𝐵 + ҧ𝐴𝐶 + 𝐵𝐶 = 𝐴𝐵 + ҧ𝐴𝐶 (Consensus Theorem)
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Proof Steps
Justification 

(identity or theorem)

𝑨𝑩 + ഥ𝑨𝑪 + 𝑩𝑪

= 𝑨𝑩 + ഥ𝑨𝑪 + 𝟏.𝑩𝑪 𝟏. 𝑿 = 𝑿

= 𝑨𝑩 + ഥ𝑨𝑪 + (𝑨 + ഥ𝑨). 𝑩𝑪 𝑿 + ഥ𝑿 = 𝟏

= 𝑨𝑩 + ഥ𝑨𝑪 + 𝑨𝑩𝑪 + ഥ𝑨𝑩𝑪 Distributive Law

= 𝑨𝑩 + 𝑨𝑩𝑪 + ഥ𝑨𝑪 + ഥ𝑨𝑩𝑪 Commutative Law

= 𝑨𝑩. 𝟏 + 𝑨𝑩. 𝑪 + ഥ𝑨𝑪. 𝟏 + ഥ𝑨𝑪.𝑩 𝑿. 𝟏 = 𝑿and Commutative Law

= 𝑨𝑩(𝟏 + 𝑪) + ഥ𝑨𝑪(𝟏 + 𝑩) Distributive Law

= 𝑨𝑩. 𝟏 + ഥ𝑨𝑪. 𝟏 𝟏 + 𝑿 = 𝟏

= 𝑨𝑩 + ഥ𝑨𝑪 𝑿. 𝟏 = 𝑿



Proof of Simplification

▪ A + ҧ𝐴. 𝐵 = 𝐴 + 𝐵 (Simplification Theorem)

▪ A. ( ҧ𝐴 + 𝐵) = 𝐴𝐵 (Simplification Theorem)
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Proof Steps Justification (identity or theorem)

𝐴 + ҧ𝐴. 𝐵

=(A+ ҧ𝐴)( A+B) Distributive law

=1.(A+B) Factor B out (Distributive Laws )

= (𝐴 + 𝐵) 𝑋 + ത𝑋 = 1

Proof Steps Justification (identity or theorem)

𝐴. ( ҧ𝐴 + 𝐵)

= 𝐴. ҧ𝐴 + (𝐴. 𝐵) Distributive Law

= 0 + 𝐴𝐵 𝑋. ത𝑋 = 0

= 𝐴𝐵 𝑋 + 0 = 𝑋



Proof of Minimization

▪ 𝐴. 𝐵 + ҧ𝐴. 𝐵 = 𝐵 (Minimization Theorem)

▪ (𝐴 + 𝐵)( ҧ𝐴 + 𝐵) = 𝐵 (Minimization Theorem)
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Proof Steps Justification (identity or theorem)

𝐴. 𝐵 + ҧ𝐴. 𝐵

= 𝐵(𝐴 + ҧ𝐴) Distributive Law

= 𝐵. 1 𝑋 + ത𝑋 = 1

= 𝐵 𝑋. 1 = 𝑋

Proof Steps Justification (identity or theorem)

(𝐴 + 𝐵)( ҧ𝐴 + 𝐵)

= 𝐵 + (𝐴. ҧ𝐴) Distributive Law

= 𝐵 + 0 𝑋. ത𝑋 = 0

= 𝐵 𝑋 + 0 = 𝑋



Proof of DeMorgan’s Laws (1)

▪ 𝑋 + 𝑌 = ത𝑋. ത𝑌 (DeMorgan’s Law)

• We will show that, ത𝑋. ത𝑌, satisfies the definition of the complement of (𝑋
+ 𝑌), defined as 𝑋 + 𝑌 by DeMorgan’s Law.

• To show this, we need to show that 𝐴 + 𝐴′ = 1 and 𝐴. 𝐴′ = 0 with 𝐴 = 𝑋
+ 𝑌 and 𝐴′ = 𝑋′. 𝑌′. This proves that 𝑋′. 𝑌′ = 𝑋 + 𝑌.

▪ Part 1: Show 𝑋 + 𝑌 + 𝑋′. 𝑌′ = 1
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Proof of DeMorgan’s Laws (1)

▪ 𝑋 + 𝑌 = ത𝑋. ത𝑌 (DeMorgan’s Law)

• We will show that, ത𝑋. ത𝑌, satisfies the definition of the complement of (𝑋
+ 𝑌), defined as 𝑋 + 𝑌 by DeMorgan’s Law.

