Logic and Computer Design Fundamentals Chapter 2 – Combinational Logic Circuits

Part 1 – Gate Circuits and Boolean Equations

Charles Kime & Thomas Kaminski

© 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

Updated by Dr. Waleed Dweik

Combinational Logic Circuits

- Digital (logic) circuits are hardware components that manipulate binary information.
- Integrated circuits: transistors and interconnections.
 - Basic circuits is referred to as <u>logic gates</u>
 - The outputs of gates are applied to the inputs of other gates to form a digital circuit
- Combinational? Later...

Overview

Part 1 – Gate Circuits and Boolean Equations

- Binary Logic and Gates
- Boolean Algebra
- Standard Forms

Part 2 – Circuit Optimization

- Two-Level Optimization
- Map Manipulation
- Practical Optimization (Espresso)
- Multi-Level Circuit Optimization

Part 3 – Additional Gates and Circuits

- Other Gate Types
- Exclusive-OR Operator and Gates
- High-Impedance Outputs

Binary Logic and Gates

- Binary variables take on one of two values
- Logical operators operate on binary values and binary variables
- Basic logical operators are the logic functions AND, OR and NOT
- Logic gates implement logic functions
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values
- Variable identifier examples:
 - A, B, y, z, or X_1 for now
 - RESET, START_IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- AND is denoted by a dot (\cdot) or (Λ)
- OR is denoted by a plus (+) or (V)
- NOT is denoted by an over-bar (), a single quote mark () after, or (~) before the variable

Notation Examples

- Examples:
 - $Z = X \cdot Y = XY = X \wedge Y$: is read "Z is equal to X AND Y"
 - Z = 1 if and only if X = 1 and Y = 1; otherwise, Z = 0

- $Z = X + Y = X \lor Y$: is read "Z is equal to X OR Y"
 - Z = 1 if (only X = 1) or if (only Y = 1) or if (X = 1 and Y = 1)

- $Z = \overline{X} = X' = \sim X$: is read "Z is equal to NOT X"
 - Z = 1 if X = 0; otherwise, Z = 0

- Notice the difference between arithmetic addition and logical OR:
 - The statement:
 - 1 + 1 = 2 (read "one <u>plus</u> one equals two")
 - is not the same as
 - 1 + 1 = 1 (read "1 <u>or</u> 1 equals 1")

Operator Definitions

Operations are defined on the values "0" and "1" for each operator:

Truth Tables

- *Truth table* a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND		OR			NOT		
Inp	puts	Output	Inp	puts	Output	Inputs	Output
X	Y	$\mathbf{Z} = \mathbf{X} \cdot \mathbf{Y}$	X	Y	$\mathbf{Z} = \mathbf{X} + \mathbf{Y}$	X	$Z = \overline{X}$
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is <u>switch closed</u>
 - logic 0 is <u>switch open</u>
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>
 - NOT uses a switch such that:
 - logic 1 is <u>switch open</u>
 - logic 0 is <u>switch closed</u>

Switches in parallel => OR

Switches in series => AND =

Normally-closed switch => NOT

Logic Function Implementation (Continued)

Example: Logic Using Switches

- Light is ON(L = 1) for $L(A, B, C, D) = A \cdot (B\overline{C} + D) = AB\overline{C} + AD$ and OFF(L = 0), otherwise.
- Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths
- Later, *vacuum tubes* that open and close current paths electronically replaced relays
- Today, *transistors* are used as electronic switches that open and close current paths
- Optional: Chapter 6 Part 1: The Design Space

Logic Gate Symbols and Behavior

(b) Timing diagram

Logic Gate Symbols and Behavior

PowerPoint[®] Slides © 2008 Pearson Education, Inc. (b) Timing diagram

Gate Delay

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously
- The delay between an input change(s) and the resulting output change is the *gate delay* denoted by t_{G} :

Logic Gates: Inputs and Outputs

- NOT (inverter)
 - Always one input and one output
- AND and OR gates
 - Always one output
 - Two or more inputs

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc.

