
D
o
 N

o
t
D

is
tr

ib
u
te

1

Chapter 1 Introduction to Distributed Service-Oriented Computing

Chapter 2 Distributed Computing with Multithreading

Chapter 3 Essentials in Service-Oriented Software Development

Chapter 4 XML Data Representation and Processing

Chapter 5 Web Application and Data Management

Chapter 6 Dependability of Service-Oriented Software

D
o
 N

o
t
D

is
tr

ib
u
te

2

D
o
 N

o
t
D

is
tr

ib
u
te

3

This chapter introduces computer architecture, different computing paradigms, and particularly, the
distributed computing paradigm and Service-Oriented Computing (SOC) paradigm.

1.1 Computer Architecture and Computing Paradigms

Software architectures and distributed software development are related to the computer system
architectures on which the software is executed. This section introduces the computer architectures and
various computing paradigms.

1.1.1 Computer Architecture

The computer architecture for a single-processor computer often refers to the processor architecture,
which is the interface between software and hardware or the instruction architecture of the processor
[Patterson 2004]. For a computer with multi-processors, the architecture often refers to the instruction
and data streams. [Flynn 1972] categorized computer architecture into four types:

Single Instruction stream and Single Data stream (SISD), which refers to the simple processor
systems;

Single Instruction stream and Multiple Data streams (SIMD), for example, the vector or array
computers;

Multiple Instruction streams and Single Data stream (MISD), for example, fault-tolerant
computer systems that perform redundant computing on the same data stream and voting on the
results;

Multiple Instruction streams and Multiple Data streams (MIMD), which refers to the systems
consisting standalone computer systems with their own memory and control, ALU, and I/O
units.

The MIMD systems are often considered distributed systems, which have different areas of concerns, as
shown in Figure 1.1. Distributed computing is about the principles, methods, and techniques of
expressing computation in a parallel and/or distributed manner. Distributed software architecture
concerns organization and interfacing among the software components. Network architecture studies the
topology and connectivity of network nodes. Network communication deals with the layers of protocols
that allow the nodes to communicate with each other and understand the data formats of each other.

D
o
 N

o
t
D

is
tr

ib
u
te

4

Some studies use operating systems to differentiate distributed systems and networks. Distributed
systems have coherent operating systems, while a set of network nodes has independent operating
systems.

Figure 1.1 Distributed systems and networks

1.1.2 Software Architecture

The software architecture of a program or computing system is the structure, which comprises software
components, the externally visible properties of those components, and the relationships between them
[Bass 2003]. The design of software architecture does not mean to develop the operational software.
Instead, it can be considered a conceptual model of the software, which is one of the development steps
enabling a software engineer to:

(1) analyze the effectiveness of the design in meeting its stated requirements;

(2) consider architectural alternatives at a stage when making design changes is still relatively easy;

(3) define the interfaces between the components;

(4) reduce the risks associated with the construction of the software.

It is important to design software architecture before designing the algorithm and implementing the
software, because software architecture enables the communication between all parties (stakeholders)
interested in the development of a computer-based system. The service-oriented architecture (SOA),
which is a main topic of the book, explicitly involves three parties service providers, service brokers,
and service requesters in the software architecture design, while each party conducts its algorithmic
design and coding independently.

The software architecture highlights early design decisions that will have a profound impact on all
software engineering work that follows and on the ultimate success of the system as an operational
entity.

1.1.3 Computing Paradigms

Numerous programming languages have been developed in history, but only several thousands of them

are actually in use. Compared to natural languages that were developed and evolved independently,
programming languages are far more similar to each other. They are similar to each other
because of the following reasons. They share the same mathematical foundation (for example,

Boolean algebra, logic). They provide similar functionality (for example, arithmetic, logic operations,

Distributed

Computing

Paradigm,
Parallelism,

distribution of
computing

Distributed
Systems
(MIMD)

Distributed
Software

Architecture

Client server,

Tiered,
Object orientation,
Service orientation

Network
Architecture
(Topology)

Topology and
connectivity of nodes;

Star, ring, peer-to-
peer, shared links

Network

Communication
(Protocols)

Layers of protocols,

Signal & packet format,
Error correction

Routing, Flow control,
Session, Presentation

D
o
 N

o
t
D

is
tr

ib
u
te

5

and text processing). They are based on the same kind of hardware and instruction sets. They have
common design goals: to find languages that make it simple for humans to use and efficient for hardware
to execute. The designers of programming languages share their design experiences.

Some programming languages, however, are more similar to each other, while some other programming
languages are more different from each other. Based on their similarities or the paradigms, programming
languages can be divided into different classes. In pro paradigm is a
set of basic principles, concepts, and methods of how computation or algorithm is expressed. The major
paradigms include imperative, OO, functional, logic, distributed, and SOC.

The imperative, also called the procedural, computing paradigm expresses computation by fully
specified and fully controlled manipulation of named data in a step-wise fashion. In other words, data or
values are initially stored in variables (memory locations), taken out of (read from) memory,
manipulated in ALU (arithmetic logic unit), and then stored back in the same or different variables
(memory locations). Finally, the values of variables are sent to the I/O devices as output. The foundation
of imperative languages is the stored program concept-based computer hardware organization and
architecture (von Neumann machine) (see for example http://en.wikipedia.org/wiki/
Von_Neumann_machine). Typical imperative programming languages include all assembly languages
and earlier high-level languages like FORTRAN, Algol, Ada, Pascal, and C.

The object-oriented computing paradigm is basically the same as the imperative paradigm, except that
related variables and operations on variables are organized into classes of objects. The access privileges
of variables and methods (operations) in objects can be defined to reduce (simplify) the interaction
among objects. Objects are considered the main building blocks of programs, which support the
language features like inheritance, class hierarchy, and polymorphism. Typical OO programming
languages include Smalltalk, C++, Java, and C#.

The functional, also called the applicative, computing paradigm expresses computation in terms of
mathematical functions. Since we have been expressing computation in mathematical functions in many
of the mathematical courses, functional programming is supposed to be easy to understand and simple to
use. However, since functional programming is rather different from imperative or OO programming,
and because most programmers first get used to writing programs in imperative or OO paradigm, it
becomes difficult to switch to functional programming. The main difference is that there is no concept of
memory locations in functional programming languages. Each function will take a number of values as
input (parameters) and produce a single return value (output of the function). The return value cannot be
stored for later use. It must be used either as the final output or used immediately as the parameter value
of another function. Functional programming is about defining functions and organizing the return
values of one or more functions as the parameters of another function. Functional programming
languages are mainly based on the lambda-calculus that will be discussed in Chapter Four. Typical
functional programming languages include ML, SML, and Lisp/Scheme.

The logic, also called the declarative, computing paradigm expresses computation in terms of logic
predicates. A logic program is a set of facts, rules, and questions. The execution process of a logic
program is to compare a question to each fact and rule in the given fact and rulebase. If the question
finds a match, then we receive a yes-answer to the question. Otherwise, we receive a no-answer to the
question. Logic programming is about finding facts, defining rules based on the facts, and writing
questions to express the problems we wish to solve. Prolog is the only significant logic programming
language.

-in-the- -
in-the-
programming constructs such as sequential, conditional branching, and looping constructs. The latter
emphasizes developing large applications. Large applications often require more people and effort, and
they are used in critical applications such as banking, e-business, embedded systems, and e-government.

D
o
 N

o
t
D

is
tr

ib
u
te

6

Another important paradigm is component-based computing. This paradigm emphasizes composing
large applications based on pre-programmed components or modules. Components or modules are often
pre-compiled program units, and they are linked into the application prior to the execution.
Conceptually, component-based computing is not new. OO computing is widely considered
component-based computing, where each class or object is a component. A namespace (a group of
classes) can be considered a component, also. However, both of these views are tightly coupled with the
specific definition o -based computing can have a broader meaning, which allows
any unit or module to be considered a component, and thus, can be considered a distinct paradigm
different from OO computing. A component can be as small as an object and can be as large as an
application, and a component is often well encapsulated. Thus, for some, SOC is really
component-based computing, as services can be components. In their minds, SOC is essentially
component-based computing but each component is specified using open standards.

Distributed computing involves computation executed on more than one logical or physical processor
or computer. These units cooperate and communicate with each other to complete an integral
application. The computation units can be functions (methods) in the component, components, or
application programs. The main issues to be addressed in the distributed computing paradigms are
concurrency, concurrent computing, resource sharing, synchronization, messaging, and communication
among distributed units. Different levels of distribution lead to different variations. Multithreading is a
common distributed computing technique that allows different functions in the same software to be
executed concurrently. If the distributed units are at the object level, this is distributed OO computing.
Some well known distributed OO computing frameworks are CORBA (Common Object Request
Broker Architecture) developed by OMG (Object Management Group) and Distributed Component
Object Model (DCOM) developed Microsoft.

