Logic and Computer Design Fundamentals

 Chapter 2 - CombinationalLogic Circuits
Part 1 - Gate Circuits and Boolean Equations

Charles Kime \& Thomas Kaminski
© 2008 Pearson Education, Inc.
(Hyperlinks are active in View Show mode)

Updated by Dr. Waleed Dweik

Combinational Logic Circuits

- Digital (logic) circuits are hardware components that manipulate binary information.
- Integrated circuits: transisto
interconnections.
- Basic circuits is referred to as logic gates
- The outputs of gates are applied to the inputs of other gates to form a digital circuit
- Combinational? Later...

Overview

- Part 1 - Gate Circuits and Boolean Equations
- Binary Logic and Gates
- Boolean Algebra
- Standard Forms
- Part 2 - Circuit Optimization
- Two-Level Optimization
- Map Manipulation
- Practical Optimization (Espresso)
- Multi-Level Circuit Optimization
- Part 3 - Additional Gates and Circuits
- Other Gate Types
- Exclusive-OR Operator and Gates
- High-Impedance Outputs

Binary Logic and Gates

- Binary variables take on one of two values
- Logical operators operate on binary values and binary variables
- Basic logical operators are the logic functions AND, OR and NOT
- Logic gates implement logic functions
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
- True/False
- On/Off
- Yes/No
- $1 / 0$
- We use 1 and 0 to denote the two values
- Variable identifier examples:
- A, B, y, z, or X_{1} for now
- RESET, START_IT, or ADD1 later

Logical Operations

- The three basic logical operations are:
- AND
- OR
- NOT
- AND is denoted by a dot (\cdot) or (\wedge)
- OR is denoted by a plus (+) or (V)
- NOT is denoted by an over-bar (${ }^{-}$), a single quote mark (') after, or (\sim) before the variable

Notation Examples

- Examples:
- $Z=X \cdot \mathrm{Y}=\mathrm{XY}=X \wedge Y$: is read " Z is equal to X AND Y "
- $\mathrm{Z}=1$ if and only if $\mathrm{X}=1$ and $\mathrm{Y}=1$; otherwise, $\mathrm{Z}=0$
- $Z=X+Y=X \vee Y$: is read " Z is equal to X OR Y "
- $\mathrm{Z}=1$ if (only $\mathrm{X}=1$) or if (only $\mathrm{Y}=1$) or if ($\mathrm{X}=1$ and $\mathrm{Y}=1$)
- $\mathrm{Z}=\bar{X}=X^{\prime}=\sim X$: is read " Z is equal to NOT X "
- $\mathrm{Z}=1$ if $\mathrm{X}=0$; otherwise, $\mathrm{Z}=0$
- Notice the difference between arithmetic addition and logical OR:
- The statement:
$1+1=2$ (read "one plus one equals two")
is not the same as

$$
1+1=1 \text { (read " } 1 \text { or } 1 \text { equals } 1 ")
$$

Operator Definitions

- Operations are defined on the values " 0 " and " 1 " for each operator:

AND
$0.0=0$
$0.1=0$
$1.0=0$
$1.1=1$

OR
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=1$

NOT
$\overline{\mathbf{0}}=\mathbf{1}$
$\overline{1}=\mathbf{0}$

Truth Tables

- Truth table - a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND		
Inputs	Output	
\mathbf{X}	\mathbf{Y}	$\mathrm{Z}=\mathrm{X} . \mathbf{Y}^{2}$
0	0	0
0	1	0
1	0	0
1	1	1

OR		
Inputs	Output	
\mathbf{X}	\mathbf{Y}	$\mathbf{Z}=\mathbf{X}+\mathbf{Y}$
$\mathbf{0}$	0	0
$\mathbf{0}$	1	1
1	0	1
1	1	1

NOT	
Inputs	Output
\mathbf{X}	$Z=\bar{X}$
0	1
1	0

Logic Function Implementation

- Using Switches
- For inputs:
- logic 1 is switch closed
- logic 0 is switch open

Switches in parallel => OR

- For outputs:
- logic 1 is light on
- logic 0 is light off
- NOT uses a switch such that:
- logic 1 is switch open
- logic 0 is switch closed

Normally-closed switch $=>$ NOT

Logic Function Implementation (Continued)

- Example: Logic Using Switches

- Light is

ON $(\mathrm{L}=1)$ for $L(A, B, C, D)=A \cdot(B \bar{C}+D)=\mathrm{AB} \bar{C}+A D$ and $\operatorname{OFF}(\mathrm{L}=0)$, otherwise.