Boolean Algebra

- An algebra dealing with binary variables and logic operations
 - Variables are designated by letters of the alphabet
 - Basic logic operations: AND, OR, and NOT
- A Boolean expression is an algebraic expression formed by using binary variables, constants 0 and 1, the logic operation symbols, and parentheses

• E.g.: X . 1, A + B + C, (A + B)(C + D)

- *A Boolean function* consists of a binary variable identifying the function followed by equals sign and a Boolean expression
 - E.g.: F = A + B + C, $L(D, X, A) = DX + \overline{A}$

Logic Diagrams and Expressions

- 1. Equation: $F = X + \overline{Y}Z$
- 2. Logic Diagram:
- 3. Truth Table:

Logic Diagrams and Expressions

- 1. Equation: $F = X + \overline{Y}Z$
- 2. Logic Diagram:

- 3. Truth Table:
- Boolean equations, truth tables and logic diagrams describe the <u>same</u> function!
- Truth tables are <u>unique</u>; expressions and logic diagrams are not. This gives flexibility in implementing functions.

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Logic Diagrams and Expressions

- 1. Equation: $F = X + \overline{Y}Z$
- 2. Logic Diagram:
- 3. Truth Table:
- Boolean equations, truth tables and logic diagrams describe the <u>same</u> function!
- Truth tables are <u>unique</u>; expressions and logic diagrams are not. This gives flexibility in implementing functions.

X	Y	Z	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- Draw the logic diagram and the truth table of the following Boolean function: $F(W, X, Y) = XY + W\overline{Y}$
- Logic Diagram:
- Truth Table:

This example represents a *Single Output Function*

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

- Draw the logic diagram and the truth table of the following Boolean function: $F(W, X, Y) = XY + W\overline{Y}$
- Logic Diagram:
- Truth Table:

This example represents a *Single Output Function*

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

- Draw the logic diagram and the truth table of the following Boolean functions: $F(W, X) = \overline{W}\overline{X} + W, G(W, X) = W + \overline{X}$
- Logic Diagram:
- Truth Table:

W	X	F	G
0	0		
0	1		
1	0		
1	1		

- Draw the logic diagram and the truth table of the following Boolean functions: $F(W, X) = \overline{W}\overline{X} + W, G(W, X) = W + \overline{X}$
- Logic Diagram: W Truth Table: Х W Х F G 1 0 0 1 G 0 1 0 0 1 0 1 1 1 1 1 1

This example represents a *Multiple Output Function*

Given the following logic diagram, write the corresponding Boolean equation:

 Logic circuits of this type are called combinational logic circuits since the variables are combined by logical operations

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

Given the following logic diagram, write the corresponding Boolean equation:

 Logic circuits of this type are called combinational logic circuits since the variables are combined by logical operations

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

Basic Identities of Boolean Algebra

1. X + 0 = X	2. $X \cdot 1 = X$	Evistance of 0 and 1	
3. $X + 1 = 1$	4. $X \cdot 0 = 0$	Existence of 0 and 1	
5. $X + X = X$	$6. X \cdot X = X$	Idempotence	
$7. X + \overline{X} = 1$	$8. X . \overline{X} = 0$	Existence of complement	
9. $\overline{X} = X$		Involution	
10.X + Y = Y + X	11.XY = YX	Commutative Laws	
12.(X + Y) + Z = X + (Y + Z)	13.(XY)Z = X(YZ)	Associative Laws	
14.X(Y+Z) = XY + XZ	15.X + YZ = (X + Y)(X + Z)	Distributive Laws	
$16.\overline{X+Y} = \overline{X}.\overline{Y}$	$17.\overline{X.Y} = \overline{X} + \overline{Y}$	DeMorgan's Laws	

Some Properties of Identities & the Algebra

- If the meaning is unambiguous, we leave out the symbol
- The identities above are organized into pairs
 - The *dual* of an algebraic expression is obtained by interchanging (+) and (·) and interchanging 0's and 1's
 - The identities appear in *dual* pairs. When there is only one identity on a line the identity is *self-dual*, i. e., the dual expression = the original expression.