Service-oriented computing (SOC) is another distributed computing paradigm. SOC differs from
distributed OO computing in several ways:

SOC emphasizes distributed services (with possibly service data) rather than distributed
objects;

SOC explicitly separates development duties and software into service provision, service
brokerage, and application building through service consumption;

SOC supports reusable services in (public or private) repositories for matching, discovery and
(remote or local) access;

In SOC, services communicate through open standards and protocols that are platform
independent and vendor independent.

Figure 1.2 summarizes the features of different computing paradigms.

It is worthwhile noting that many languages belong to multiple computing paradigms. For example,
C++ is an OO programming language. However, C++ also includes almost every feature of C. Thus,
C++ is also an imperative programming language, and we can use C++ to write C programs.

Java is more an OO language, that is, the design of the language put more emphasis on the object

variables use value semantics and do not obtain memory from the language heap.

Lisp contains many non-functional features. Lisp and Scheme are functional programming languages,
but they also contain many non-functional features such as sequential processing when input and output
are involved

Prolog is a logic programming language, but its arithmetic operations use the imperative approach.

D
o
 N

o
t
D

is
tr

ib
u
te

7

In summary, these computing paradigms often overlap with each other. For example, OO computing
languages are often also imperative programming languages, and SOC languages such as C# and Java
are also OO programming languages. Thus, a single programming language can be used to write
programs in different computing paradigms. See [Chen 2006] for an introduction to these computing
paradigms using C, C++, Scheme, and Prolog.

1.2 Distributed Computing and Distributed Software Architecture

In distributed computing, computation is distributed over multiple computing units (processors or
computers), rather than confined to a single computing unit. Virtually all large computing systems now
are distributed, as the multi-core processor design is introduced.

Figure 1.2 Features of different computing paradigms

1.2.1 Distributed Computing

Software architecture describes the system structure and functionality allocation over a number of
logical or physical computing units. Having the right architecture for an application is essential to
achieve the desired quality of service.

Distributed computing often has to deal with multiple dimensions of challenges, including complexity,
communication and connectivity, security and reliability, manageability, and unpredictability and

Service-Oriented Computing

Emphasis on service (results)
delivered by the components
Platform and vendor-
independent
Separation of development
duties of services, brokerage,

and application building
Open standards and protocols
Repository of reusable services
Internet-searchable services
Automated discovering and

binding
Collaboration negotiation
Dynamic re-composition
Support both stateless and
stateful services

Enforced composition of
application based on reusable
services
Support traditional databases
and XML-based databases
Ontology-based reasoning
Workflow composition
Support sequential actions and
parallel actions

Object-oriented
computing

Abstract data types

Encapsulation
Inheritance
Dynamic binding

Functional

computing

Stateless
Side-effect free
Enforced modular
design

Logic
computing

Database

Relations
Query and matching
Reasoning

Multi-threading

Parallel processing
Synchronization
Resource sharing at
function level

Imperative

computing

Fully specified and

controlled manipulation
of named data
Step-wise manipulation

Distributed

object-oriented
computing

Distributed computing

at object or component
level, e.g., CORBA and
DCOM

D
o
 N

o
t
D

is
tr

ib
u
te

8

nondeterministic behaviors. These challenges are well expressed in the following eight fallacies of
distributed computing, proposed by Sun Microsystems fellows (http://en.wikipedia.org/wiki/
Fallacies_of_Distributed_Computing):

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology does not change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous

The first four fallacies, called the fallacies of networked computing, were proposed by Bill Joy and Tom

fallacies. James Gosline added the eighth fallacy in 1997.

1.2.2 N-Tier Architecture

Similar to the OSI seven-layer network architecture, distributed software architecture often has a
layered structure, in which components are organized in layers and refers to N-Tier Architecture. For
example, complex business software can be organized in the following five-tier model:

1. Presentation tier: The layout of the Graphical User Interface (GUI);

2. Implementation of the presentation tier: Program the GUI in certain programming language;

3. Business logic tier: Implementation of the business objects, rules, and policies;

4. Data access tier: Interfaces from the business logic to the databases;

5. Data tier: Databases.

The tiered design is well suited for distributed computing, with one tier or a number of adjacent tiers
residing on one node of the distributed system. Another advantage is the flexibility in maintaining the
system; the tiers can be modified relatively independently. For example, if tier 2, the implementation of
the presentation, must be changed, none of the other tiers has to be changed from the logic point of view.
The user can still use the same interfaces and the business logic can remain unchanged. From the
programming point of view, the tier above may need to be changed if different user interfaces are
offered at the modified tier.

Two-tier architecture and three-tier architecture are the most widely used distributed architecture. In the
two-tier architecture, also known as client-server architecture, the application is modeled as a set of
services that are provided by servers and a set of clients that use these services. Clients know of servers
but servers do not need to know of clients. Both clients and servers are logical processes, which can
reside on the same computer or on different computers. Figure 1.3 shows an example of the client-server
architecture. The servers can form a federation, which allows them to back each other up to provide
dependable services to their clients. The federation is often transparent to the clients. Data services
provided by databases are important to most business applications, and the databases are part of the
server in this architecture.

The client-server architecture can be further classified into thin-client and fat-client architectures. In
the thin-client architecture, all of the application processing and data management are carried out on the
server. The client is simply responsible for running the presentation software.

In the fat-client architecture, the software on the client implements the application logic and the
interactions with the system user. The server is responsible for data management (database) only.

D
o
 N

o
t
D

is
tr

ib
u
te

9

Figure 1.3 Client-server architecture, with the federation among the servers

The further development of the federation of client-server architecture is the virtualization, which
allows multiple servers to be seen as a single virtual server, as well as a single server to be seen as
multiple virtual servers. Each virtual server can be used in a similar way as a physical server. To further
improve resource-sharing efficiency, a virtual server can host multiple tenants, each of which can share
the environment and resources in the environment. Virtualization and multitenancy are the key
technologies of implementing cloud computing.

Three-tier architecture consists of three layers as shown in Figure 1.4. Each layer is executed on a
separate processor. It is a more balanced approach, which allows for better performance than a
thin-client approach and is simpler to manage than a fat-client approach. Three-tier architecture is a
more scalable architecture as demands increase, extra servers can be added.

Figure 1.4 Three-tier architecture

Figure 1.5 shows an example of a three-tier Internet banking system, where the clients can include GUI
of ATM (Automated Teller Machine), POP (Point of Purchase), and Web access to the user account.
The application-
requests. The data, such as account information and balance, are stored in a different server managing
the databases.

Figure 1.5 Example of a three-tier Internet banking system

Server
2Server

1

Server
4

Server
3

Client

Server

database

A server also
manages the

database

Server
2Server

1

Server
4

Server
3

Client

Server

database

Server

database

A server also
manages the

database

Presentation Layer (GUI)

Application Processing Layer (Business Logic)

Data Management Layer (Database)

Presentation Layer (GUI)

Application Processing Layer (Business Logic)

Data Management Layer (Database)

Web server

for account
service

provision

Client

Client

Client
Database server

Customer
account
database

HTTP

SQL requests
and responses

D
o
 N

o
t
D

is
tr

ib
u
te

10

The service-oriented architecture can be implemented as four-tier architecture, as shown in Figure
1.6(a), which consists of presentation layer, application layer, service repository layer, and data
management. However, service-oriented architecture does not have to be tied to this architecture, where
only adjacent tiers can communicate with each other. Figure 1.6(b) and (c) show two possible variations
of implementing the SOA.

Figure 1.6 Four-tier architecture and its variations

1.2.3 Distributed Object Architecture

Different from the N-tier architecture, where the clients and servers are explicitly differentiated, the
distributed object architecture makes no explicit distinction between clients and servers. Each
distributable entity is an object that provides service to other objects and receives services from other
objects.

Distributed object architecture is more generic in implementing different applications. However, it is
more complex to design and to manage than the tiered architecture, because it allows the system
designer to delay decisions on where and how services should be provided. In other words, it is an open
system architecture that allows new resources to be added to the system as required. The system built on
distributed object architecture is flexible and scalable. It is possible (for example, written in the same
language) to reconfigure the system dynamically with objects migrating across the network as required.
As a logical model, distributed object architecture allows developers to structure and organize the
system. In this case, developers can focus more on provision of the application functionality in terms of
services and combinations of services.

The two major implementations of the distributed object architecture are CORBA (Common Object
Request Broker Architecture) developed by OMG (Object Management Group) and Distributed
Component Object Model (DCOM) developed by Microsoft.

In CORBA, object communication is through a middleware system called an Object Request Broker
(ORB), also called software bus, as shown in Figure 1.7.

CORBA objects are comparable, in principle, to objects in C++, C#, and Java. The objects have a
separate interface definition that is expressed using a common language IDL (Interface Definition
Language), which is similar to C++. The interfaces of an object can be written in any language. A
program translator can be used to translate the interface code, for example, in C++ and Java, into IDL
code, and thus the objects written in different programming languages can communicate with each other.