- Useful model for relay circuits and for CMOS gate circuits, the foundation of current digital logic technology

Logic Gates

- In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in relays. The switches in turn opened and closed the current paths
- Later, vacuum tubes that open and close current paths electronically replaced relays
- Today, transistors are used as electronic switches that open and close current paths
- Optional: Chapter 6 - Part 1: The Design Space

Logic Gate Symbols and Behavior

- Logic gates have special symbols:

(a) Graphic symbols
- And waveform behavior in time as follows:
$\mathrm{X} \begin{array}{lllll} & 0 & 0 & 1 & 1\end{array}$

Logic Gate Symbols and Behavior

- Logic gates have special symbols:

(a) Graphic symbols
- And waveform behavior in time as follows:

(b) Timing diagram

Gate Delay

- In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously
- The delay between an input change(s) and the resulting output change is the gate delay denoted by t_{G} :

Logic Gates: Inputs and Outputs

- NOT (inverter)
- Always one input and one output
- AND and OR gates
- Always one output
- Two or more inputs

Boolean Algebra

- An algebra dealing with binary variables and logic operations
- Variables are designated by letters of the alphabet
- Basic logic operations: AND, OR, and NOT
- A Boolean expression is an algebraic expression formed by using binary variables, constants 0 and 1, the logic operation symbols, and parentheses
- E.g.: X. 1, A + B + C, ($\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})$
- A Boolean function consists of a binary variable identifying the function followed by equals sign and a Boolean expression
- E.g.: $F=A+B+C, L(D, X, A)=D X+\bar{A}$

Logic Diagrams and Expressions

1. Equation: $F=X+\bar{Y} Z$
2. Logic Diagram:
3. Truth Table:

Logic Diagrams and Expressions

1. Equation: $F=X+\bar{Y} Z$
2. Logic Diagram:

3. Truth Table:

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique, expressions and logic diagrams are not. This gives flexibility in implementing functions.

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Logic Diagrams and Expressions

1. Equation: $F=X+\bar{Y} Z$
2. Logic Diagram:
3. Truth Table:

- Boolean equations, truth tables and logic diagrams describe the same function!
- Truth tables are unique, expressions and logic diagrams are not. This gives flexibility in implementing functions.

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{F}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	

Example

- Draw the logic diagram and the truth table of the following Boolean function: $F(W, X, Y)=X Y+W \bar{Y}$
- Logic Diagram:
- Truth Table:

\mathbf{W}	X	Y	F
$\mathbf{0}$	$\mathbf{0}$	0	
$\mathbf{0}$	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- This example represents a Single Output Function

Example

- Draw the logic diagram and the truth table of the following Boolean function: $F(W, X, Y)=X Y+W \bar{Y}$
- Logic Diagram:
- Truth Table:

\mathbf{W}	X	Y	F
$\mathbf{0}$	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

- This example represents a Single Output Function

Example

- Draw the logic diagram and the truth table of the following Boolean functions: $F(W, X)=\bar{W} \bar{X}+W, G(W, X)=W+\bar{X}$
- Logic Diagram:
- Truth Table:

\mathbf{W}	\mathbf{X}	\mathbf{F}	\mathbf{G}
$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{0}$	$\mathbf{1}$		
$\mathbf{1}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{1}$		

Example

- Draw the logic diagram and the truth table of the following Boolean functions: $F(W, X)=\bar{W} \bar{X}+W, G(W, X)=W+\bar{X}$
- Logic Diagram:
- Truth Table:

W	X	F	G
0	0	1	1
0	1	0	0
1	0	1	1
1	1	1	1

- This example represents a Multiple Output Function

Example:

- Given the following logic diagram, write the corresponding Boolean equation:

- Logic circuits of this type are called combinational logic circuits since the variables are combined by logical operations

Example:

- Given the following logic diagram, write the corresponding Boolean equation:

- Logic circuits of this type are called combinational logic circuits since the variables are combined by logical operations

Basic Identities of Boolean Algebra

1. $X+0=X$	2. $X .1=X$	
3. $X+1=1$	Existence of 0 and 1	
5. $X+X=X$	6. $X . X=0$	
7. $X+\bar{X}=1$	8. $X . \bar{X}=0$	Idempotence
9. $\bar{X}=X$		Existence of complement
$10 . X+Y=Y+X$	$11 \cdot X Y=Y X$	Involution
$12 .(X+Y)+Z=X+(Y+Z)$	$13 .(X Y) Z=X(Y Z)$	Commutative Laws
$14 . X(Y+Z)=X Y+X Z$	$15 \cdot X+Y Z=(X+Y)(X+Z)$	Associative Laws
$16 . \overline{X+Y}=\bar{X} \cdot \bar{Y}$	$17 \cdot \overline{X . Y}=\bar{X}+\bar{Y}$	Distributive Laws

Some Properties of Identities $\boldsymbol{\&}$ the Algebra

- If the meaning is unambiguous, we leave out the symbol '6."
- The identities above are organized into pairs
- The dual of an algebraic expression is obtained by interchanging $(+)$ and (\cdot) and interchanging 0 's and 1's
- The identities appear in dual pairs. When there is only one identity on a line the identity is self-dual, i. e., the dual expression $=$ the original expression.