Some Properties of Identities & the Algebra (Continued)

- Unless it happens to be self-dual, the dual of an expression does not equal the expression itself
- Examples:
 - $F = (A + \overline{C}) \cdot B + 0$
 - Dual F =
 - $G = XY + (\overline{W + Z})$
 - Dual G =
 - H = AB + AC + BC
 - *Dual H* =
- Are any of these functions self-dual?
 - Yes, H is self-dual

- Unless it happens to be self-dual, the dual of an expression does not equal the expression itself
- Examples:

•
$$F = (A + \overline{C}) \cdot B + 0$$

• Dual $F = (A \cdot \overline{C}) + B \cdot 1 = A \cdot \overline{C} + B$ (Not Accurate)

• Dual
$$F = ((A \cdot \overline{C}) + B) \cdot 1 = A \cdot \overline{C} + B$$
 (Accurate)

•
$$G = XY + (\overline{W + Z})$$

• Dual G = (X + Y). $\overline{WZ} = (X + Y)$. $(\overline{W} + \overline{Z})$

•
$$H = AB + AC + BC$$

• Dual H = (A + B)(A + C)(B + C) = (A + BC)(B + C)= AB + AC + BC

Are any of these functions self-dual?

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc. Yes, H is self-dual

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - **2.** NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Examples:
 - $F = A(B+C)(C+\overline{D})$
 - $F = \sim AB = \overline{A}B$
 - F = AB + C
 - F = A(B + C)

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc.

Useful Boolean Theorems

Theorem	Dual	Name
$x.y + \bar{x}.y = y$	$(x+y)(\bar{x}+y) = y$	Minimization
$x + x \cdot y = x$	x.(x+y) = x	Absorption
$x + \bar{x} \cdot y = x + y$	$x.(\bar{x} + y) = x.y$	Simplification
$x.y + \bar{x}.z + y.$	Company	
$(x+y)(\bar{x}+z)(y+$	Consensus	

Example 1: Boolean Algebraic Proof

• $A + A \cdot B = A$ (Absorption Theorem)

Proof Steps	Justification (identity or theorem)
$A + A \cdot B$	
$=A \cdot 1 + A \cdot B$	$X = X \cdot 1$
$=A \cdot (1+B)$	Distributive Law
$=A \cdot 1$	1 + X = 1
=A	$X \cdot 1 = X$

- Our primary reason for doing proofs is to learn:
 - Careful and efficient use of the identities and theorems of Boolean algebra
 - How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

Example 2: Boolean Algebraic Proofs

• $AB + \overline{A}C + BC = AB + \overline{A}C$

(Consensus Theorem)

Proof Steps	Justification (identity or theorem)
$AB + \overline{A}C + BC$	
$= AB + \overline{A}C + 1.BC$	1 . $X = X$
$= AB + \overline{A}C + (A + \overline{A}).BC$	$X + \overline{X} = 1$
$= AB + \overline{A}C + ABC + \overline{A}BC$	Distributive Law
$= AB + ABC + \overline{A}C + \overline{A}BC$	Commutative Law
$= AB. 1 + AB. C + \overline{A}C. 1 + \overline{A}C. B$	X.1 = X and Commutative Law
$= AB(1+C) + \overline{A}C(1+B)$	Distributive Law
$= AB.1 + \overline{A}C.1$	1 + X = 1
$= AB + \overline{A}C$	X. 1 = X
Proof of Simplification

• $A + \overline{A} \cdot B = A + B$ (Simplification Theorem)

Proof Steps	Justification (identity or theorem)
$A + \overline{A}.B$	
$=(A+\bar{A})(A+B)$	Distributive law
=1.(A+B)	Factor B out (Distributive Laws)
= (A + B)	$X + \overline{X} = 1$

• A. $(\overline{A} + B) = AB$ (Simplification Theorem)

Proof Steps	Justification (identity or theorem)
$A.(\bar{A}+B)$	
$= (A.\bar{A}) + (A.B)$	Distributive Law
= 0 + AB	$X.\overline{X} = 0$
= AB	X + 0 = X

Proof of Minimization

• $A \cdot B + \overline{A} \cdot B = B$ (Minimization Theorem)

Proof Steps	Justification (identity or theorem)
$A.B + \overline{A}.B$	
$= B(A + \overline{A})$	Distributive Law
= B.1	$X + \overline{X} = 1$
= B	X.1 = X