Presentation
Layer (GUI)

Application
Processing Layer

Service Repository
Layer

Data Management
Layer

Presentation
Layer (GUI)

Application
Processing Layer

Service Repository
Layer

Data Management
Layer

Data
Management

Presentation
Layer (GUI)

Application
Processing Layer

Service Repository
Layer

Data Management
Layer

(a) (b) (c)

D
o
 N

o
t
D

is
tr

ib
u
te

11

The ORB handles object communication through the stubs written in IDL. A service provider will make
its service ports known as the IDL stubs. If a service requester calls a stub, the call will be translated to a
call to the function of the service provider.

Figure 1.7 CORBA architecture

Another platform that supports distributed object architecture is the Java Enterprise Edition (Java EE).
Java Message Service (JMS) is the software bus to connect the Java objects. Java Remote Method
Invocation (Java RMI) over Internet Inter-Orb Protocol (RMI-IIOP) provides an IDL interface to
communicate with CORBA. Java RMI over IIOP was jointly developed by Sun and IBM. Java EE
objects can also communicate with Microsoft platforms. Java Native Interface (JNI) can be used to
communicate with C++ and C# programs.

DCOM
framework before Visual Studio .Net. DCOM allows software components to distribute across several
networked computers to communicate with each other. Initially, the distributed software development
framework was called OLE (Object Linking and Embedding), a distributed object system. The

(Component Object Model) in 1993, which provides the communication capacity among objects. In
Windows 2000, significant extensions were made to COM and it was renamed COM+, before it evolved
into DCOM. All technologies in DCOM were integrated into or replaced by Visual Studio .NET, which
is an all-in-one OO, distributed, and service-oriented software development environment.

Distributed object architecture is a predecessor of SOC. It has many characteristics of SOC. The
significant improvements and achievements made in SOC include:

All major computer companies have agreed on the SOC standards, protocols, and interfaces for
creating interoperable services, which are platform and language independent. In the case of
distributed object architecture, CORBA and DCOM have similar functionality and goals;
however, the systems developed in the two environments are not interoperable, and DCOM is
also platform dependent.

SOC has explicitly separated the duties of development: The service providers develop services,
the service requesters build the application using existing services, and service brokers publish
the services and facilitate the matching and discovery of services. In distributed object
architecture, there is no explicit separation of duties, and there are no external mechanisms for
service publication and discovery.

The Web service implementation of SOC makes use of the pervasive Internet infrastructure to
deliver the services, while allowing using local area networks to build private SOC applications
using the same technologies and standards.

Multithreading is the basic distributed computing model, which allows the parallel computing units to
be specified by the programmer at the function and class levels, which are executed as independent
operating processes and are running on the same processor or on different processors, depending on the

Object Request Broker

Objects

IDL

Stub

IDL

Stub

Object Request Broker

IDL

Stub

IDL

Stub

Physical Network

Object Request Broker

IDL

Stub

IDL

Stub

Objects

D
o
 N

o
t
D

is
tr

ib
u
te

12

among the threads are managed by the programmer. Chapter Two will cover multithreading in detail.

1.3 Service-Oriented Architecture and Computing

1.3.1 Basic Concepts and Terminologies

A service is the interface between the service producer (or provider) and the consumer. The producer
(also called provider) of a computing service is the person who develops the computer program (or the
computer that runs or hosts the program) for others to use; while a service consumer is a person or a

that is well-defined, self-contained, and does not depend on the context or state of other functions. These
services can be newly developed modules or just modules wrapped around existing legacy programs to
give them new interfaces.

service provider to achieve desired results. Different from an application, a service normally does not
) so that

the service can be called (invoked) by an application or another service. For human users to use a service,
a user interface needs to be added. A service with a user interface is an application.

The discovery of services by service consumers can be facilitated by service brokers. A service broker
allows a service producer to publish their service definitions and interfaces, and at the same time allows
a service consumer to search its database to discover the desired services.

An important feature of SOC is to divide the software development into three parties (stakeholders):
service requesters or consumers, providers, and brokers. This three-party structure adds significant
flexibility to the software system structure, and supports a new approach of software development:
composition.

Service-Oriented Architecture (SOA) is a distributed software architecture, which considers a
software system consisting of a collection of loosely coupled services that communicate with each other
through standard interfaces, such as WSDL (Web Services Description Language) interface and via
standard message-exchanging protocols such as SOAP (Simple Object Access Protocol). These services
are autonomous and platform independent. They can reside on different computers and make use of each

developed and maintained by three independent parties, service requester (application builders), service
brokers, and service providers. Service providers develop services and publish them in service brokers,
while the service requesters discover the services via service brokers using the available services to
compose their applications. As the same services can be published by many service providers, the
service requesters can dynamically discover new services and bind them into their applications at
runtime, as better services are discovered.

Service-Oriented Computing (SOC) refers to the computing paradigm that is based on the SOA
conceptual model. SOC includes the concepts, principles, and methods that represent computing in three
parallel processes: service development, service publication, and application composition using services
that have been developed. The essential difference between SOA and SOC is that SOA is a conceptual
model that does not concern the algorithmic design and implementation to create operational software,
while SOC involves a large part of the software development life cycle from requirement, problem
definition, conceptual modeling, specification, architecture design, composition, service discovery,
service implementation, and testing, to evaluation. As a result, SOA is more of a concern to the
application builders (service requesters), while SOC is of concerned to all three parties of the SOC
software development.

D
o
 N

o
t
D

is
tr

ib
u
te

13

Service-Oriented Development (SOD) refers to the entire software development cycle based on SOA
concepts and SOC paradigm, including requirement, problem definition, conceptual modeling,
specification, architecture design, composition, service discovery, service implementation, testing,
evaluation, deployment, and maintenance, which will lead to operational software.

In the literature, SOA is often extended to include the meaning of the SOC, and thus, SOA and SOC are
used interchangeably, particularly when the specific differences between SOA and SOC are not the
concern of the discussion. On the other hand, SOC is often extended to include the meaning of SOD,
particularly when the specific differences between SOC and SOD are not the concern of the discussion.
Thus, in this book, we will use SOC for SOA and SOD as well, to simplify the use of terminology, if the
differences among them are not the concern of the discussion.

Figure 1.8 illustrates the relationship between SOA, SOC, and SOD. The dotted circle shows the
coverage of this book.

Figure 1.8 SOA, SOC, and SOD

Service-
widely used Distributed Object-Oriented Software Development approach, and to emphasize the fact
that service-oriented software development is distributed in nature. Not only the software under
development is distributed in different computers in different locations, but also the development
process is distributed in the sense that the application builders, service brokers, and service providers are
developers working independently in different locations, but following the same interfaces and
standards. Furthermore, Chapter Two discusses distributed computing in general and how SOA, SOC,
and SOD fit into the framework of general distributed computing.

Web services (WS) are services accessible over the Web. Web services-based computing is a specific
implementation of SOC. It is perhaps the most widely known SOC example; however, other SOC
implementations are also possible. Web services support SOC, and have a set of enabling technologies
including WSDL, SOAP, and XML. XML is the standard for data representation; SOAP enables remote
invocation of services across network and platforms. WSDL is used to describe the interfaces of services.
UDDI (Universal Description Discovery and Integration) and ebXML (electronic business eXtensible
Markup Language) are used to publish Web services, which enable publishing, searching, and discovery,
manually and programmatically. More standards and protocols are being included in the WS technology
set every day. Web services have several technical aspects:

Services are functional building blocks. Multiple services can form a composite service, and the
composite service becomes a new building block. However, the code of a Web service does not
need to be imported and integrated into the application. Instead, a service runs at the service

lication using messages. Thus, the service does
not have to been written in the same programming language and does not have to be developed or
running on the same platform.

Services are software modules that can be identified by URL (Uniform Resource Locator) and
whose interfaces and bindings are capable of being defined, described, and discovered as XML
artifacts.

Web services are often described by WSDL, accessed by the protocol SOAP over HTTP. With an
added human interface, a single service or a composite service can form a Web application. Web
services are normally accessed by computer programs, while Web applications are accessed by
human users using a Web browser.

SOD

SOC

SOA

D
o
 N

o
t
D

is
tr

ib
u
te

14

Composition is a key concept in SOC, which uses available services to compose a composite service or
an application. Two composition methods are proposed and realized: Orchestration and choreography.
In orchestration, a central process, which can be a service itself, takes control over the involved
services and coordinates the execution of different operations. The involved services communicate with
the central process only. Orchestration is useful for private business process. BPEL (Business Process
Execution Language) is the major composition language that supports orchestration. In choreography,
there is no central coordinator. Each service involved can communicate with any partners; choreography
is useful for public business process and allows dynamic composition. WS-CDL (Web Services
Choreography Description Language) is a composition language that supports choreography.