Some Properties of Identities \& the Algebra (Continued)

- Unless it happens to be self-dual, the dual of an expression does not equal the expression itself
- Examples:
- $F=(A+\bar{C}) \cdot B+0$
- Dual F =
- $G=X Y+(\overline{W+Z})$
- Dual $G=$
- $H=A B+A C+B C$
- Dual $H=$
- Are any of these functions self-dual?
- Yes, H is self-dual

Some Properties of Identities \& the Algebra (Continued)

- Unless it happens to be self-dual, the dual of an expression does not equal the expression itself
- Examples:
- $F=(A+\bar{C}) \cdot B+0$
- Dual $F=(A \cdot \bar{C})+\mathrm{B} \cdot 1=\mathrm{A} \cdot \bar{C}+B$ (Not Accurate)
- Dual $F=((A \cdot \bar{C})+\mathrm{B}) \cdot 1=\mathrm{A} \cdot \bar{C}+B$ (Accurate)
- $G=X Y+(\overline{W+Z})$

$$
\text { - Dual } G=(X+Y) \cdot \overline{W Z}=(X+Y) \cdot(\bar{W}+\bar{Z})
$$

- $H=A B+A C+B C$

$$
\begin{aligned}
& \text { Dual } H=(A+B)(A+C)(B+C)=(A+B C)(B+C) \\
& =A B+A C+B C
\end{aligned}
$$

- Are any of these functions self-dual?

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:

1. Parentheses
2. NOT
3. AND
4. OR

- Consequence: Parentheses appear around OR expressions
- Examples:
- $F=A(B+C)(C+\bar{D})$
- $F=\sim A B=\bar{A} B$
- $F=A B+C$
- $F=A(B+C)$

Useful Boolean Theorems

Theorem	Dual	Name
$x \cdot y+\bar{x} \cdot y=y$	$(x+y)(\bar{x}+y)=y$	Minimization
$x+x \cdot y=x$	$x \cdot(x+y)=x$	Absorption
$x+\bar{x} \cdot y=x+y$	$x \cdot(\bar{x}+y)=x \cdot y$	Simplification
$x \cdot y+\bar{x} \cdot z+y \cdot z=x \cdot y+\bar{x} \cdot z$	Consensus	
$(x+y)(\bar{x}+z)(y+z)=(x+y)(\bar{x}+z)$		

Example 1: Boolean Algebraic Proof

- $\mathrm{A}+\mathrm{A} \cdot \mathrm{B}=\mathrm{A}$
(Absorption Theorem)

Proof Steps	Justification (identity or theorem)
$A+A \cdot B$	
$=A \cdot 1+A \cdot B$	$X=X \cdot 1$
$=A \cdot(1+B)$	Distributive Law
$=A \cdot 1$	$1+X=1$
$=A$	$X \cdot 1=X$

- Our primary reason for doing proofs is to learn:
- Careful and efficient use of the identities and theorems of Boolean algebra
- How to choose the appropriate identity or theorem to apply to make forward progress, irrespective of the application

Example 2: Boolean Algebraic Proofs

- $A B+\bar{A} C+B C=A B+\bar{A} C$

Proof Steps	Justification (identity or theorem)
$A B+\bar{A} C+B C$	
$=A B+\bar{A} C+1 . B C$	1. $X=X$
$=A B+\bar{A} C+(A+\bar{A}) \cdot B C$	$\boldsymbol{X}+\bar{X}=\mathbf{1}$
$=A B+\bar{A} C+A B C+\bar{A} B C$	Distributive Law
$=A B+A B C+\bar{A} C+\bar{A} B C$	Commutative Law
$=A B .1+A B . C+\bar{A} C .1+\bar{A} C . B$	X. 1 = Xand Commutative Law
$=A B(1+C)+\bar{A} C(1+B)$	Distributive Law
$=A B .1+\bar{A} C .1$	$1+X=1$
$=A B+\bar{A} C$	$X .1=X$

Proof of Simplification

- $\mathrm{A}+\bar{A} \cdot B=A+B$ (Simplification Theorem)

Proof Steps	Justification (identity or theorem)
$A+\bar{A} \cdot B$	
$=(A+\bar{A})(A+B)$	Distributive law
$=1 .(A+B)$	Factor B out (Distributive Laws)
$=(A+B)$	$X+\bar{X}=1$

- A. $(\bar{A}+B)=A B \quad$ (Simplification Theorem)

Proof Steps	Justification (identity or theorem)
$A \cdot(\bar{A}+B)$	
$=(A \cdot \bar{A})+(A \cdot B)$	Distributive Law
$=0+A B$	$X \cdot \bar{X}=0$
$=A B$	$X+0=X$

Proof of Minimization

- $A \cdot B+\bar{A} \cdot B=B$
(Minimization Theorem)

Proof Steps	Justification (identity or theorem)
$A . B+\bar{A} . B$	
$=B(A+\bar{A})$	Distributive Law
$=B .1$	$X+\bar{X}=1$
$=B$	$X .1=X$

- $(A+B)(\bar{A}+B)=B \quad$ (Minimization Theorem)

Proof Steps	Justification (identity or theorem)
$(A+B)(\bar{A}+B)$	
$=B+(A \cdot \bar{A})$	Distributive Law
$=B+0$	$X \cdot \bar{X}=0$
$=B$	$X+0=X$

Proof of DeMorgan's Laws (1)