• $(A + B)(\overline{A} + B) = B$ (Minimization Theorem)

Proof Steps	Justification (identity or theorem)
$(A+B)(\bar{A}+B)$	
$= B + (A. \overline{A})$	Distributive Law
= B + 0	$X.\overline{X} = 0$
= B	X + 0 = X

Proof of DeMorgan's Laws (1)

- $\overline{X+Y} = \overline{X} \cdot \overline{Y}$ (DeMorgan's Law)
 - We will show that, \overline{X} . \overline{Y} , satisfies the definition of the complement of (X + Y), defined as $\overline{X + Y}$ by DeMorgan's Law.
 - To show this, we need to show that A + A' = 1 and $A \cdot A' = 0$ with A = X + Y and $A' = X' \cdot Y'$. This proves that $X' \cdot Y' = \overline{X + Y}$.
- Part 1: Show X + Y + X'. Y' = 1

Proof of DeMorgan's Laws (1)

- $\overline{X+Y} = \overline{X} \cdot \overline{Y}$ (DeMorgan's Law)
 - We will show that, \overline{X} . \overline{Y} , satisfies the definition of the complement of (X + Y), defined as $\overline{X + Y}$ by DeMorgan's Law.
 - To show this, we need to show that A + A' = 1 and $A \cdot A' = 0$ with A = X + Y and $A' = X' \cdot Y'$. This proves that $X' \cdot Y' = \overline{X + Y}$.
- Part 1: Show $X + Y + X' \cdot Y' = 1$

Proof Steps	Justification (identity or theorem)	
(X+Y)+X'.Y'		
= (X + Y + X')(X + Y + Y')	Distributive Law	
= (1 + Y)(X + 1)	$X + \overline{X} = 1$	
= 1.1	X + 1 = 1	
= 1	X.1 = X	

Proof of DeMorgan's Laws (2)

• Part 2: Show (X + Y). X'. Y' = 0

- Based on the above two parts, $X' \cdot Y' = \overline{X + Y}$
- The second DeMorgans' law is proved by duality
- Note that DeMorgan's law, given as an identity is not an axiom in the sense that it can be proved using the other identities.

Example 3: Boolean Algebraic Proofs

• $\overline{(X+Y)}Z + X\overline{Y} = \overline{Y}(X+Z)$

Example 3: Boolean Algebraic Proofs

• $\overline{(X+Y)}Z + X\overline{Y} = \overline{Y}(X+Z)$

Proof Steps	Justification (identity or theorem)
$\overline{(X+Y)}Z + X\overline{Y}$	
= X'Y'Z + X.Y'	DeMorgan's law
= Y'(X'Z + X)	Distributive law
= Y'(X + X'Z)	Commutative law
= Y'(X+Z)	Simplification Theorem

Boolean Function Evaluation

- $F_1 = xy\bar{z}$
- $F_2 = x + \overline{y}z$
- $F_3 = \bar{x}\bar{y}\bar{z} + \bar{x}yz + x\bar{y}$
- $F_4 = x\overline{y} + \overline{x}z$

X	У	Z	F ₁	F ₂	F ₃	F ₄
0	0	0	0	0	1	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of <u>literals</u> (complemented and uncomplemented variables)
- Example: Simplify the following Boolean expression
 - AB + A'CD + A'BD + A'CD' + ABCD

Simplification Steps	Justification (identity or theorem)
AB + A'CD + A'BD + A'CD' + ABCD	
= AB + ABCD + A'CD + A'CD' + A'BD	Commutative law
= AB(1 + CD) + A'C(D + D') + A'BD	Distributive law
= AB.1 + A'C.1 + A'BD	1 + X = 1 and $X + X' = 1$
= AB + A'C + A'BD	X.1 = X
= AB + A'BD + A'C	Commutative law
= B(A + A'D) + A'C	Distributive law
$= B(A + D) + A'C \rightarrow 5 Literals$	Simplification Theorem