Service-Oriented Infrastructure (SOI): This term can have two meanings. The first meaning refers to
the hardware and software support for SOC, as SOC involves many new kinds of operations not
commonly used in traditional computing such as publishing, discovery, policy-based governance,
orchestration, and choreography. For example, if the number of services is huge, the search algorithm
needs to be efficient, with a good caching mechanism. Otherwise, a significant amount of time will be
spent on discovery. Another example is the policy governance mechanism. As policies need to be
enforced at runtime, the enforcement mechanism needs to be efficient and run at the real time as the
application is running. As some of the SOC operations can be quite expensive, it is quite logical that
some of these operations should be executed by hardware or supported by hardware to save cost and
time. This is particularly true if the SOC system needs to be used in mission-critical real-time systems.

Another meaning of SOI is that a hardware system can be organized in a service-oriented manner like a
software system. An example of this kind of SOI is now being developed by Intel in their SOI group.
The principal idea is to treat computing components, memory components, and networking components
as virtual services. Essentially they are treating these hardware components as services like software
services, and they control these hardware services like software services in a service-oriented manner.
Intel calls this PaaS (Platform-as-a-Service) so to compare the SaaS (Software-as-a-Service) concept. In
this way, a hardware system can be composed and re-composed like a software system, and managed
like an SOC system. Another interesting implication is that once a hardware system is organized in an
SOI manner, hardware is constructed as re-composable services, which allow hardware components to
be replaced or upgraded without stopping the operation of the system. This means that current
fault-tolerant computing techniques can be seamlessly integrated into the architecture design. This will
be a research topic for the future.

Web 2.0 is the proposed next generation of Web or Internet. The core concepts include users as active
contributors (rather than just passive observers), peer collaboration, collective intelligence, moving the
computing platform from desktop to the Web, user-centric computing, and service orientation. One
well-known example is the Wikipedia, where millions of users participate in writing an online
encyclopedia. This approach has been particularly successful as the Wikipedia has become a popular
way for people to learn. Note that the Wikipedia Company has only seven employees, yet it has
produced millions of pages of knowledge, and almost all the knowledge is contributed by users. This is
an excellent example how massive collaboration can create something that is of great value. This book
has many citations to Wikipedia, which is a witness that the materials in the Wikipedia are indeed useful.
The approach of conducting business using Web 2.0 is now called Wikinomics
(http://en.wikipedia.org/wiki/Wikinomics). Numerous organizations are now trying to duplicate this
approach in creating something of great value.

Semantic Web. Semantic Web is defined by W3C, which provides a vision for the future of the Web.
The Semantic Web provides a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries. The idea is to give information explicit meaning, to
make it possible for Web services to automatically process and integrate information available on the
Web. Semantic Web is now also called Web 3.0 (http://en.wikipedia.org/wiki/Web_3), as the name Web
2.0 has been used.

D
o
 N

o
t
D

is
tr

ib
u
te

15

Ontology
being. In computer science, ontology is defined to be the formal specification of the terms and objects in
a domain and the relationships among them. One of the principal relationships is classification. Often an
ontology system defines a vocabulary of terms (words), their meanings (semantics), their
interconnections (for example, synonym and antonym), and rules of inference (reasoning), which is used
in the semantic Web projects as the main means of implementation.

Service-Oriented Databases (SODB). As SOC became popular, the database technologies also
become relevant. SOC applications use XML-based data and message, which have tree-structures,
whereas traditional databases consist of tables of rows and columns. There are several approaches to
address the mismatch between data structures.

The first approach is to use traditional databases and an adapter to convert the XML-based data and
message to and from data of tables in the traditional databases. This is the current business practice in
this area.

The second approach is to encode data in the XML format and store the XML files as database. The
main challenge is to design and implement efficient XML-based query language to retrieve data from,
and store data into, the XML database. The XQuery language has been defined by W3C to serve this
purpose.

The third approach is to encapsulate the existing database management systems such as relational
database systems as service, and develop related services so that an SOA application can talk to the
database system. Those related services are called information services.

Ontology can also serve as a database for SOC applications. In fact, an XML database can be viewed as
a simplified ontology system.

1.3.2 Service-Oriented Computing

In traditional software development paradigms, the developer takes the requirements, converts them into
specification, and then translates the specification into the executable that meets the requirements.
Several approaches are available to translate the specification into an operational system, including the
waterfall model, incremental development, object-oriented computing (OOC), and component-based
computing. Each approach has its own engineering processes and techniques.

SOC is a new paradigm that evolves from the OOC and component-based computing by splitting the
developers into three independent but collaborative parties: the application builders (also called
service requesters), the service brokers, (or publishers), and the service developers (or providers).
The responsibility of the service developers is to develop software services with standard interfaces. The
service brokers publish or market the available services. The application builders find the available
services through service brokers and use the services to develop new applications. The application
development is done via discovery and composition rather than traditional design and coding. In other
words, the application development is a collaborative effort from the three parties.

Services are platform-independent and loosely coupled so that services developed by different providers
can be used in a composite service. Many standards have been developed to ensure the interoperability
among services. However, the competition is fierce. Only the best services can survive because, for a

-to- ces, many
providers can implement and publish the same service for application builders to use in their
applications.

In SOC, individual services are developed independently based on standard interfaces. They are
submitted to service brokers. The application builders or service requesters search, find, bind, test,
verify, and execute services in their applications dynamically at runtime. Such a service-oriented
architecture gives the application builders the maximum flexibility to choose the best service brokers

D
o
 N

o
t
D

is
tr

ib
u
te

16

and the best services. Figure 1.9 shows a typical service-oriented architecture, its components, and the
process of registering and requesting a service. The components and steps shown in the diagram are
explained as follows:

Figure 1.9 A typical service-oriented architecture

1. The services providers develop software components, corresponding to classes and objects in OOC
to provide different services using programming languages, such as C++, C#, and Java, and
service-oriented software development environment, such as .Net, J2EE, and the Eclipse.

2. The service providers register the services to a service broker and the services are published in the
registry.

3. Current service brokers use UDDI or ebXML standards that provide a set of standard service
interfaces for registering and publishing Web services. For UDDI, the information needed for

for example, the DUNS number, and contact information. (2) Yellow Pages information (business
category): industry type, product type, service type, and geographical location. (3) Green Pages
information: technical detail on how other Web services can access (invocate) the services, such as

Yellow Pages are an analogy to the
telephone White and Yellow pages. The UDDI standard supports directory only, while and ebXML
supports both directory and repository.

4. eeking desired
services and instructions on how to use the services. The ontology and standard taxonomy in the
service broker can help automatic matching between the requested and registered services.

5. Once the service broker finds a service in its registry

6. The application builder uses the available services to compose the required application. This is
higher level programming using service modules to construct larger applications. In this way, the
application builders do not have to know low-level programming. With the help of an application
development platform, the application code can be automatically generated based on the constituent
services. The current application development platforms include .Net, J2EE, SOA Suite,
ActiveBPEL, and WebSphere from IBM, which can support high-level composition of applications
using existing services.

Publishing
Find

Found

Registry

Service brokers

Registry

SOAP invocation

Results

Application builder Service providers

Classes &
objects

Internet

Service
development:
Visual Studio .Net
Java EE / Eclipse

Object-Oriented
Programming
Languages:

C++, C#
Java

Application development platforms:
.Net, SOA Suite, WebSphere, and composition

languages: BPEL, OWL-S, WF

Directory services
UDDI or ebXML

Web and data service development

XML, RDF, OWL, WSDL

White Pages

Yellow Pages

Green Pages

Applications

D
o
 N

o
t
D

is
tr

ib
u
te

17

7. The code of services found through a broker resides in a remote site, normally in the service

invocation can be used to access the services remotely.

8. directly communicates with the application and delivers
service results.

1.3.3 Object-Oriented Computing versus Service-Oriented Computing

SOC is different from Object-Oriented Computing (OOC) in many ways, even though SOC evolves
from OOC and they may look similar. In the past, some mistakenly thought that OOC is not much
different from procedural computing, because traditional procedural languages already have the concept
of data abstraction such as structure, which is similar to class, and procedures, which is similar to
methods. Even though OOC may look similar to traditional computing, the fact that designers think in
terms of classes and objects fundamentally change their way of thinking. As a result, many new
concepts and methods emerge in OOC, such as design patterns, inheritance, dynamic binding,
polymorphism, design hierarchy, and UML (Unified Modeling Language).

Similarly, SOC is different from OOC, because now designers will think in terms of services, workflows,
service publishing, discovery, application composition using reusable services, and policy governance.
These concepts are indeed different from OOC.

Furthermore, services can be available on the Web or in a private repository, and an application can use
runtime search to discover new services and bind the service into the application. The application
builder may not need to buy and install the service component (the software that provides the service);
instead, the application can access the service component remotely and pay for the service used.
Software upgrade will become easier. Once the service components are upgraded, the new services will
be immediately available to the applications, saving significant cost of un-installing and re-installing
software on client computers. Software will be charged based on the extent of use. Thus, users will not
have to pay for unnecessary software. In other words, SOC provides a new model of software
application: instead of buy-install-and-use, SOC provides a new model of pay as you go.