- $\overline{X+Y}=\bar{X} \cdot \bar{Y}$ (DeMorgan's Law)
- We will show that, $\bar{X} . \bar{Y}$, satisfies the definition of the complement of (X $+Y$), defined as $\overline{X+Y}$ by DeMorgan's Law.
- To show this, we need to show that $A+A^{\prime}=1$ and $A \cdot A^{\prime}=0$ with $A=X$ $+Y$ and $A^{\prime}=X^{\prime} . Y^{\prime}$. This proves that $X^{\prime} . Y^{\prime}=\overline{X+Y}$.
- Part 1: Show $X+Y+X^{\prime} . Y^{\prime}=1$

Proof of DeMorgan's Laws (1)

- $\overline{X+Y}=\bar{X} \cdot \bar{Y}$ (DeMorgan's Law)
- We will show that, $\bar{X} . \bar{Y}$, satisfies the definition of the complement of (X $+Y$), defined as $\overline{X+Y}$ by DeMorgan's Law.
- To show this, we need to show that $A+A^{\prime}=1$ and $A \cdot A^{\prime}=0$ with $A=X$ $+Y$ and $A^{\prime}=X^{\prime} . Y^{\prime}$. This proves that $X^{\prime} . Y^{\prime}=\overline{X+Y}$.
- Part 1: Show $X+Y+X^{\prime} . Y^{\prime}=1$

Proof Steps	Justification (identity or theorem)
$(X+Y)+X^{\prime} \cdot Y^{\prime}$	
$=\left(X+Y+X^{\prime}\right)\left(X+Y+Y^{\prime}\right)$	Distributive Law
$=(1+Y)(X+1)$	$X+\bar{X}=1$
$=1.1$	$X+1=1$
$=1$	$X .1=X$

Proof of DeMorgan's Laws (2)

- Part 2: Show $(X+Y) \cdot X^{\prime} . Y^{\prime}=0$
- Based on the above two parts, $X^{\prime} . Y^{\prime}=\overline{X+Y}$
- The second DeMorgans' law is proved by duality
- Note that DeMorgan's law, given as an identity is not an axiom in the sense that it can be proved using the other identities.

Example 3: Boolean Algebraic Proofs

- $\overline{(X+Y)} Z+X \bar{Y}=\bar{Y}(X+Z)$

Example 3: Boolean Algebraic Proofs

- $\overline{(X+Y)} Z+X \bar{Y}=\bar{Y}(X+Z)$

Proof Steps	Justification (identity or theorem)
$\overline{(X+Y)} Z+X \bar{Y}$	
$=X^{\prime} Y^{\prime} Z+X . Y^{\prime}$	DeMorgan's law
$=Y^{\prime}\left(X^{\prime} Z+X\right)$	Distributive law
$=Y^{\prime}\left(X+X^{\prime} Z\right)$	Commutative law
$=Y^{\prime}(X+Z)$	Simplification Theorem

Boolean Function Evaluation

- $F_{1}=x y \bar{z}$
- $F_{2}=x+\bar{y} z$
- $F_{3}=\bar{x} \bar{y} \bar{z}+\bar{x} y z+x \bar{y}$
- $F_{4}=x \bar{y}+\bar{x} z$

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{F}_{1}	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{F}_{\mathbf{3}}$	$\boldsymbol{F}_{\mathbf{4}}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of literals (complemented and uncomplemented variables)
- Example: Simplify the following Boolean expression
- $A B+A^{\prime} C D+A^{\prime} B D+A^{\prime} C D^{\prime}+A B C D$

Simplification Steps	Justification (identity or theorem)
$A B+A^{\prime} C D+A^{\prime} B D+A^{\prime} C D^{\prime}+A B C D$	
$=A B+A B C D+A^{\prime} C D+A^{\prime} C D^{\prime}+A^{\prime} B D$	Commutative law
$=A B(1+C D)+A^{\prime} C\left(D+D^{\prime}\right)+A^{\prime} B D$	Distributive law
$=A B .1+A^{\prime} C .1+A^{\prime} B D$	$1+X=1$ and $X+X^{\prime}=1$
$=A B+A^{\prime} C+A^{\prime} B D$	$X .1=X$
$=A B+A^{\prime} B D+A^{\prime} C$	Commutative law
$=B\left(A+A^{\prime} D\right)+A^{\prime} C$	Distributive law
$=B(A+D)+A^{\prime} C \rightarrow 5$ Literals	Simplification Theorem

Complementing Functions

- Use DeMorgan's Theorem to complement a function:

1. Interchange AND and OR operators
2. Complement each constant value and literal

- Example: Complement $F=x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}$

$$
F^{\prime}=\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)
$$

- Example: Complement $G=\left(a^{\prime}+b c\right) d^{\prime}+e$

$$
G^{\prime}=\left(a\left(b^{\prime}+c^{\prime}\right)+d\right) \cdot e^{\prime}
$$

Example

- Simplify the following:
- $F=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z$

Example

- Simplify the following:
- $F=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z$

Example

- Simplify the following:

Simplification Steps
(identity or theorem)