• To show this, we need to show that 𝐴 + 𝐴′ = 1 and 𝐴. 𝐴′ = 0 with 𝐴 = 𝑋
+ 𝑌 and 𝐴′ = 𝑋′. 𝑌′. This proves that 𝑋′. 𝑌′ = 𝑋 + 𝑌.

▪ Part 1: Show 𝑋 + 𝑌 + 𝑋′. 𝑌′ = 1
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Proof Steps
Justification (identity or 

theorem)

(𝑋 + 𝑌) + 𝑋′. 𝑌′

= (𝑋 + 𝑌 + 𝑋′)(𝑋 + 𝑌 + 𝑌′) Distributive Law

= (1 + 𝑌)(𝑋 + 1) 𝑋 + ത𝑋 = 1

= 1.1 𝑋 + 1 = 1

= 1 𝑋. 1 = 𝑋



Proof of DeMorgan’s Laws (2)

▪ Part 2: Show 𝑋 + 𝑌 . 𝑋′. 𝑌′ = 0

▪ Based on the above two parts, 𝑋′. 𝑌′ = 𝑋 + 𝑌

▪ The second DeMorgans’ law is proved by duality

▪ Note that DeMorgan’s law, given as an identity is not an axiom in the 

sense that it can be proved using the other identities.  

Chapter 2 - Part 1         41



Example 3: Boolean Algebraic Proofs

▪ (𝑋 + 𝑌)𝑍 + 𝑋ത𝑌 = ത𝑌(𝑋 + 𝑍)
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Example 3: Boolean Algebraic Proofs

▪ (𝑋 + 𝑌)𝑍 + 𝑋ത𝑌 = ത𝑌(𝑋 + 𝑍)
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Proof Steps
Justification (identity or 

theorem)

(𝑋 + 𝑌)𝑍 + 𝑋ത𝑌

= 𝑋′𝑌′𝑍 + 𝑋. 𝑌′ DeMorgan’s law

= 𝑌′(𝑋′𝑍 + 𝑋) Distributive law

= 𝑌′(𝑋 + 𝑋′𝑍) Commutative law

= 𝑌′(𝑋 + 𝑍) Simplification Theorem



Boolean Function Evaluation

▪ 𝐹1 = 𝑥𝑦 ҧ𝑧

▪ 𝐹2 = 𝑥 + ത𝑦𝑧

▪ 𝐹3 = ҧ𝑥 ത𝑦 ҧ𝑧 + ҧ𝑥𝑦𝑧 + 𝑥 ത𝑦

▪ 𝐹4 = 𝑥ത𝑦 + ҧ𝑥𝑧
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x y z F1 F2 F3 F4

0 0 0 0 0 1 0

0 0 1 0 1 0 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0



Expression Simplification

▪ An application of Boolean algebra

▪ Simplify to contain the smallest number of literals (complemented and

uncomplemented variables)

▪ Example: Simplify the following Boolean expression

• 𝐴𝐵 + 𝐴′𝐶𝐷 + 𝐴′𝐵𝐷 + 𝐴′𝐶𝐷′ + 𝐴𝐵𝐶𝐷
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Simplification Steps Justification (identity or theorem)

𝐴𝐵 + 𝐴′𝐶𝐷 + 𝐴′𝐵𝐷 + 𝐴′𝐶𝐷′ + 𝐴𝐵𝐶𝐷

= 𝐴𝐵 + 𝐴𝐵𝐶𝐷 + 𝐴′𝐶𝐷 + 𝐴′𝐶𝐷′ + 𝐴′𝐵𝐷 Commutative law

= 𝐴𝐵 1 + 𝐶𝐷 + 𝐴′𝐶 𝐷 + 𝐷′ + 𝐴′𝐵𝐷 Distributive law

= 𝐴𝐵. 1 + 𝐴′𝐶. 1 + 𝐴′𝐵𝐷 1 + 𝑋 = 1 and  𝑋 + 𝑋′ = 1

= 𝐴𝐵 + 𝐴′𝐶 + 𝐴′𝐵𝐷 𝑋. 1 = 𝑋

= 𝐴𝐵 + 𝐴′𝐵𝐷 + 𝐴′𝐶 Commutative law

= 𝐵(𝐴 + 𝐴′𝐷) + 𝐴′𝐶 Distributive law

= 𝐵(𝐴 + 𝐷) + 𝐴′𝐶→ 5 Literals Simplification Theorem



Complementing Functions

▪ Use DeMorgan's Theorem to complement a function:

1. Interchange AND and OR operators

2. Complement each constant value and literal 

▪ Example: Complement 𝐹 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′

𝐹′ = 𝑥 + 𝑦′ + 𝑧 (𝑥′ + 𝑦 + 𝑧)

▪ Example: Complement 𝐺 = 𝑎′ + 𝑏𝑐 𝑑′ + 𝑒

𝐺′ = 𝑎(𝑏′ + 𝑐′) + 𝑑 . 𝑒′
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Example

▪ Simplify the following:

• 𝐹 = 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍
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Example

▪ Simplify the following:

• 𝐹 = 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍
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Example

▪ Simplify the following:

• 𝐹 = 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍
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Simplification Steps (identity or theorem)

𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍

= 𝑋′𝑌(𝑍 + 𝑍′) + 𝑋𝑍 Distributive law

= 𝑋′𝑌. 1 + 𝑋𝑍 𝑋 + 𝑋′ = 1

= 𝑋′𝑌 + 𝑋𝑍 𝑋. 1 = 𝑋

x y z 𝑋′𝑌𝑍 + 𝑋′𝑌𝑍′ + 𝑋𝑍 𝑋′𝑌 + 𝑋𝑍

0 0 0 0 0

0 0 1 0 0

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

3 terms and 8 literals 2 terms and 4 literals

X

Y

Z F

X

Y

Z
F



Example

▪ Show that 𝐹 = 𝑥′𝑦′ + 𝑥𝑦′ + 𝑥′𝑦 + 𝑥𝑦 = 1
• Solution1: Truth Table

• Solution2: Boolean Algebra
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x y F

0 0 1

0 1 1

1 0 1

1 1 1

Proof Steps (identity or theorem)

𝑥′𝑦′ + 𝑥𝑦′ + 𝑥′𝑦 + 𝑥𝑦

= 𝑦′ 𝑥′ + 𝑥 + 𝑦(𝑥′ + 𝑥) Distributive law

= 𝑦′. 1 + 𝑦. 1 𝑋 + 𝑋′ = 1

= 𝑦′ + 𝑦 𝑋. 1 = 𝑋

= 1 𝑋 + 𝑋′ = 1



Examples

▪ Show that 𝐴𝐵𝐶 + 𝐴′𝐶′ + 𝐴𝐶′ = 𝐴𝐵 + 𝐶′ using Boolean algebra.

▪ Find the dual and the complement of 𝑓 = 𝑤𝑥 + 𝑦′𝑧. 0 + 𝑤′𝑧

• 𝐷𝑢𝑎𝑙 𝑓 = 𝑤 + 𝑥 𝑦′ + 𝑧 + 1 𝑤′ + 𝑧

• 𝑓′ = (𝑤′+ 𝑥′)(𝑦 + 𝑧′ + 1)(𝑤 + 𝑧′)
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Proof Steps (identity or theorem)

𝐴𝐵𝐶 + 𝐴′𝐶′ + 𝐴𝐶′

= 𝐴𝐵𝐶 + 𝐶′(𝐴′ + 𝐴) Distributive law

= 𝐴𝐵𝐶 + 𝐶′. 1 𝑋 + 𝑋′ = 1

= 𝐴𝐵𝐶 + 𝐶′ 𝑋. 1 = 𝑋

= (𝐴𝐵 + 𝐶′)(𝐶 + 𝐶′) Distributive law

= 𝐴𝐵 + 𝐶′ . 1 𝑋 + 𝑋′ = 1

= 𝐴𝐵 + 𝐶′ 𝑋. 1 = 𝑋
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Overview – Canonical Forms

▪ What are Canonical Forms?

