ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

Chapter 2: Diode Applications

BOYLESTAD

Islamic University of Gaza Dr. Talal Skaik

Load-Line Analysis (graphical solution)

> The analysis of diode can follow one of two paths: using the actual characteristics or applying an approximate model for the device.

► Load Line Analysis: is used to analyze diode circuit using its actual characteristics.

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014

Load-Line Analysis (graphical solution)

A straight line is defined by the parameters of the network.
It is called the load line because the intersection on the vertical axes is defined by the applied load R.

Load-Line Analysis (graphical solution)

•The maximum I_D equals E/R, and the maximum V_D equals E. •The point where the load line and the characteristic curve intersect is the Q-point, which identifies I_D and V_D for a particular diode in a given circuit.

Example 2.1

For the given diode configuration and diode characteristics, determine: V_{DQ} , I_{DQ} and V_{R} .

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014

•The load line is firstly drawn between $V_D = E = 10$ V and $I_D = E/R = 10/0.5k = 20$ mA. The intersection between the load line and characteristics defines the Q-point as $V_{DQ} = 0.78$ and $I_{DQ} = 18.5$ mA. • $V_R = I_{DO} R = (18.5 \text{ mA})(1 \text{ K}) = 18.5$ V.

Diode Configurations

□The forward resistance of the diode is usually so small compared to the other series elements of the network that it can be ignored.

□In general, a diode is in the "on" state if the current established by the applied sources is such that its direction matches that of the arrow in the diode symbol, and $V_D \ge 0.7V$ for silicon, $V_D \ge 0.3V$ for germanium, and $V_D \ge 1.2V$ for gallium arsenide.

□You may assume the diode is "on", and then find the current in the diode. If the current flows into the positive terminal of the diode, then the assumption is right, otherwise, the diode is "off".

Series Diode Configurations

Forward Bias

Constants

- Silicon Diode: $V_D = 0.7 \text{ V}$
- Germanium Diode: $V_D = 0.3$ V

Analysis (for silicon)

- $V_D = 0.7 \text{ V}$ (or $V_D = E \text{ if } E < 0.7 \text{ V}$)
- $V_R = E V_D$
- $I_D = I_R = I_T = V_R / R = (E V_D) / R$

Equivalent circuit for the "on" diode

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Example 2.4

•Determine V_D , V_R and I_D .

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 **10**

Determine V_D , V_R and I_D .

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 11

Source Notation

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 **12**

Example 2.6

Determine V_D , V_R and I_D . Solution

+0.5 V = 0 mA V_D $V_R = 0 V$ R

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 **13**

Example 2.7

Determine V_o and I_D . The forward bias voltage for red LED is 1.8 V. Solution

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014

Determine I_{D} , V_{D2} and V_{o} . Solution

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014

Parallel and Series-Parallel ConfigurationsExample 2.10 I_{1} $0.33 \text{ k}\Omega$

Determine V_0 , I_1 , I_{D1} , and I_{D2}

Solution

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 **17**

Example 2.11: Find the resistor R to ensure a current of 20 mA through the "on" diode for the given circuit. Both diodes have reverse breakdown voltage of 3V and average turn-on voltage of 2V.

Solution

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky

Dr. Talal Skaik 2014 19

Example 2.13 Determine the currents I_1 , I_2 and I_{D2}

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 **20**

AND/OR Gates Example 2.14 Determine V_o

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 **21**

PEARSON

Electronic Devices and Circuit Theory, 10/e Robert L. Boylestad and Louis Nashelsky Dr. Talal Skaik 2014 **22**