The SOC also has a significant impact on the system structure, dependability attributes, and mechanisms,
such as system reliability, security, system reconfiguration, and re-composition. These mechanisms will
be drastically different from OOC. For example, instead of static composition (with dynamic creation of
objects and dynamic binding) in OOC, SOC allows dynamic composition in real time and at runtime
using services just discovered, and with knowledge of the service interface only. Because new services
will be discovered at runtime, SOC also needs a runtime ranking and selection mechanism based on
runtime interoperability evaluation, testing, and other criteria. In case of system failures or requirement
changes, the SOC also needs a distributed reconfiguration and re-composition strategies. Such strategies
will be rather different for OOC.

In OOC, it is necessary to develop the code manually, even though some forms of dynamic binding can
be used. The current OOC dynamic binding mechanism allows polymorphism, that is, methods that
belong to a family of classes can replace each other at runtime. Yet SOC allows an unrelated service to
replace an existing service as long as the new service has the same WSDL specification.

In SOC, a faulty service can be easily replaced by another standby service by a DCS (Dynamic
Composition Service). The DCS is also a service that can be monitored and replaced. The key is that
each service is independent of other services, and thus, replacement is natural. Only the affected services
will be shut down. This approach allows the mission-critical application to proceed with minimum
interruption.

D
o
 N

o
t
D

is
tr

ib
u
te

18

Although SOC shares certain concepts and technologies with OOC, such as component design and
component reuse, the innovation in SOC is significant. Figure 1.10 contrasts the main technologies and
the development methodologies between the two paradigms.

Figure 1.10 OOC and SOC concepts and technologies

Table 1.1 elaborates the comparison between OOC paradigm and SOC paradigm in terms of major
features in the software development process.

1.3.4 Service-Oriented Enterprise

A Service-Oriented Enterprise (SOE), proposed by Intel researchers and standardized by OASIS, is a
stack of technologies that implement and expose the business processes through an SOA system. SOE
provides a framework for managing the business processes across an SOA landscape. At its core, the
SOE is a system structure that supports core enterprise computing. An enterprise is not just an individual
system. It is more than all the systems within a business unit, rather it is all systems across mutiple
corporations. For example, a computer system for an army unit in a given state is not an enterprise
system, but a DoD (Department of Defense) system that controls and commands a major DoD function
is an enterprise system. A supply chain system for a major retail store, such as Wal-Mart or Target, is
another example of an enterprise system. Thus, an enterprise system is much larger than an individual
system, and it may consist of hundreds of systems residing in multiple states or nations. A SOE is a
system that supports the enterprise-wide operations.

As an enterprise-wide system, the traditional elements of SOA, that is, searching, discovery, interfacing,
and service invocation, are not the focus of SOE, even though they are the common elements shared by
the participating systems. These elements describe how to construct services and how to use services.
They do not describe how sets of services support enterprise business processes or how atomic services
function within an enterprise.

The central challenge facing the SOE is to design service-oriented business processes within an
enterprise in such a way that the process is visible and manageable end-to-end. As the number of
services available within the enterprise increases, the execution pattern becomes increasingly difficult to
define and to track. An SOE is still a relatively young research area within SOC, which itself is a young
discipline at this time.

OOC Languages OOC IDE

Object
orientation
Inheritance

Polymorphism
Dynamic

binding

Objective C
C++
C#
Java

Simula
Smalltalk

CORBA

UML

MS .Net

JDK
GCC

OOC Development Cycle

Specification/Modeling
Verification/Model checking

Design / Coding
Validation / Testing

Operation
Maintenance

SOC IDE

Service
orientation
Loosely
coupled
Remote
binding

Dynamic
composition

Standard
interfaces

SOC Three-Party-Development Cycles

Service development in OOC
Interface wrapping
Service registration

Application specification

Service search
Composition
Remote binding
Remote invocation
Re-composition

MS. Net
MS Biz Talk

Oracle SOA Suite
Jdeveloper

Java EE
WebSphere

ebXML
UDDI

SOC Protocols/Languages

Directory
Repository
Ontology
Matching

XML
WSDL
SOAP
RDF
OWL
BPEL

SCA/SDO
PSML

OOC Concepts

SOC Concepts

D
o
 N

o
t
D

is
tr

ib
u
te

19

Table 1.1 OOC versus SOC

Features Object-Oriented Computing Service-Oriented Computing

Methodology Many methodologies are available
to develop OO programs.

In addition, SOC involve service discovery,
architecture, application composition, and
software monitoring.

Cooperation
among
developers

Development is by a single team
responsible for entire life cycle.
Cooperation is among software
engineers working on requirement,
designers, coding, and QoS.

Development is delegated to three independent
parties: application builder, service provider,
and service broker. Cooperation is among these
three parties.

Abstraction Abstract data type (class) and
encapsulation of data and methods
within a program.

Abstraction is at the service (including
workflows) and architecture levels.

Code reuse Inheritance allows code reuse
within one application or within
one platform. OO design patterns
and application frameworks can be
used to promote software
reusability.

Services can be shared to promote reusability.
Service brokers with ontology information
enable systematic sharing of services.

Dynamic
binding

Associating names to variables and
methods at runtime.

Can dynamically allocate remote service
required through the service directory.

Re-
composition

Often it is necessary to determine
and import the components at
design time.

Can remove remote services, and find and add
newly available services through the service
directory.

Component
communi-
cation and
interface

Importation of component code and
integration at compilation time.
Often this is platform and language
dependent.

Remote invocation without importing the code.
Platform and language independent. Open
standard protocols ensure interoperability from
different vendors.

System
maintenance

Users need to maintain and/or
upgrade their hardware and
software regularly.

Hosting software needs to be maintained by
provider, but services may be maintained by
third parties.

Reliability Software reliability can be obtained
via testing and reliability modeling.
Fault-tolerant software can be
designed with redundant
components.

Application reliability depends on the reliability
of application, of services used, and of their
execution environments. Software reliability
can be obtained with collaboration and
contributions from all parties. Fault-tolerant
software can be designed with redundant
services.

Figure 1.11 shows an example of the layers in an SOE with composite e-business applications and Web
services as its foundation. The top layer of SOE is the configurable business logic. The next layer is the
ebSOA (SOA for electronic business), which is a standard for service broker, including both registration
and repository. The next layer is the Service-Oriented Management (SOM), which implements the
non-functional features such as fault-tolerant computing, reliability, security, and policies.
Service-Oriented Infrastructure (SOI) provides virtual services that represent the services that can be
provided by hardware components. For example, Intel is developing this layer to map its hardware layer

D
o
 N

o
t
D

is
tr

ib
u
te

20

resources, including computing resources, memory resources, networking resources, devices, sensors,
and actuators, to the service-oriented above architectures. The bottom layer is the hardware devices that
perform the required tasks.

Figure 1.11 SOE framework

1.3.5 Service-Oriented System Engineering

Service-Oriented System Engineering (SOSE) is a combination of system engineering, software
engineering, and service-oriented computing. It suggests developing service-oriented software and
hardware under system engineering principles, including requirement, modeling, specification,
verification, design, implementation, testing (validation), operation, and maintenance. Current research
and practice on SOC are largely focused on functionality and protocols of SOC software. As SOC
moves into mission-critical applications, as well as the entire computing and communication
infrastructure moves to SOC, SOSE issues need to be addressed.

Table 1.2 lists typical SOSE techniques in each development phase. Many of the techniques are
collaborative. For example, test cases may be contributed in a collaborative manner by all three parties.
The service provider can provide sample unit test cases for the service broker and service requestors to
reuse. The service broker can provide its own test cases via a specification-based test case generation
tool, and the broker may even make the tool available for all the parties. The application builder can
examine the sample test cases by the service broker, apply the test case generation tool provided by the
service broker, and even contribute its own application test cases.

Even though we mainly use software to illustrate SOSE, the same can be applied to hardware and
networks. Major computer companies are developing SOI and SON (Service-Oriented Networks) to
support SOC applications at this time. They will need to develop the related SOSE techniques.

While the basic engineering principles remain the same, the way they are applied will be different in the
SOC paradigm. Specifically, most engineering tasks will be done on the fly at runtime in a collaborative
manner. Because systems will be composed at runtime using existing services, many engineering tasks
need to be performed without complete information and with significant information available just in
time before application. In this way, SOSE in some way may be drastically different from traditional
engineering where engineers have complete information about the system requirements and thorough
analyses can be performed even before system design is started.

Web Services

Service-Oriented Enterprise (SOE)

ebSOA (E-Business SOA)
Services, Discovery, Composition

SOI (Service-Oriented Infrastructure)

Virtualized Computing, Memory, Networking Resources

Hardware

Processors, Memory, IO, Devices, Sensors, Actuators

Configurable Business Logic

Composite Electronic Business Applications

SOM (Service-Oriented Management)

Reconfiguration, Reliability, Security, and Policies

D
o
 N

o
t
D

is
tr

ib
u
te

21

Table 1.2 Different SOSE techniques

Development phase SOSE techniques

Collaborative specification
& modeling

Service specification languages, model-driving architecture, ontology
engineering, and policy specification.