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement F = x'yz' + xy'z'

$$F' = (x + y' + z)(x' + y + z)$$

• Example: Complement G = (a' + bc)d' + e

$$G' = (a(b' + c') + d).e'$$

- Simplify the following:
 - F = X'YZ + X'YZ' + XZ

- Simplify the following:
 - F = X'YZ + X'YZ' + XZ

- Simplify the following:
 - F = X'YZ + X'YZ' + XZ

0

0

1

1

1

1

		Simplification Steps	(identity or theorem)	
	Χ'	YZ + X'YZ' + XZ		
	=	X'Y(Z+Z')+XZ	Distributive law	
	=	X'Y.1 + XZ	X + X' = 1	
	=	X'Y + XZ	X.1 = X	
У	Z	X'YZ + X'YZ' + XZ	X'Y + XZ	
0	0	0	0	
0	1	0	0	
1	0	1	1	
1	1	1	1	
0	0	0	0	
0	1	1	1	
1	0	0	0	
1	1	1	1	
		3 terms and 8 literals	2 terms and 4 literals	

- Show that F = x'y' + xy' + x'y + xy = 1
 - Solution1: Truth Table

• Solution2: Boolean Algebra

Proof Steps	(identity or theorem)
x'y' + xy' + x'y + xy	
= y'(x'+x) + y(x'+x)	Distributive law
= y'.1 + y.1	X + X' = 1
= y' + y	X.1 = X
= 1	X + X' = 1

• Show that ABC + A'C' + AC' = AB + C' using Boolean algebra.

Proof Steps	(identity or theorem)
ABC + A'C' + AC'	
= ABC + C'(A' + A)	Distributive law
= ABC + C'.1	X + X' = 1
= ABC + C'	X.1 = X
= (AB + C')(C + C')	Distributive law
= (AB + C').1	X + X' = 1
= AB + C'	X.1 = X

• Find the dual and the complement of $f = wx + y'z \cdot 0 + w'z$

•
$$Dual(f) = (w + x)(y' + z + 1)(w' + z)$$

•
$$f' = (w' + x')(y + z' + 1)(w + z')$$

Overview – Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

Boolean Representation Forms

Canonical Forms

- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality
 - Has a correspondence to the truth tables
 - Facilitates simplification
- Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterms

- *Minterms* are AND terms with *every variable* present in either true or complemented form
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x̄), there are 2ⁿ minterms for n variables
- <u>Example</u>: Two variables (X and Y) produce $2^2 = 4$ combinations:
 - *XY* (both normal)
 - $X\overline{Y}$ (X normal, Y complemented)
 - $\overline{X}Y$ (X complemented, Y normal)
 - $\overline{X}\overline{Y}$ (both complemented)

• Thus there are *four minterms* of two variables

Maxterms

- Maxterms are OR terms with every variable in true or complemented form
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., x̄), there are 2ⁿ maxterms for *n* variables
- Example: Two variables (X and Y) produce 2² = 4 combinations:
 - X + Y (both normal)
 - $X + \overline{Y}$ (X normal, Y complemented)
 - $\overline{X} + Y$ (X complemented, Y normal)

(both complemented)

 $\overline{X} + \overline{Y}$

Maxterms and Minterms

• Examples: Three variable (X, Y, Z) minterms and maxterms

Index	X,Y,Z	Minterm (m)	Maxterm (M)
0	000	$ar{X}ar{Y}ar{Z}$	X + Y + Z
1	001	$ar{X}ar{Y}Z$	$X + Y + \overline{Z}$
2	010	$ar{X}Yar{Z}$	$X + \overline{Y} + Z$
3	011	$\overline{X}YZ$	$X + \bar{Y} + \bar{Z}$
4	100	$Xar{Y}ar{Z}$	$\overline{X} + Y + Z$
5	101	$X\overline{Y}Z$	$\overline{X} + Y + \overline{Z}$
6	110	$XY\overline{Z}$	$\overline{X} + \overline{Y} + Z$
7	111	XYZ	$\overline{X} + \overline{Y} + \overline{Z}$

The *index* above is important for describing which variables in the terms are true and which are complemented