- $F=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z$

X	y	Z	$X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z$	$X^{\prime} Y+X Z$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Chapter 2 - Part 1

Example

- Show that $F=x^{\prime} y^{\prime}+x y^{\prime}+x^{\prime} y+x y=1$
- Solution1: Truth Table

x	y	F
0	0	1
0	1	1
1	0	1
1	1	1

- Solution2: Boolean Algebra

Proof Steps	(identity or theorem)
$x^{\prime} y^{\prime}+x y^{\prime}+x^{\prime} y+x y$	
$=y^{\prime}\left(x^{\prime}+x\right)+y\left(x^{\prime}+x\right)$	Distributive law
$=y^{\prime} .1+y .1$	$X+X^{\prime}=1$
$=y^{\prime}+y$	$X .1=X$
$=1$	$X+X^{\prime}=1$

Examples

- Show that $A B C+A^{\prime} C^{\prime}+A C^{\prime}=A B+C^{\prime}$ using Boolean algebra.

Proof Steps	(identity or theorem)
$A B C+A^{\prime} C^{\prime}+A C^{\prime}$	
$=A B C+C^{\prime}\left(A^{\prime}+A\right)$	Distributive law
$=A B C+C^{\prime} .1$	$X+X^{\prime}=1$
$=A B C+C^{\prime}$	$X .1=X$
$=\left(A B+C^{\prime}\right)\left(C+C^{\prime}\right)$	Distributive law
$=\left(A B+C^{\prime}\right) .1$	$X+X^{\prime}=1$
$=A B+C^{\prime}$	$X .1=X$

- Find the dual and the complement of $f=w x+y^{\prime} z .0+w^{\prime} z$
- $\operatorname{Dual}(f)=(w+x)\left(y^{\prime}+z+1\right)\left(w^{\prime}+z\right)$
- $f^{\prime}=\left(w^{\prime}+x^{\prime}\right)\left(y+z^{\prime}+1\right)\left(w+z^{\prime}\right)$

Overview - Canonical Forms

- What are Canonical Forms?
- Minterms and Maxterms
- Index Representation of Minterms and Maxterms
- Sum-of-Minterm (SOM) Representations
- Product-of-Maxterm (POM) Representations
- Representation of Complements of Functions
- Conversions between Representations

Boolean Representation Forms

Canonical Forms

- It is useful to specify Boolean functions in a form that:
- Allows comparison for equality
- Has a correspondence to the truth tables
- Facilitates simplification
- Canonical Forms in common usage:
- Sum of Minterms (SOM)
- Product of Maxterms (POM)

Minterms

- Minterms are AND terms with every variable present in either true or complemented form
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \bar{x}), there are 2^{n} minterms for n variables
- Example: Two variables (X and Y) produce $2^{2}=4$ combinations:

```
XY (both normal)
X\overline{Y} (X normal, Y complemented)
X}Y\quad(\textrm{X complemented, Y normal)
\overline{X}}\overline{Y}\quad\mathrm{ (both complemented)
```

- Thus there are four minterms of two variables

Maxterms

- Maxterms are OR terms with every variable in true or complemented form
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \bar{x}), there are 2^{n} maxterms for n variables
- Example: Two variables (X and Y) produce $2^{2}=4$ combinations:

$$
\begin{array}{ll}
X+Y & \text { (both normal) } \\
X+\bar{Y} & \text { (X normal, Y complemented) } \\
\bar{X}+Y & \text { (X complemented, Y normal) } \\
\bar{X}+\bar{Y} & \text { (both complemented) }
\end{array}
$$

Maxterms and Minterms

- Examples: Three variable (X, Y, Z) minterms and maxterms

Index	$\mathbf{X , Y , Z}$	Minterm (\mathbf{m})	Maxterm $\mathbf{(M)}$
0	000	$\bar{X} \bar{Y} \bar{Z}$	$X+Y+Z$
1	001	$\bar{X} \bar{Y} Z$	$X+Y+\bar{Z}$
2	010	$\bar{X} Y \bar{Z}$	$X+\bar{Y}+Z$
3	011	$\bar{X} Y Z$	$X+\bar{Y}+\bar{Z}$
4	100	$X \bar{Y} \bar{Z}$	$\bar{X}+Y+Z$
5	101	$X \bar{Y} Z$	$\bar{X}+Y+\bar{Z}$
6	110	$X Y \bar{Z}$	$\bar{X}+\bar{Y}+Z$
7	111	$X Y Z$	$\bar{X}+\bar{Y}+\bar{Z}$

- The index above is important for describing which variables in the terms are true and which are complemented

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order
- All variables will be present in a minterm or maxterm and will be listed in the same order (usually alphabetically)
- Example: For variables a, b, c:
- Maxterms: $(\boldsymbol{a}+\boldsymbol{b}+\bar{c}),(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})$
- Terms: $(b+a+c), a \bar{c} b$, and $(c+b+a)$ are NOT in standard order.
- Minterms: $a \bar{b} c, a b c, \bar{a} \bar{b} c$
- Terms: $(a+c), \bar{b} c$, and $(\bar{a}+b)$ do not contain all variables