Collaborative verification Dynamic completeness and consistency checking, dynamic model
checking, and dynamic simulation.

Collaborative design Ontology engineering, dynamic reconfiguration, dynamic composition
and re-composition, dynamic dependability (reliability, security,
vulnerability, safety) design

Collaborative
implementation

Automatic system composition and code generation

Collaborative validation Dynamic specification-based test generation, group testing, remote
testing, monitoring, and dynamic policy enforcement

Collaborative run-time
evaluation

Dynamic data collection and profiling, data mining, reasoning,
dependability (reliability, security, vulnerability, etc) evaluation

Collaborative operation and
maintenance

Dynamic reconfiguration and re-composition, dynamic re-verification
and re-validation

SOC is a new paradigm for computing and thus new engineering techniques need to be developed to
make SOC software and hardware dependable, reliable, safe, and secure. SOSE techniques are different
from traditional system engineering techniques even though the basic engineering principles such as
mathematics remain the same. Due to the dynamic features such as runtime composition and
re-composition, new applications may not be evaluated by traditional system engineering because many
components may be dynamically discovered and composed, and their source code may not be available.
Thus, dynamic runtime system engineering techniques need to be applied.

1.4 Service-Oriented Software Development and Applications

1.4.1 Traditional Software Development Processes

Software development processes define the steps of development that lead to high-quality software.
Several processes have been proposed and applied, including waterfall, iterative, object-oriented, and
component-based development processes. Object-oriented and component-based software development
processes are similar; Figure 1.12 shows a possible process. Both development processes require
decomposition of the system to be developed into components, to develop the code of the components
first, and then to use the components to build the applications. The object-oriented development process
is a more specific approach than the component-based approach, which is defined by a set of specific
features, such as encapsulation, inheritance, polymorphism, and dynamic binding. General speaking,
object-oriented development is certainly component-based. However, component-based development
may or may not be object-oriented.

1.4.2 Service-Oriented Software Development

Traditional computing paradigms affect mainly the design (algorithms) and implementation
(programming) phases in the software development process. SOC affects the entire software
development process as well as the cycle of the software. To better understand the impacts, let us first
examine the unique features of SOC software:

D
o
 N

o
t
D

is
tr

ib
u
te

22

Self-contained and self-describing: Services are published through service brokers, and the
published services contain sufficient information for other services to discover, match, bind, and
invoke remotely and at runtime.

Reconfigurable and Recomposable: A newly discovered service can be composed into an existing
service in two different ways: reconfiguration and re-composition.

Reconfiguration: An existing service can be replaced by a new service satisfying the same function
specification. Reconfiguration is performed when a service is faulty or becomes unavailable.

Re-composition: In a SOC system, the user could change the specification of a service at runtime
theoretically, result in a re-composition, during which, new services could be included in a
composite service and existing services could be excluded.

Dynamic verification: The dynamically modified specification must be dynamically verified to
assure the required properties of the specification.

Dynamic validation: The dynamically reconfigured or re-composed service must be dynamically
validated (tested) to assure it meets the specification.

Dynamic evaluation: The dynamic reconfiguration and re-composition may lead to structural
change of a service, and the attributes (reliability, security, safety, and performance) must be
dynamically evaluated.

Figure 1.12 Object-oriented and component-based software development processes

In traditional software development process, the entire process is often managed by the same
organization of developers. The new service-oriented software development is divided into three
parallel processes: Service development, service publishing to the service brokers, and application
building (composition).

The services are of two kinds: atomic and composite. An atomic service is an object with standard
interface. Thus, the development of atomic services is not much different from that of the
object-oriented software development. The main difference is that an object normally needs to be
integrated into the application written in the same programming language, whereas an atomic service
can reside on a remote computer and can be invoked by applications written in different programming
languages. Thus, the interface of an atomic service must be designed following certain predefined

Requirement analysis

Component

development

Programmers

Problem decomposition

Component
testing

Class & object

testing
Component

library
Class

library

Class & object

development

Programmers

Application building

Testing

Deployment

Application builder

Class
search

Component

search

D
o
 N

o
t
D

is
tr

ib
u
te

23

standards. The interface must contain the description of the functions of the service and the technical
detail of invoking the service, so that the service can be discovered and can be properly invoked by other
programs. WSDL (Web Service Description Language) is a major language used to describe the
interfaces of services and SOAP (Simple Object Access Protocol) is used to transport messages between
services. An atomic service can either be developed from scratch or be a wrapped service from an
existing software component.

The development of composite services is different from that of the traditional software development
process. Although traditional software development allows the construction of larger components from
smaller components, the construction is static and manual. The construction of composite service can be
static and manual. However, it can also be dynamic and automatic, that is, a service can be composed at
runtime when a required service does not exist and needs to be composed from the existing services.
Existing services include those services that are published through service brokers. Once a service is
composed, the composite service can be published as a new service for future service or application
composition. An SOC application is little different from a composite service. The former has a GUI for
human users to access, while the latter has programmatic interfaces exclusively for computer programs
(applications or services) to access.

The development processes in OOC and in SOC are elaborated in Figure 1.13. Typically, an OOC
application is developed by the same team in the same language (as shown on the left part of the figure),
while an SOC application is created by using pre-developed services developed from independent
service providers. To find the required services, the application builder looks up the service directories
and repositories. If a service cannot be found, the application can publish the requirement or develop the
service in-house. Service providers can develop services based on their own requirement analysis, or
look up the requirement published in the directories.

Figure 1.13 Object-oriented versus service-oriented software development process

Like traditional software development, the SOC software development process starts with the
requirement analysis and definition. Figure 1.14 shows the steps of a typical requirement definition. At

Class writing

Class testing

Service
directory /
repository

Application builder
Service requester

Service-oriented development process with three independent parties

Service
wrapping

Service
hosting

Requirement analysis

Object-oriented
development process

Problem decomposition

Class testing

Class library

Class writing

Application integration

Testing

Deployment

Service
discovery

Application
composition

Testing

Deployment

Requirement analysis

Problem decomposition

Requirement
discovery

Service broker Service provider

Invocation

Registration Service
registration

Requirement
registration

D
o
 N

o
t
D

is
tr

ib
u
te

24

the end of the requirement, the system to be developed will be more formally modeled and specified in a
modeling and specification language.

Figure 1.14 Requirement development process

The rest of the application-building process is significantly different from the traditional software
development. Application builders use the existing services published by service brokers to build
application. In this process, the application builder can focus on its business logic, instead of

application builder can construct a composite service to meet the requirement. Figure 1.15 outlines the

In Figure 1.15, we separate the data and ontology specification from the functional specification. In
SOC, to facilitate the dynamic composition and re-composition, it is recommended to separate data such
as policies, rules, and configuration parameters from the functional specification. Storing these data in
an ontology or a configuration file allows them to be modified and to take effect at runtime without
stopping the program. Policy-based computing is a good example of such separation.

Figure 1.15 Service-oriented application development process

Requirement

elicitation

Requirement
analysis and
negotiations

Requirement

documentation

User needs
Domain information

Existing system information
Regulations & standards

Requirement
document

Agreed-upon
requirements

Modeling & specification

Requirement

validation

Ontology
verification

Service
binding

Test case
generationData and

ontology
model

Workflow
specification

Workflow
verification

Test cases

No

No

Testing
Simulation Pass?

No

No

Execution /
Simulation

Axiom & policy
enforcement &

semantic validation

Data collectionData mining

Reliability modeling

Reconfiguration

Re-composition

Yes

Yes

Ontology

Feedback

Feedback

Requirement revision

Ontology extension

Workflow
revision

Ontology
revision

Service
discoveryPass?

D
o
 N

o
t
D

is
tr

ib
u
te

25

The functional specification and data/ontology specification are verified using traditional verification
techniques, such as model checking. Test cases can be generated from the specifications based on either
the functionality or process flow in the specification.

Once the workflow is verified, the remote services need to be discovered or developed separately if no
existing services are available. Once all services are bound into the workflow, the workflow becomes
executable in the given environment, such as a simulation environment. The application will be tested in
the simulation environment before being deployed into the field environment or a more realistic
environment in which execution data can be collected for various analyses. If semantic information,
such as policies, is stored in the ontology, the execution can be validated by the ontology or the policies.
Based on the validation and evaluation, the system can be reconfigured by binding to different services
at runtime. The requirement can be revised too. In this case, the system needs to be stopped to manually
revise the models and specifications.

1.4.3 Applications of Service-Oriented Computing

As a general-purpose computing paradigm, SOC can be applied in any domains where OOC can be
applied. Especially, OOC can be considered as a part of SOC. Every OOC application can be
theoretically considered as an SOC application. However, in many situations, SOC provides unique
advantages.