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order
- All variables will be present in a minterm or maxterm and will be listed in the *same order (usually alphabetically)*
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \overline{c}), (a + b + c)$
 - Terms: (b + a + c), $a\overline{c}b$, and (c + b + a) are NOT in standard order.
 - Minterms: $a\overline{b}c$, abc, $\overline{a}\overline{b}c$
 - Terms: (a + c), $\overline{b}c$, and $(\overline{a} + b)$ do not contain all variables

Purpose of the Index

- The *index* for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form
- For Minterms:
 - "0" means the variable is "Complemented"
 - "1" means the variable is "Not Complemented"
- For Maxterms:
 - "0" means the variable is "Not Complemented"
 - "1" means the variable is "Complemented"

Index Example: Three Variables

Index (Decimal)	Index (Binary) n = 3 Variables	Minterm (m)	Maxterm (M)
0	000	$m_0 = \bar{X}\bar{Y}\bar{Z}$	$M_0 = X + Y + Z$
1	001	$m_1 = \bar{X}\bar{Y}Z$	$M_1 = X + Y + \bar{Z}$
2	010	$m_2 = \bar{X}Y\bar{Z}$	$M_2 = X + \overline{Y} + Z$
3	011	$m_3 = \overline{X}YZ$	$M_3 = X + \bar{Y} + \bar{Z}$
4	100	$m_4 = X \overline{Y} \overline{Z}$	$M_4 = \bar{X} + Y + Z$
5	101	$m_5 = X\overline{Y}Z$	$M_5 = \bar{X} + Y + \bar{Z}$
6	110	$m_6 = XY\bar{Z}$	$M_6 = \bar{X} + \bar{Y} + Z$
7	111	$m_7 = XYZ$	$M_7 = \bar{X} + \bar{Y} + \bar{Z}$

Index Example: Four Variables

i (Decimal)	i (Binary) n = 4 Variables	m _i	$\mathbf{M_{i}}$
0	0000	$ar{a}ar{b}ar{c}ar{d}$	a+b+c+d
1	0001	$\overline{a}\overline{b}\overline{c}d$	$a + b + c + \overline{d}$
3	0011	$\overline{a}\overline{b}cd$	$a + b + \bar{c} + \bar{d}$
5	0101	$ar{a}bar{c}d$	$a + \overline{b} + c + \overline{d}$
7	0111	$\overline{a}bcd$	$a + \overline{b} + \overline{c} + \overline{d}$
10	1010	$a\overline{b}c\overline{d}$	$\bar{a} + b + \bar{c} + d$
13	1101	abīcd	$\bar{a} + \bar{b} + c + \bar{d}$
15	1111	abcd	$\overline{a} + \overline{b} + \overline{c} + \overline{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem
 - $\overline{x.y} = \overline{x} + \overline{y}$ and $\overline{x+y} = \overline{x}.\overline{y}$
- Two-variable example:
 - $M_2 = \overline{x} + y$ and $m_2 = x \cdot \overline{y}$
 - Using DeMorgan's Theorem $\rightarrow \overline{x} + y = \overline{x} \cdot \overline{y} = x \cdot \overline{y}$
 - Using DeMorgan's Theorem $\rightarrow \overline{x. \overline{y}} = \overline{x} + \overline{\overline{y}} = \overline{x}. y$
 - Thus, M_2 is the complement of m_2 and vice-versa
- Since DeMorgan's Theorem holds for *n* variables, the above holds for terms of *n* variables:

$$M_i = \overline{m_i}$$
 and $m_i = \overline{M_i}$

• Thus, M_i is the complement of m_i and vice-versa

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

Chapter 2 - Part 1 62

Function Tables for Both

Minterms of 2 variables:

Maxterms of 2 variables:

xy	m ₀	m ₁	m ₂	m ₃
00	1	0	0	0
01	0	1	0	0
10	0	0	1	0
11	0	0	0	1

xy	\mathbf{M}_{0}	M ₁	M ₂	M ₃
00	0	1	1	1
01	1	0	1	1
10	1	1	0	1
11	1	1	1	0

Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Observations

- In the function tables:
 - Each *minterm* has one and only one 1 present in the 2^{*n*} terms (a <u>minimum</u> of 1s). All other entries are 0.
 - Each *maxterm* has one and only one 0 present in the 2^{*n*} terms All other entries are 1 (a <u>maximum</u> of 1s).
- We can implement any function by
 - "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
 - "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u> for stating any Boolean function:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