▪ Minterms and Maxterms

▪ Index Representation of Minterms and Maxterms

▪ Sum-of-Minterm (SOM) Representations

▪ Product-of-Maxterm (POM) Representations

▪ Representation of Complements of Functions

▪ Conversions between Representations



Boolean Representation Forms
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Forms

Non-Standard Forms Standard Forms

Product terms (SOP) Sum terms (POS)

Canonical 

(SOM)

Non-

Canonical 

Canonical 

(POM)

Non-

Canonical 
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Canonical Forms

▪ It is useful to specify Boolean functions in a

form that:

• Allows comparison for equality

• Has a correspondence to the truth tables

• Facilitates simplification

▪ Canonical Forms in common usage:

• Sum of Minterms (SOM)

• Product of Maxterms (POM)



Minterms

▪ Minterms are AND terms with every variable present in
either true or complemented form

▪ Given that each binary variable may appear normal (e.g.,
𝑥) or complemented (e.g., ҧ𝑥), there are 2n minterms for n
variables

▪ Example: Two variables (X and Y) produce 22 = 4
combinations:

𝑋𝑌 (both normal)

𝑋ത𝑌 (X normal, Y complemented)
ത𝑋𝑌 (X complemented, Y normal)
ത𝑋 ത𝑌 (both complemented)

▪ Thus there are four minterms of two variables
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Maxterms

▪ Maxterms are OR terms with every variable in
true or complemented form

▪ Given that each binary variable may appear
normal (e.g., 𝑥) or complemented (e.g., ҧ𝑥), there

are 2n maxterms for n variables

▪ Example: Two variables (X and Y) produce 22 = 4
combinations:

𝑋 + 𝑌 (both normal)

𝑋 + ത𝑌 (X normal, Y complemented)
ത𝑋 + 𝑌 (X complemented, Y normal)
ത𝑋 + ത𝑌 (both complemented)

Chapter 2 - Part 1         56



Chapter 2 - Part 1         57

▪ Examples: Three variable (X, Y, Z) minterms and maxterms

▪ The index above is important for describing which variables in the 
terms are true and which are complemented

Maxterms and Minterms

Index X,Y,Z Minterm

(m)

Maxterm

(M)

0 000 ത𝑋 ത𝑌 ҧ𝑍 𝑋 + 𝑌 + 𝑍

1 001 ത𝑋 ത𝑌𝑍 𝑋 + 𝑌 + ҧ𝑍

2 010 ത𝑋𝑌 ҧ𝑍 𝑋 + ത𝑌 + 𝑍

3 011 ത𝑋𝑌𝑍 𝑋 + ത𝑌 + ҧ𝑍

4 100 𝑋ത𝑌 ҧ𝑍 ത𝑋 + 𝑌 + 𝑍

5 101 𝑋ത𝑌𝑍 ത𝑋 + 𝑌 + ҧ𝑍

6 110 𝑋𝑌 ҧ𝑍 ത𝑋 + ത𝑌 + 𝑍

7 111 𝑋𝑌𝑍 ത𝑋 + ത𝑌 + ҧ𝑍
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Standard Order

▪ Minterms and maxterms are designated with a subscript

▪ The subscript is a number, corresponding to a binary pattern

▪ The bits in the pattern represent the complemented or normal
state of each variable listed in a standard order

▪ All variables will be present in a minterm or maxterm and will
be listed in the same order (usually alphabetically)

▪ Example: For variables a, b, c:

• Maxterms: (𝒂 + 𝒃 + ത𝒄), (𝒂 + 𝒃 + 𝒄)

• Terms: (𝒃 + 𝒂 + 𝒄), 𝒂ത𝒄𝒃, and (𝒄 + 𝒃 + 𝒂) are NOT in
standard order.

• Minterms: 𝒂ഥ𝒃𝒄, 𝒂𝒃𝒄, ഥ𝒂ഥ𝒃𝒄

• Terms: (𝒂 + 𝒄) , ഥ𝒃𝒄 , and (ഥ𝒂 + 𝒃) do not contain all
variables
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Purpose of the Index

▪ The index for the minterm or maxterm, expressed

as a binary number, is used to determine whether

the variable is shown in the true form or

complemented form

▪ For Minterms:

• “0” means the variable is “Complemented”

• “1” means  the variable is “Not Complemented”

▪ For Maxterms:

• “0” means  the variable is “Not Complemented” 

• “1” means the variable is “Complemented” 
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Index Example: Three Variables

Index 

(Decimal)

Index (Binary)

n = 3 Variables
Minterm (m) Maxterm (M)