Electronic business has been the stronghold of SOC, where many services are dynamic and have to be
remote and over the Internet. For example, a travel agency has to remotely invoke the services offered
from the airliners, hotels, and car rentals. It is not doable to import the code of the services into the local
server of the travel agency. Similarly, building an online bookstore requires access to the services from
multiple parties, including banks, publishers, and freighters. The other emerging application areas
include banking, healthcare, and e-government, where the services from different divisions are loosely
coupled to provide collaborative services to their customers.

Robotics and embedded computing are traditional application fields where control programs are an
integral part of the device. The introduction of SOC into this field makes it more flexible in
accomplishing the mission of a robot or an embedded system. Instead of preloading the entire control
program to the system, parts of the programs are implemented as remote services. The modification of
the remote services can change the behavior and the course of the application without interrupting its
execution. This feature is particularly attractive because the robot or the embedded system may have
been in a location that is not physically reachable.

Many manufacturing processes today are controlled by computers. The introduction of SOC software in
the processes makes the modification of the process much easier and more efficient.

Figure 1.16 shows a part of the SOC research and application projects at Arizona State University. The
development of SOC software and hardware is the core of the research and applications. Concepts,
principles, models, techniques, methods, tools, and frameworks have been developed to support the
applications in a number of areas, including e-business, industrial process control, command and control,
embedded systems, robotics, bio/medical information system, and ontology-based education systems.
Most the research and practice have been incorporated into the cloud computing environment.

Many of the topics will be covered in this book, not only at the conceptual level, but also at the
development and implementation levels.

D
o
 N

o
t
D

is
tr

ib
u
te

26

Figure 1.16 SOC research and applications at Arizona State University

1.4.4 Web Application Composition

A traditional desktop application has a unique entry point, the main method. It can be compiled into a
standalone executable file. Although an application can consist of many executable and data files, a
project file exist that organize them into a well defined application domain.

A Web application consists of a collection of Web pages, each of which is associated with executable
and data files. We can enter a Web application from different pages, even though the designer has an

-driven computing model to deal with
user interaction and data communication. However, a Web application is considered an application in
the same sense as a desktop application, if it has an application domain consisting of a coherent mission
to accomplish and common resources in the Web environment. The Web application domain can be
distributed, with remote Web services and data as its functional and data units. Each Web page in a Web
application is an active object. The pages communicate with each other in a loosely couple manner.
Shared memory and synchronous and asynchronous callbacks can be supported.

Web applications are rapidly expanding, as service-oriented computing and related technologies
progress, such as Web 2.0, Web 3.0, mashup, and cloud computing. For almost every desktop
application, one can find a Web version, or will find a Web version soon. Cloud computing, enabling
program and data accesses anywhere and anytime, is the latest driving force to move computing from
desktop applications to Web-based applications.

Mashup. In Web development, a mashup is a Web application that combines data or functionality from
two or more sources into a single integrated application [Wikipedia]. Mashup as a service-oriented
composition method can compose applications using multiple types of resources, including Web
services, services, APIs, and data sources. For example, one can combine a Google map and the property

Embedded computing
research and curriculum

e-business

Command
and
control
systems

Robotics

Re-composable
embedded
systems

Service-
oriented
enterprise

Ontology
in education

Manufacture
process
control

Service-oriented
system engineering

Infrastructure

Modeling
simulation

Testing

Reliability
evaluation

Service-oriented
software and

hardware
development

sol1 soln sol1 soln sol1 soln sol1 soln sol1 soln

class

ch1 ch2 ch3 ch4 ch5

sec1 secn sec1 secn sec1 secn sec1 secn

q1 qn q1 qn q1 qn q1 qn q1 qn

Cloud
computing

Bio-
informatics
engineering

D
o
 N

o
t
D

is
tr

ib
u
te

27

price listing application to generate a real estate site like http://www.zillow.com/. One of the widely
used Mashup tools is the Yahoo! Pipes at: http://pipes.yahoo.com/pipes/.

A simple version of mashup is the widget, which directs the data source from one Web application to
another one without programming.

Cloud Computing. Cloud computing has a thin client and thick server architecture. The client could be
as thin as a special purpose computer that runs a Web browser. The server is typically a virtual server,
called cloud, which could consist of many physical servers that could be owned by different
organizations. Computing is done by services in the cloud, and data are stored in the file systems or
databases in the cloud too. Cloud computing emphasizes a number of key concepts:

Software-as-a-Service (SaaS): Software that perform various tasks are not installed on the client
machines. They are installed in the cloud as services. SaaS emphasizes that not only components of
applications, such as Web services, but also the entire Web applications, should be considered to
services.

Platform-as-a-Service (PaaS): Software development environments such as Eclipse for Java-based
software development and Visual Studio for C# are not installed on the client machine. They are
installed in the cloud and developers use them remotely.

Infrastructure-as-a-Service (IaaS): The infrastructure supporting computing and information
management is not in the client, including computing resources, storage, communication
bandwidth, and databases.

For all the cloud resources, the cost model is pay-as-you-go. No need to purchase or to own the
infrastructure, hardware, software, the programming environments, and the data. Amazon Elastic

computing environments available today.

Cloud computing is being extended to include many features, such as Device as a Service (DaaS), Robot
as a Service (RaaS), Test as a Service (TaaS), and X as a Service (XaaS), where X can represent
different resources.

1.5 Discussions

While SOC/SOA has been under development for the last ten years and has been adopted by all major
computer and software companies such as BEA, HP, IBM, Microsoft, Intel, Oracle, Sun Microsystems,
and SAP, as well as government agencies such as the US Department of Defense, the British Healthcare
System, multiple Canadian provincial governments, and the State of Arizona. Many believe that SOA is
relatively young and much work is needed. Specifically, SOA critics have pointed out several issues for
improvement. For example, one issue is that SOA lacks of a commonly agreed-upon definition. Some
people believe that SOA is not well defined and thus it is difficult to characterize SOA. For example, at
Wikipedia, the following definition is stated for SOA:

-oriented Architecture (SOA) is an architectural design pattern that concerns itself with
defining loosely-coupled relationships between producers and consumers. While it has no direct
relationship with software, programming, or technology, it is often confused with an evolution of

This definition is not good enough for SOA, because this description also fits OO computing. An OO
program can also be loosely coupled. In fact, loose coupling is one of the principal attributes of OO
software. Furthermore, OO computing can be distributed computing, and certainly it is one of the
common modular programming techniques. Some key SOA attributes, such as separation of definition
from implementation, have also been used in OO software, as a class interface definition has been

D
o
 N

o
t
D

is
tr

ib
u
te

28

separated from its implementation. In fact, the concept of separating definition from implementation has
been attempted for over thirty years in computing history, including data abstraction and procedural
abstraction. Thus, this concept is certainly not new or unique. No wonder that on the same page, the
collective authors state:

architecture that relies on service-orientation as its fundamental design principle. In an SOA
environment, independent services can be accessed without knowledge of their underlying platform
implementation. These concepts can be applied to business, software and other types of

In other words, even thousands of authors around the world who are active in SOA could not agree on
the SOA definitions, as Wikipedia is edited and contributed to by their active readers.

Some SOA definitions are based the common SOA protocols used. For example, if a software program
uses XML, WSDL, OWL, BPEL and/or other protocol or standards, then it is an SOA software. This
definition is still not good enough, because these SOA protocols are constantly being updated and
revised. It is even possible that later versions of these protocols will have little resemblance to previous
versions, as the SOA history certainly can testify that several SOA protocols have been completely
replaced by newer protocols. Specifically, BPEL has replaced several SOA composition languages
before.

Some SOA authors also use SOA properties as definitions. However, this is not good enough either,
specifically because some often-touted SOA properties are actually not available at this time. For
example, dynamic composition is often an important characteristic of SOA. However, this feature is not
available in a practical SOA environment yet. In other words, it is still a research topic. Most of the SOA
tools today actually use static composition, that is, selecting services at the design time rather than at
runtime dynamically. Thus, defining SOA by dynamic composition is not appropriate at this time.
Furthermore, as SOA progresses, other SOA characteristics will emerge, and defining SOA by current
SOA properties will prove to be too restrictive.

Some define SOA software as a collection of services. However, this definition is too loose. If so, what
is the definition of a service? Does a service have a state? Is a service passive, autonomous, thin, or fat?
Some people say that a service should be a fat service, that is, a service that has many supporting
facilities and tools and can be even more autonomous like a software agent. This definition looks
interesting and makes a software service more intelligent and probably more useful than a traditional

frastructure almost invalid,

common SOA operations such as composition, deployment, governance, modeling, and

framework is developed, it is difficult to support those autonomous services using the current SOA
infrastructure.

We prefer the definition from OASIS. According to the SOA reference model specification, SOA is a
paradigm for organizing and utilizing distributed capabilities that may be under the control of different
ownership domains. It provides a uniform means to offer, discover, interact with, and use capabilities to
produce desired effects consistent with measurable preconditions and expectations. The SOA reference

provides a mechanism for matching the needs of service consumers with capabilities provided by
service providers.