Minterm Function Example

• Example: Find $F_1 = m_1 + m_4 + m_7$

•
$$F_1 = x'y'z + xy'z' + xyz$$

xyz	Index	$m_1 + m_4 + m_7 = F_1$
000	0	0 + 0 + 0 = 0
001	1	1 + 0 + 0 = 1
010	2	0 + 0 + 0 = 0
011	3	0 + 0 + 0 = 0
100	4	0 + 1 + 0 = 1
101	5	0 + 0 + 0 = 0
110	6	0 + 0 + 0 = 0
111	7	0 + 0 + 1 = 1

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) = A'B'C'DE' + A'BC'D'E+ AB'C'D'E + AB'CDE

Maxterm Function Example

- Example: Implement F1 in maxterms:
- $F_1 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$
- $F_1 = (x + y + z) \cdot (x + y' + z) \cdot (x + y' + z') \cdot (x' + y + z') \cdot (x' + y' + z)$

xyz	Index	$M_0 . M_2 . M_3 . M_5 . M_6 = F_1$
000	0	0.1.1.1.1 = 0
001	1	$1 \cdot 1 \cdot 1 \cdot 1 = 1$
010	2	$1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 0$
011	3	$1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 = 0$
100	4	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
101	5	$1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 = 0$
110	6	$1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 = 0$
111	7	$1 \cdot 1 \cdot 1 \cdot 1 = 1$

Maxterm Function Example

•
$$F(A, B, C, D) = M_3 \cdot M_8 \cdot M_{11} \cdot M_{14}$$

• $F(A, B, C, D) = (A + B + C' + D') \cdot (A' + B + C + D) \cdot (A' + B + C' + D') \cdot (A' + B + C' + D') \cdot (A' + B' + C' + D)$

Canonical Sum of Minterms

- Any Boolean function can be expressed as a <u>Sum</u> of <u>Minterms (SOM)</u>:
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v + \bar{v})$
- Example: Implement $f = x + \overline{x}\overline{y}$ as a SOM?
 - 1. Expand terms $\rightarrow f = x(y + \bar{y}) + \bar{x}\bar{y}$
 - 2. Distributive law $\rightarrow f = xy + x\overline{y} + \overline{x}\overline{y}$
 - 3. Express as SOM $\rightarrow f = m_3 + m_2 + m_0 = m_0 + m_2 + m_3$

Another SOM Example

• Example:
$$F = A + \overline{B}C$$

- There are three variables: A, B, and C which we take to be the standard order
- Expanding the terms with missing variables:
 - $F = A(B + \overline{B})(C + \overline{C}) + (A + \overline{A})\overline{B}C$
- Distributive law:
 - $F = ABC + A\overline{B}C + AB\overline{C} + A\overline{B}\overline{C} + A\overline{B}C + \overline{A}\overline{B}C$
- Collect terms (removing all but one of duplicate terms):
 - $F = ABC + AB\overline{C} + A\overline{B}C + A\overline{B}\overline{C} + \overline{A}\overline{B}C$
- Express as SOM:

•
$$F = m_7 + m_6 + m_5 + m_4 + m_1$$

• $F = m_1 + m_4 + m_5 + m_6 + m_7$

Shorthand SOM Form

- From the previous example, we started with:
 F = A + BC
- We ended up with:
 - $F = m_1 + m_4 + m_5 + m_6 + m_7$
- This can be denoted in the *formal shorthand*:
 - $F(A, B, C) = \sum_{m} (1, 4, 5, 6, 7)$
- Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a <u>Product of Maxterms (POM)</u>:
 - For the function table, the maxterms used are the terms corresponding to the 0's
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with $(v \cdot \bar{v})$ and then applying the distributive law again
- Example: Convert $f(x, y, z) = x + \overline{x}\overline{y}$ to POM?
 - Distributive law $\rightarrow f = (x + \overline{x}) \cdot (x + \overline{y}) = x + \overline{y}$
 - ORing with missing variable (z) $\rightarrow f = x + \overline{y} + z \cdot \overline{z}$
 - Distributive law $\rightarrow f = (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z})$
 - Express as POS $\rightarrow f = M_2 \cdot M_3$
Another POM Example