0 000 𝑚0 = ത𝑋ത𝑌 ҧ𝑍 𝑀0 = 𝑋 + 𝑌 + 𝑍

1 001 𝑚1 = ത𝑋ത𝑌𝑍 𝑀1 = 𝑋 + 𝑌 + ҧ𝑍

2 010 𝑚2 = ത𝑋𝑌 ҧ𝑍 𝑀2 = 𝑋 + ത𝑌 + 𝑍

3 011 𝑚3 = ത𝑋𝑌𝑍 𝑀3 = 𝑋 + ത𝑌 + ҧ𝑍

4 100 𝑚4 = 𝑋ത𝑌 ҧ𝑍 𝑀4 = ത𝑋 + 𝑌 + 𝑍

5 101 𝑚5 = 𝑋ത𝑌𝑍 𝑀5 = ത𝑋 + 𝑌 + ҧ𝑍

6 110 𝑚6 = 𝑋𝑌 ҧ𝑍 𝑀6 = ത𝑋 + ത𝑌 + 𝑍

7 111 𝑚7 = 𝑋𝑌𝑍 𝑀7 = ത𝑋 + ത𝑌 + ҧ𝑍



Index Example: Four Variables
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i (Decimal)
i (Binary)

n = 4 Variables
mi Mi

0 0000 ത𝑎ത𝑏 ҧ𝑐 ҧ𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑

1 0001 ത𝑎ത𝑏 ҧ𝑐𝑑 𝑎 + 𝑏 + 𝑐 + ҧ𝑑

3 0011 ത𝑎ത𝑏𝑐𝑑 𝑎 + 𝑏 + ҧ𝑐 + ҧ𝑑

5 0101 ത𝑎𝑏 ҧ𝑐𝑑 𝑎 + ത𝑏 + 𝑐 + ҧ𝑑

7 0111 ത𝑎𝑏𝑐𝑑 𝑎 + ത𝑏 + ҧ𝑐 + ҧ𝑑

10 1010 𝑎ത𝑏𝑐 ҧ𝑑 ത𝑎 + 𝑏 + ҧ𝑐 + 𝑑

13 1101 𝑎𝑏 ҧ𝑐𝑑 ത𝑎 + ത𝑏 + 𝑐 + ҧ𝑑

15 1111 𝑎𝑏𝑐𝑑 ത𝑎 + ത𝑏 + ҧ𝑐 + ҧ𝑑



Minterm and Maxterm Relationship

▪ Review:  DeMorgan's Theorem

• 𝑥. 𝑦 = ҧ𝑥 + ത𝑦 and 𝑥 + 𝑦 = ҧ𝑥. ത𝑦

▪ Two-variable example:

• 𝑀2 = ҧ𝑥 + 𝑦 and 𝑚2 = 𝑥. ത𝑦

• Using DeMorgan’s Theorem → ҧ𝑥 + 𝑦 = Ӗ𝑥. ത𝑦 = 𝑥. ത𝑦

• Using DeMorgan’s Theorem → 𝑥. ത𝑦 = ҧ𝑥 + ധ𝑦 = ҧ𝑥. 𝑦

• Thus, M2 is the complement of m2 and vice-versa

▪ Since DeMorgan's Theorem holds for n variables, the

above holds for terms of n variables:

𝑀𝑖 = 𝑚𝑖 and 𝑚𝑖 = 𝑀𝑖

▪ Thus, Mi is the complement of mi and vice-versa
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Function Tables for Both

▪ Minterms of 2 variables:

▪ Maxterms of 2 variables:

▪ Each column in the maxterm function table is the

complement of the column in the minterm function table

since Mi is the complement of mi.
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xy m0 m1 m2 m3

00 1 0 0 0

01 0 1 0 0

10 0 0 1 0

11 0 0 0 1

xy M0 M1 M2 M3

00 0 1 1 1

01 1 0 1 1

10 1 1 0 1

11 1 1 1 0
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Observations

▪ In the function tables:

• Each minterm has one and only one 1 present in the 2n terms (a
minimum of 1s). All other entries are 0.

• Each maxterm has one and only one 0 present in the 2n terms All
other entries are 1 (a maximum of 1s).

▪ We can implement any function by

• "ORing" the minterms corresponding to "1" entries in the function
table. These are called the minterms of the function.

• "ANDing" the maxterms corresponding to "0" entries in the
function table. These are called the maxterms of the function.