Purpose of the Index

- The index for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form
- For Minterms:
- " 0 " means the variable is "Complemented"
- " 1 " means the variable is "Not Complemented"
- For Maxterms:
- " 0 " means the variable is "Not Complemented"
- "1" means the variable is "Complemented"

Index Example: Three Variables

Index (Decimal)	Index (Binary) $\mathbf{n = 3}$ Variables	Minterm (m)	Maxterm (M)
0	000	$m_{0}=\bar{X} \bar{Y} \bar{Z}$	$M_{0}=X+Y+Z$
1	001	$m_{1}=\bar{X} \bar{Y} Z$	$M_{1}=X+Y+\bar{Z}$
2	010	$m_{2}=\bar{X} Y \bar{Z}$	$M_{2}=X+\bar{Y}+Z$
3	011	$m_{3}=\bar{X} Y Z$	$M_{3}=X+\bar{Y}+\bar{Z}$
4	100	$m_{4}=X \bar{Y} \bar{Z}$	$M_{4}=\bar{X}+Y+Z$
5	101	$m_{5}=X \bar{Y} Z$	$M_{5}=\bar{X}+Y+\bar{Z}$
6	110	$m_{6}=X Y \bar{Z}$	$M_{6}=\bar{X}+\bar{Y}+Z$
7	111	$m_{7}=X Y Z$	$M_{7}=\bar{X}+\bar{Y}+\bar{Z}$

Index Example: Four Variables

\mathbf{i} (Decimal)	\mathbf{i} (Binary) $\mathbf{n = 4}$ Variables	$\mathbf{m}_{\mathbf{i}}$	$\mathbf{M}_{\mathbf{i}}$
0	0000	$\bar{a} \bar{b} \bar{c} \bar{d}$	$a+b+c+d$
1	0001	$\bar{a} \bar{b} \bar{c} d$	$a+b+c+\bar{d}$
3	0011	$\bar{a} \bar{b} c d$	$a+b+\bar{c}+\bar{d}$
5	0101	$\bar{a} b \bar{c} d$	$a+\bar{b}+c+\bar{d}$
7	0111	$\bar{a} b c d$	$a+\bar{b}+\bar{c}+\bar{d}$
10	1010	$a \bar{b} c \bar{d}$	$\bar{a}+b+\bar{c}+d$
13	1101	$a b \bar{c} d$	$\bar{a}+\bar{b}+c+\bar{d}$
15	1111	$a b c d$	$\bar{a}+\bar{b}+\bar{c}+\bar{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem
- $\overline{x . y}=\bar{x}+\bar{y}$ and $\overline{x+y}=\bar{x} \cdot \bar{y}$
- Two-variable example:
- $M_{2}=\bar{x}+y$ and $m_{2}=x \cdot \bar{y}$
- Using DeMorgan's Theorem $\rightarrow \overline{\bar{x}+y}=\overline{\bar{x}} \cdot \bar{y}=x \cdot \bar{y}$
- Using DeMorgan's Theorem $\rightarrow \bar{x} \cdot \bar{y}=\bar{x}+\overline{\bar{y}}=\bar{x} . y$
- Thus, M_{2} is the complement of m_{2} and vice-versa
- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables:

$$
M_{i}=\overline{m_{i}} \text { and } m_{i}=\overline{M_{i}}
$$

- Thus, M_{i} is the complement of m_{i} and vice-versa

Function Tables for Both

- Minterms of 2 variables:

$\mathbf{x y}$	$\mathrm{m}_{\mathbf{0}}$	m_{1}	$\mathrm{~m}_{2}$	$\mathrm{~m}_{3}$
00	1	0	0	0
01	0	1	0	0
10	0	0	1	0
11	0	0	0	1

- Maxterms of 2 variables:

$\mathbf{x y}$	\mathbf{M}_{0}	\mathbf{M}_{1}	\mathbf{M}_{2}	\mathbf{M}_{3}
00	0	1	1	1
01	1	0	1	1
10	1	1	0	1
11	1	1	1	0

- Each column in the maxterm function table is the complement of the column in the minterm function table since M_{i} is the complement of m_{i}.

Observations

- In the function tables:
- Each minterm has one and only one 1 present in the 2^{n} terms (a minimum of 1s). All other entries are 0 .
- Each maxterm has one and only one 0 present in the 2^{n} terms All other entries are 1 (a maximum of 1s).
- We can implement any function by
- "ORing" the minterms corresponding to " 1 " entries in the function table. These are called the minterms of the function.
- "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two canonical forms for stating any Boolean function:
- Sum of Minterms (SOM)
- Product of Maxterms (POM)

Minterm Function Example

- Example: Find $\boldsymbol{F}_{1}=\boldsymbol{m}_{1}+\boldsymbol{m}_{\mathbf{4}}+\boldsymbol{m}_{\mathbf{7}}$
- $F_{1}=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z$