- Convert f(A, B, C) = AC' + BC + A'B' to POM?
- Use $x + yz = (x + y) \cdot (x + z)$, assuming x = AC' + BC and y = A' and z = B'
 - $f(A, B, C) = (AC' + BC + A') \cdot (AC' + BC + B')$
- Use Simplification theorem to get:
 - $f(A, B, C) = (BC + A' + C') \cdot (AC' + B' + C)$
- Use Simplification theorem again to get:
 - $f(A, B, C) = (A' + B + C') \cdot (A + B' + C) = M_5 \cdot M_2$
 - $f(A, B, C) = M_2 \cdot M_5 = \prod_M (2,5) \rightarrow Shorthand POM$ form

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a sum of minterms form is simply the Product of Maxterms with the same indices.
- Example: Given $F(x, y, z) = \sum_{m} (1,3,5,7)$, find complement F as SOM and POM?

•
$$\overline{F}(x, y, z) = \sum_{m} (0, 2, 4, 6)$$

•
$$\overline{F}(x, y, z) = \prod_{M} (1, 3, 5, 7)$$

Conversion Between Forms

- To convert between sum-of-minterms and product-of-maxterms form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- **Example:**Given F as before: $F(x, y, z) = \sum_{m} (1,3,5,7)$
 - Form the Complement:

 $\overline{F}(x, y, z) = \sum_{m} (0, 2, 4, 6)$

• Then use the other form with the same indices – this forms the complement again, giving the other form of the original function: $E(x, y, z) = \prod_{i=1}^{n} (0.2.4.6)$

 $F(x, y, z) = \prod_{M} (0, 2, 4, 6)$

Important Properties of Minterms

- Maxterms are seldom used directly to express Boolean functions
- Minterms properties:
 - For *n* Boolean variables, there are 2^n minterms (0 to 2^n -1)
 - Any Boolean function can be represented as a logical sum of minterms (SOM)
 - The complement of a function contains those minterms not included in the original function
 - A function that include all the 2ⁿ minterms is equal to 1

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + B$
 - POS: $(A + B) \cdot (A + \overline{B} + \overline{C}) \cdot C$
- These "mixed" forms are <u>neither SOP nor POS</u>
 - (AB+C)(A+C)
 - $AB\overline{C} + AC(A+B)$

Standard Sum-of-Products (SOP)

- A sum of minterms form for *n* variables can be written down directly from a truth table
- Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2ⁿ inputs)
- This form often can be simplified so that the corresponding circuit is simpler

Standard Sum-of-Products (SOP)

- A Simplification Example: $F(A, B, C) = \sum_{m} (1, 4, 5, 6, 7)$
- Writing the minterm expression:
 - F(A, B, C) = A'B'C + AB'C' + AB'C + ABC' + ABC
- Simplifying using boolean Algebra:

Simplification Steps	(identity or theorem)
A'B'C + AB'C' + AB'C + ABC' + ABC	
= A'B'C + AB'(C'+C) + AB(C'+C)	Distributive law
= A'B'C + AB' + AB	X + X' = 1
= A'B'C + A(B' + B)	Distributive law
= A'B'C + A	Simplification Theorem
= A + B'C	

Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

The two implementations for F are shown below – it is quite apparent which is simpler!

Logic and Computer Design Fundamentals, 4e PowerPoint® Slides © 2008 Pearson Education, Inc.

Two-level Implementation

- Draw the logic diagram of the following boolean function:
 - f = AB + C(D + E)

Represent the function using two-level implementation:
f = AB + CD + CE → SOP

Two-level Implementation

Draw the logic diagram of the following boolean function:

•
$$f = AB + C(D + E)$$

Represent the function using two-level implementation:

Logic and Computer Design Fundamentals, 4e PowerPoint[®] Slides © 2008 Pearson Education, Inc.

SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?
 - The next part will deal with these issues.