▪ This gives us two canonical forms for stating any Boolean
function:

• Sum of Minterms (SOM)

• Product of Maxterms (POM)



Minterm Function Example

▪ Example:  Find 𝑭𝟏 = 𝒎𝟏 +𝒎𝟒 +𝒎𝟕

▪ 𝑭𝟏 = 𝒙′𝒚′𝒛 + 𝒙𝒚′𝒛′ + 𝒙𝒚𝒛
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xyz Index 𝐦𝟏 +𝐦𝟒 +𝐦𝟕 = 𝐅𝟏

000 0 𝟎 + 𝟎 + 𝟎 = 𝟎

001 1 𝟏 + 𝟎 + 𝟎 = 𝟏

010 2 𝟎 + 𝟎 + 𝟎 = 𝟎

011 3 𝟎 + 𝟎 + 𝟎 = 𝟎

100 4 𝟎 + 𝟏 + 𝟎 = 𝟏

101 5 𝟎 + 𝟎 + 𝟎 = 𝟎

110 6 𝟎 + 𝟎 + 𝟎 = 𝟎

111 7 𝟎 + 𝟎 + 𝟏 = 𝟏
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Minterm Function Example

▪ 𝑭 𝑨,𝑩, 𝑪, 𝑫, 𝑬 = 𝒎𝟐 +𝒎𝟗 +𝒎𝟏𝟕 +𝒎𝟐𝟑

▪ 𝐹 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝐴′𝐵′𝐶′𝐷𝐸′ + 𝐴′𝐵𝐶′𝐷′𝐸
+ 𝐴𝐵′𝐶′𝐷′𝐸 + 𝐴𝐵′𝐶𝐷𝐸



Maxterm Function Example

▪ Example:  Implement  F1 in maxterms:

▪ 𝐹1 = 𝑀0 . 𝑀2 . 𝑀3 . 𝑀5 . 𝑀6

▪ 𝐹1 = 𝑥 + 𝑦 + 𝑧 . 𝑥 + 𝑦′ + 𝑧 . 𝑥 + 𝑦′ + 𝑧′ . 𝑥′ + 𝑦 + 𝑧′ . (𝑥′ + 𝑦′ + 𝑧)
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xyz Index 𝐌𝟎 . 𝐌𝟐 . 𝐌𝟑 . 𝐌𝟓 . 𝐌𝟔 = 𝐅𝟏

000 0 𝟎 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟎

001 1 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟏

010 2 𝟏 . 𝟎 . 𝟏 . 𝟏 . 𝟏 = 𝟎

011 3 𝟏 . 𝟏 . 𝟎 . 𝟏 . 𝟏 = 𝟎

100 4 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟏

101 5 𝟏 . 𝟏 . 𝟏 . 𝟎 . 𝟏 = 𝟎

110 6 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟎 = 𝟎

111 7 𝟏 . 𝟏 . 𝟏 . 𝟏 . 𝟏 = 𝟏
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Maxterm Function Example

▪ 𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝑀3 . 𝑀8 . 𝑀11 . 𝑀14

▪ 𝐹 𝐴, 𝐵, 𝐶, 𝐷 = 𝐴 + 𝐵 + 𝐶′ + 𝐷′ . (
)

𝐴′ + 𝐵 + 𝐶
+ 𝐷 .

𝐴′ + 𝐵 + 𝐶′ + 𝐷′ . (𝐴′ + 𝐵′ + 𝐶′ + 𝐷)



Canonical Sum of Minterms

▪ Any Boolean function can be expressed as a Sum
of Minterms (SOM):

• For the function table, the minterms used are the terms
corresponding to the 1's

• For expressions, expand all terms first to explicitly list
all minterms. Do this by “ANDing” any term missing a
variable 𝑣 with a term (𝑣 + ҧ𝑣)

▪ Example: Implement 𝑓 = 𝑥 + ҧ𝑥 ത𝑦 as a SOM?

1. Expand terms → 𝑓 = 𝑥(𝑦 + ത𝑦) + ҧ𝑥 ത𝑦

2. Distributive law → 𝑓 = 𝑥𝑦 + 𝑥ത𝑦 + ҧ𝑥 ത𝑦

3. Express as SOM → 𝑓 = 𝑚3 +𝑚2 +𝑚0 = 𝑚0 +𝑚2 +𝑚3
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Another SOM Example

▪ Example: 𝐹 = 𝐴 + ത𝐵𝐶

▪ There are three variables: A, B, and C which we take to be 
the standard order

▪ Expanding the terms with missing variables:

• 𝐹 = 𝐴 𝐵 + ത𝐵 𝐶 + ҧ𝐶 + 𝐴 + ҧ𝐴 ത𝐵𝐶

▪ Distributive law:

• 𝐹 = 𝐴𝐵𝐶 + 𝐴 ത𝐵𝐶 + 𝐴𝐵 ҧ𝐶 + 𝐴 ത𝐵 ҧ𝐶 + 𝐴 ത𝐵𝐶 + ҧ𝐴 ത𝐵𝐶

▪ Collect terms (removing all but one of duplicate terms):

• 𝐹 = 𝐴𝐵𝐶 + 𝐴𝐵 ҧ𝐶 + 𝐴 ത𝐵𝐶 + 𝐴 ത𝐵 ҧ𝐶 + ҧ𝐴 ത𝐵𝐶

▪ Express as SOM: 

• 𝐹 = 𝑚7 +𝑚6 +𝑚5 +𝑚4 +𝑚1

• 𝐹 = 𝑚1 +𝑚4 +𝑚5 +𝑚6 +𝑚7
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Shorthand SOM Form

▪ From the previous example, we started with:

• 𝐹 = 𝐴 + ത𝐵𝐶

▪ We ended up with:

• 𝐹 = 𝑚1 +𝑚4 +𝑚5 +𝑚6 +𝑚7

▪ This can be denoted in the formal shorthand:

• 𝐹(𝐴, 𝐵, 𝐶) = σ𝑚(1,4,5,6,7)

▪ Note that we explicitly show the standard

variables in order and drop the “m”

designators.



Canonical Product of Maxterms

▪ Any Boolean Function can be expressed as a 
Product of Maxterms (POM):

• For the function table, the maxterms used are the terms
corresponding to the 0's

• For an expression, expand all terms first to explicitly
list all maxterms. Do this by first applying the second
distributive law , “ORing” terms missing variable 𝑣
with (𝑣 . ҧ𝑣) and then applying the distributive law again

▪ Example: Convert 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 + ҧ𝑥 ത𝑦 to POM?

• Distributive law → 𝑓 = 𝑥 + ҧ𝑥 . 𝑥 + ത𝑦 = 𝑥 + ത𝑦

• ORing with missing variable (z) → 𝑓 = 𝑥 + ത𝑦 + 𝑧 . ҧ𝑧

• Distributive law → 𝑓 = 𝑥 + ത𝑦 + 𝑧 . 𝑥 + ത𝑦 + ҧ𝑧

• Express as POS → 𝑓 = 𝑀2 . 𝑀3
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Another POM Example

▪ Convert 𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐶′ + 𝐵𝐶 + 𝐴′𝐵′ to POM?

▪ Use 𝑥 + 𝑦𝑧 = 𝑥 + 𝑦 . (𝑥 + 𝑧), assuming 𝑥
= 𝐴𝐶′ + 𝐵𝐶 and 𝑦 = 𝐴′ and 𝑧 = 𝐵′

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐴𝐶′ + 𝐵𝐶 + 𝐴′ . (𝐴𝐶′ + 𝐵𝐶 + 𝐵′)

▪ Use Simplification theorem to get: 

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐵𝐶 + 𝐴′ + 𝐶′ . 𝐴𝐶′ + 𝐵′ + 𝐶

▪ Use Simplification theorem again to get: 

• 𝑓 𝐴, 𝐵, 𝐶 = 𝐴′ + 𝐵 + 𝐶′ . 𝐴 + 𝐵′ + 𝐶 = 𝑀5 . 𝑀2

• 𝑓 𝐴, 𝐵, 𝐶 = 𝑀2 . 𝑀5 = ς𝑀(2,5)→ Shorthand POM 

form
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Function Complements

▪ The complement of a function expressed as a sum of

minterms is constructed by selecting the minterms missing

in the sum-of-minterms canonical forms.

▪ Alternatively, the complement of a function expressed by a

sum of minterms form is simply the Product of Maxterms

with the same indices.

▪ Example: Given 𝐹 𝑥, 𝑦, 𝑧 = σ𝑚(1,3,5,7) , find

complement F as SOM and POM?

• ത𝐹 𝑥, 𝑦, 𝑧 = σ𝑚(0,2,4,6)

• ത𝐹 𝑥, 𝑦, 𝑧 = ς𝑀(1,3,5,7)
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Conversion Between Forms

▪ To convert between sum-of-minterms and product-of-maxterms

form (or vice-versa) we follow these steps:

• Find the function complement by swapping terms in the list with terms 

not in the list.

• Change from products to sums, or vice versa.