$\mathbf{x y z}$	Index	$\mathbf{m}_{\mathbf{1}}+\mathbf{m}_{\mathbf{4}}+\mathbf{m}_{\mathbf{7}}=\mathrm{F}_{\mathbf{1}}$
$\mathbf{0 0 0}$	$\mathbf{0}$	$\mathbf{0}+\mathbf{0}+\mathbf{0}=\mathbf{0}$
$\mathbf{0 0 1}$	$\mathbf{1}$	$\mathbf{1}+\mathbf{0}+\mathbf{0}=\mathbf{1}$
010	2	$\mathbf{0}+\mathbf{0}+\mathbf{0}=\mathbf{0}$
$\mathbf{0 1 1}$	3	$\mathbf{0}+\mathbf{0}+\mathbf{0}=\mathbf{0}$
100	4	$\mathbf{0}+\mathbf{1}+\mathbf{0}=\mathbf{1}$
101	5	$\mathbf{0}+\mathbf{0}+\mathbf{0}=\mathbf{0}$
110	6	$\mathbf{0}+\mathbf{0}+\mathbf{0}=\mathbf{0}$
111	7	$\mathbf{0}+\mathbf{0}+\mathbf{1}=\mathbf{1}$

Minterm Function Example

- $F(A, B, C, D, E)=m_{2}+m_{9}+m_{17}+m_{23}$
- $F(A, B, C, D, E)=A^{\prime} B^{\prime} C^{\prime} D E^{\prime}+A^{\prime} B C^{\prime} D^{\prime} E$ $+A B^{\prime} C^{\prime} D^{\prime} E+A B^{\prime} C D E$

Maxterm Function Example

- Example: Implement F1 in maxterms:
- $F_{1}=M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6}$
- $F_{1}=(x+y+z) \cdot\left(x+y^{\prime}+z\right) \cdot\left(x+y^{\prime}+z^{\prime}\right) \cdot\left(x^{\prime}+y+z^{\prime}\right) \cdot\left(x^{\prime}+y^{\prime}+z\right)$

xyz	Index	$M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6}=F_{1}$
000	0	0.1.1.1.1 = 0
001	1	1.1.1.1.1 $=1$
010	2	1.0.1.1.1 $=0$
011	3	1.1.0.1.1 $=0$
100	4	1.1.1.1.1 $=1$
101	5	1.1.1.0.1 $=0$
110	6	1.1.1.1.0 = 0
111	7	1.1.1.1.1=1

Maxterm Function Example

- $F(A, B, C, D)=M_{3} \cdot M_{8} \cdot M_{11} \cdot M_{14}$
- $F(A, B, C, D)=\left(A+B+C^{\prime}+D^{\prime}\right) \cdot\left(A^{\prime}+B+C\right.$ $+D)$.

$$
\left(A^{\prime}+B+C^{\prime}+D^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime}+C^{\prime}+D\right)
$$

Canonical Sum of Minterms

- Any Boolean function can be expressed as a Sum of Minterms (SOM):
- For the function table, the minterms used are the terms corresponding to the 1 's
- For expressions, expand all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v+\bar{v})$
- Example: Implement $f=x+\bar{x} \bar{y}$ as a SOM?

1. Expand terms $\rightarrow f=x(y+\bar{y})+\bar{x} \bar{y}$
2. Distributive law $\rightarrow f=x y+x \bar{y}+\bar{x} \bar{y}$
3. Express as $\mathrm{SOM} \rightarrow f=m_{3}+m_{2}+m_{0}=m_{0}+m_{2}+m_{3}$

Another SOM Example

- Example: $F=A+\bar{B} C$
- There are three variables: A, B, and C which we take to be the standard order
- Expanding the terms with missing variables:
- $F=A(B+\bar{B})(C+\bar{C})+(A+\bar{A}) \bar{B} C$
- Distributive law:
- $F=A B C+A \bar{B} C+A B \bar{C}+A \bar{B} \bar{C}+A \bar{B} C+\bar{A} \bar{B} C$
- Collect terms (removing all but one of duplicate terms):
- $F=A B C+A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+\bar{A} \bar{B} C$
- Express as SOM:
- $F=m_{7}+m_{6}+m_{5}+m_{4}+m_{1}$
- $F=m_{1}+m_{4}+m_{5}+m_{6}+m_{7}$

Shorthand SOM Form

- From the previous example, we started with:
- $F=A+\bar{B} C$
- We ended up with:
- $F=m_{1}+m_{4}+m_{5}+m_{6}+m_{7}$
- This can be denoted in the formal shorthand:
- $F(A, B, C)=\sum_{m}(1,4,5,6,7)$
- Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Maxterms

- Any Boolean Function can be expressed as a Product of Maxterms (POM):
- For the function table, the maxterms used are the terms corresponding to the 0's
- For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law , "ORing" terms missing variable v with $(v . \bar{v})$ and then applying the distributive law again
- Example: Convert $f(x, y, z)=x+\bar{x} \bar{y}$ to POM?
- Distributive law $\rightarrow f=(x+\bar{x}) .(x+\bar{y})=x+\bar{y}$
- ORing with missing variable $(\mathrm{z}) \rightarrow f=x+\bar{y}+z \cdot \bar{z}$
- Distributive law $\rightarrow f=(x+\bar{y}+z) \cdot(x+\bar{y}+\bar{z})$
- Express as POS $\rightarrow f=M_{2} \cdot M_{3}$