▪ Example:Given F as before: 𝐹 𝑥, 𝑦, 𝑧 = σ𝑚(1,3,5,7)
• Form the Complement:

ത𝐹 𝑥, 𝑦, 𝑧 = σ𝑚(0,2,4,6)
• Then use the other form with the same indices – this forms the

complement again, giving the other form of the original function:

𝐹(𝑥, 𝑦, 𝑧) = ς𝑀(0,2,4,6)



Important Properties of Minterms

▪ Maxterms are seldom used directly to express Boolean

functions

▪ Minterms properties:

• For 𝑛 Boolean variables, there are 2𝑛 minterms (0 to 2n -1)

• Any Boolean function can be represented as a logical sum of

minterms (SOM)

• The complement of a function contains those minterms not

included in the original function

• A function that include all the 2n minterms is equal to 1
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Standard Forms

▪ Standard Sum-of-Products (SOP) form: equations

are written as an OR of AND terms

▪ Standard Product-of-Sums (POS) form: equations

are written as an AND of OR terms

▪ Examples:

• SOP: 𝐴𝐵𝐶 + ҧ𝐴 ത𝐵𝐶 + 𝐵

• POS: 𝐴 + 𝐵 . 𝐴 + ത𝐵 + ҧ𝐶 . 𝐶

▪ These “mixed” forms are neither SOP nor POS

• 𝐴𝐵 + 𝐶 𝐴 + 𝐶

• 𝐴𝐵 ҧ𝐶 + 𝐴𝐶(𝐴 + 𝐵)
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Standard Sum-of-Products (SOP)

▪ A sum of minterms form for n variables can
be written down directly from a truth table

▪ Implementation of this form is a two-level
network of gates such that:

• The first level consists of n-input AND gates,
and

• The second level is a single OR gate (with
fewer than 2n inputs)

▪ This form often can be simplified so that the
corresponding circuit is simpler
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▪ A Simplification Example: 𝐹 𝐴, 𝐵, 𝐶 = σ𝑚(1,4,5,6,7)

▪ Writing the minterm expression:

• 𝐹 𝐴, 𝐵, 𝐶 = 𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵𝐶

▪ Simplifying using boolean Algebra:

▪ Simplified F contains 3 literals compared to 15 in minterm F 

Standard Sum-of-Products (SOP)

Simplification Steps (identity or theorem)

𝐴′𝐵′𝐶 + 𝐴𝐵′𝐶′ + 𝐴𝐵′𝐶 + 𝐴𝐵𝐶′ + 𝐴𝐵𝐶

= 𝐴′𝐵′𝐶 + 𝐴𝐵′ 𝐶′ + 𝐶 + 𝐴𝐵(𝐶′ + 𝐶) Distributive law

= 𝐴′𝐵′𝐶 + 𝐴𝐵′ + 𝐴𝐵 𝑋 + 𝑋′ = 1

= 𝐴′𝐵′𝐶 + 𝐴(𝐵′ + 𝐵) Distributive law

= 𝐴′𝐵′𝐶 + 𝐴 Simplification Theorem

= 𝐴 + 𝐵′𝐶
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AND/OR Two-level Implementation 

of SOP Expression

▪ The two implementations for F are shown 

below – it is quite apparent which is simpler!

F

A
B
C

A
B
C

A
B
C

A
B
C

A
B
C

 

 

F

B

C

A



Two-level Implementation

▪ Draw the logic diagram of the following boolean function:

• 𝑓 = 𝐴𝐵 + 𝐶(𝐷 + 𝐸)

▪ Represent the function using two-level implementation:

• 𝑓 = 𝐴𝐵 + 𝐶𝐷 + 𝐶𝐸 → SOP
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Two-level Implementation

▪ Draw the logic diagram of the following boolean function:

• 𝑓 = 𝐴𝐵 + 𝐶(𝐷 + 𝐸)

▪ Represent the function using two-level implementation:

• 𝑓 = 𝐴𝐵 + 𝐶𝐷 + 𝐶𝐸 → SOP
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SOP and POS Observations

▪ The previous examples show that:

• Canonical Forms (Sum-of-minterms, Product-of-
Maxterms), or other standard forms (SOP, POS) 
differ in complexity

• Boolean algebra can be used to manipulate 
equations into simpler forms.

• Simpler equations lead to simpler two-level 
implementations

▪ Questions:

• How can we attain a “simplest” expression?

• Is there only one minimum cost circuit?

• The next part will deal with these issues.
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