Another POM Example

- Convert $f(A, B, C)=A C^{\prime}+B C+A^{\prime} B^{\prime}$ to POM?
- Use $x+y z=(x+y) \cdot(x+z)$, assuming x $=A C^{\prime}+B C$ and $y=A^{\prime}$ and $z=B^{\prime}$ - $f(A, B, C)=\left(A C^{\prime}+B C+A^{\prime}\right) \cdot\left(A C^{\prime}+B C+B^{\prime}\right)$
- Use Simplification theorem to get:
- $f(A, B, C)=\left(B C+A^{\prime}+C^{\prime}\right) .\left(A C^{\prime}+B^{\prime}+C\right)$
- Use Simplification theorem again to get:
- $f(A, B, C)=\left(A^{\prime}+B+C^{\prime}\right) .\left(A+B^{\prime}+C\right)=M_{5} \cdot M_{2}$
- $f(A, B, C)=M_{2} \cdot M_{5}=\prod_{M}(2,5) \rightarrow$ Shorthand POM form

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- Alternatively, the complement of a function expressed by a sum of minterms form is simply the Product of Maxterms with the same indices.
- Example: Given $F(x, y, z)=\sum_{m}(1,3,5,7)$, find complement F as SOM and POM?
- $\bar{F}(x, y, z)=\sum_{m}(0,2,4,6)$
- $\bar{F}(x, y, z)=\prod_{M}(1,3,5,7)$

Conversion Between Forms

- To convert between sum-of-minterms and product-of-maxterms form (or vice-versa) we follow these steps:
- Find the function complement by swapping terms in the list with terms not in the list.
- Change from products to sums, or vice versa.
- Example:Given F as before: $F(x, y, z)=\sum_{m}(1,3,5,7)$
- Form the Complement:

$$
\bar{F}(x, y, z)=\sum_{m}(0,2,4,6)
$$

- Then use the other form with the same indices - this forms the complement again, giving the other form of the original function:

$$
F(x, y, z)=\prod_{M}(0,2,4,6)
$$

Important Properties of Minterms

- Maxterms are seldom used directly to express Boolean functions
- Minterms properties:
- For n Boolean variables, there are 2^{n} minterms (0 to $2^{\mathrm{n}}-1$)
- Any Boolean function can be represented as a logical sum of minterms (SOM)
- The complement of a function contains those minterms not included in the original function
- A function that include all the 2^{n} minterms is equal to 1

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
- SOP: $A B C+\bar{A} \bar{B} C+B$
- POS: $(A+B) \cdot(A+\bar{B}+\bar{C}) \cdot C$
- These "mixed" forms are neither SOP nor POS
- $(A B+C)(A+C)$
- $A B \bar{C}+A C(A+B)$

Standard Sum-of-Products (SOP)

- A sum of minterms form for n variables can be written down directly from a truth table
- Implementation of this form is a two-level network of gates such that:
- The first level consists of n-input AND gates, and
- The second level is a single OR gate (with fewer than 2^{n} inputs)
- This form often can be simplified so that the corresponding circuit is simpler

Standard Sum-of-Products (SOP)

- A Simplification Example: $F(A, B, C)=\sum_{m}(1,4,5,6,7)$
- Writing the minterm expression:
- $F(A, B, C)=A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C$
- Simplifying using boolean Algebra:

Simplification Steps	
	(identity or theorem)
$A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C$	
$=A^{\prime} B^{\prime} C+A B^{\prime}\left(C^{\prime}+C\right)+A B\left(C^{\prime}+C\right)$	Distributive law
$=A^{\prime} B^{\prime} C+A B^{\prime}+A B$	$X+X^{\prime}=1$
$=A^{\prime} B^{\prime} C+A\left(B^{\prime}+B\right)$	Distributive law
$=A^{\prime} B^{\prime} C+A$	Simplification Theorem
$=A+B^{\prime} C$	

- Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

- The two implementations for F are shown below - it is quite apparent which is simpler!

Two-level Implementation

- Draw the logic diagram of the following boolean function:
- $f=A B+C(D+E)$
- Represent the function using two-level implementation:
- $f=A B+C D+C E \rightarrow \mathrm{SOP}$

Two-level Implementation

- Draw the logic diagram of the following boolean function:
- $f=A B+C(D+E)$

- Represent the function using two-level implementation:
- $f=A B+C D+C E \rightarrow \mathrm{SOP}$

SOP and POS Observations

- The previous examples show that:
- Canonical Forms (Sum-of-minterms, Product-ofMaxterms), or other standard forms (SOP, POS) differ in complexity
- Boolean algebra can be used to manipulate equations into simpler forms.
- Simpler equations lead to simpler two-level implementations
- Questions:
- How can we attain a "simplest" expression?
- Is there only one minimum cost circuit?
- The next part will deal with these issues.