OASIS also has a definition of service. A mechanism to enable access to one or more capabilities, where
the access is provided using a prescribed interface and is exercised consistent with constraints and
policies as specified by the service description. Moreover, a service has service description, visibility,

D
o
 N

o
t
D

is
tr

ib
u
te

29

interaction, real-world effect, execution context, and contract and policy. However, this definition is too
loose, because it can fit a passive or thin service, as well as a fat and intelligent service.

Using these definitions, the SOA approach essentially allows a person to publish software components
following some standards, and allows others to discover and reuse. Note carefully that the above
definition does not say that only software services can be published and discovered. In fact, numerous
things such as workflows, collaboration templates, application templates, data, data schema, policies,
test scripts, and user interfaces can be published, discovered, and reused by others, as listed in Table 1.3.

Table 1.3 SOA publishable items

Reusable artifacts Description

Methods (or services)
Basic building blocks in SOA, and allows software development by
composition.

Workflows
Specify the execution sequence of a workflow with possibly multiple
services. They allow rapid SOA application development.

Application templates
Specify entire applications with their workflows and services. They allow
rapid SOA application development.

Data, data schema, and
data provenance

Data and associated data schema such as messages produced during SOA
execution can be published and discovered.

Policies
Policies are used to enforce SOA execution and can be published for
reuse.

Test scripts
Consumers, producers, and brokers can publish test scripts to be used in
verification by other parties.

Interfaces
GUI design can be used and linked at runtime to facilitate dynamic SOA
application with changeable interfaces.

Thus, potentially SOA can publish and reuse not only software services, but also other software
artifacts such as workflow, policies, and data. Let us attempt a working definition of SOA:

An SOA is an approach for software construction, verification, validation, maintenance, and
evolution that involve specification, implementation, and publication of software artifacts such as
services, workflows, collaboration patterns, and application templates following certain open
interoperability standards. This approach develops software by composition with reusable software
artifacts.

This working definition excludes an agent to be a service, but allows centralized and distributed SOA, as
well as code, to be mobile. This definition allows various Web service protocols to be used as a part of
open interoperability standards, but it does not mention any specific protocols. In this way, all kinds of
protocols, including future protocols, can be included as a part of SOA. Thus, various open
interoperability standards for service specification (such as WSDL), workflow language (such as BPEL),
and collaboration specifications (such as CPP/CPA) can be used. At the same time, these standards can
be updated or even replaced in future, while the working definition does not need to be updated. Of
course, the working definition of SOA can be updated and be changed from time to time, as we
understand SOA more in the future.

Many outstanding books and papers that cover SOA are now available. Most of them are more suitable
for working professionals. The standard organizations OASIS and W3C have developed most
SOA-related standards and reference models. Furthermore, as SOA has started mainly from the
computer industry, instead of from academia, one should search and navigate the SOA Web sites from

D
o
 N

o
t
D

is
tr

ib
u
te

30

the major industry players, the most notable ones including BEA, HP, IBM, Microsoft, Oracle, SAP,
and Sun Microsystems. Readers can also find a large amount of SOA materials at DoD sites and DoD
conference proceedings, as DoD is one of the earliest adopters of SOA. Many DoD engineers and
contractors have worked on SOA, and they have gained significant experience. Due to the relative youth
of SOA, many concepts and ideas are expressed in white papers or Web blogs.

Many universities around the world (mainly in Asia, Australia, America, and Europe) also offer SOA
courses. However, as SOA is a wide area, different topics are actually covered in them. Most of these
classes have offered their materials on the Web, and readers can search their Web sites for information.

U.S. federal government agencies, including the Department of Defense (DoD), have been actively
promoting cloud computing and service-oriented computing (SOC). The Federal CIO (Chief
Information Officer) Vivek Kundra made the following comments (Kundra 2009):

a traditional IT procurement environment, it would have taken us about six months to upgrade
USA.gov to better meet the needs of our citizens. However, in the cloud environment we are now

Another important event is the newly announced network-based operating system (OS) by Google
Chrome OS and it is a radical departure from the conventional desktop-based OS, because it does not
install any software on the desktop computer, i.e., all applications must be software services from the
Web. In other words, Chrome OS forces all of its users to adopt SOC. This shows the commitment of
Google to cloud computing and SOC.

D
o
 N

o
t
D

is
tr

ib
u
te

31

1.6 Exercises and Projects

1. Multiple choice questions. Choose one answer in each question only, unless otherwise specified.

1.1 Which of the following are fallacies of distributed systems?

(A) Latency is zero.

(B) Bandwidth is infinite.

(C) The network is secure.

(E) All of them are fallacies.

1.2 Generally speaking, a service is an interface between the

(A) service provider and the service broker.

(B) service requester and the service broker.

(C) Yellow Pages and the Green Pages.

(D) producer and the consumer.

1.3 Which architecture is always a tiered architecture?

(A) Client-server architecture

(B) CORBA

(C) Service-oriented architecture

(D) DCOM

1.4 Which concept is least related to coding?

(A) Service-oriented architecture

(B) Service-oriented computing

(C) Service-oriented software development

(D) Object-oriented programming

1.5 Which entity does not belong to the three-party model of SOC software development?

(A) Service provider

(B) Service broker

(C) Application builder

(D) End user of software

1.6 What is the most significant difference between the Distributed Object Architecture (DOA) (for
example CORBA and DCOM) and the Service-Oriented Architecture (SOA)?

Name: ________________________

Date: ________________________

D
o
 N

o
t
D

is
tr

ib
u
te

32

(A) SOA software has better modularity.

(B) SOA software does not require code-level integration among the services.

(C) DOA software has better reusability.

(D) DOA software better supports cross-language integration.

1.7 Which concept is lest related to the application composition?

(A) BPEL

(B) Choreography

(C) Orchestration

(D) Code integration.

1.8 XML is

(A) an object-oriented programming language.

(B) a service-oriented programming language.

(C) a database programming language.

(D) a standard for data representation.

1.9 Which protocol enables remote invocation of services across network and platforms?

(A) XML

(B) SOAP

(C) WSDL

(D) UDDI

1.10 Which of the following is/are the proposed features of Web 2.0?

(A) Software as operational services.

(B) Users are treated as co-developers.

(C) Use loosely coupled and easy-to-use services to compose applications.

(D) Use services and data from multiple external sources to create new services and applications.

(E) All of the above

1.11 Mashup is

(A) a functional building method.

(B) an imperative programming method.

(C) an object-oriented integration method.

(D) a service-oriented composition method.

1.12 What resources are typically used as the sources of mashup? Select all that apply.

[] Memory, CUP, and network

[] Data, services, and applications

[] Software, hardware, and firmware

[] Software, platform, and infrastructure

D
o
 N

o
t
D

is
tr

ib
u
te

33

1.13 The main idea of cloud computing is to shift computing

(A) from Web to desktop.

(B) from service orientation to object orientation.

(C) from desktop to Web.

(D) from Web 2.0 to Web 3.0.

1.14 What are the key concepts in cloud computing? Select all that apply.

[] Infrastructure as a service

[] Platform as a service

[] Programming language as a service

[] Software as a service

2. What are SOA, SOC, SOD, SOE, SOI, and SOSE? Briefly state their definitions based on your
understanding.

Answer:

3. What are the main differences between requirement analyses in the OOC paradigm and those in the
SOC paradigm?

Answer:

4. What are the major benefits of separating an application builder from the service providers?

Answer:

5. What are the main techniques in SOSE (service-oriented system engineering)? For each technique,
write one or two sentences to describe its purpose.

Answer:

6. Compare and contrast the traditional software development process and the service-oriented
software development process. For each step of the development, write a paragraph to describe the
purposes, responsibilities, and functions of the step.

Answer:

D
o
 N

o
t
D

is
tr

ib
u
te

34

7. What is a service registry? What is a service repository? What are their differences?

Answer:

8. An electronic travel agency needs to be developed. What is your responsibility if you are:

8.1 A service provider?

Answer:

8.2 A service broker?

Answer:

8.3 An application builder?

Answer:

9. You plan to invent a unique online game:

9.1 Describe what you must do as an application builder and what you can expect the service
providers to do for you.

9.2 Describe your invention idea and list everything you must do as an application builder.

9.3 List everything that you can possibly find through service brokers.

Answer:

10. List a few application areas where you believe SOC is a better fit than OOC. State your reasons and
justifications.

Answer:

11. What are the impacts of the SOC paradigm to the IT market and to computer science graduates?

Answer:

12. Search on the Internet to find the major tools that support the mashup-based application
development.

Answer:

D
o
 N

o
t
D

is
tr

ib
u
te

35

13. Search on the Internet to find the major tools that enable the development and deployment of cloud
computing applications.

Answer:

14. This is an open problem. Search on the Internet to find a Web service testing tool. Download their
reports and white papers, and write a half-page summary about the tool.

Project

A Service-Oriented Computing Workshop

As SOC is a young discipline, students will learn a great deal by doing their own research on SOC. One
way to facilitate the research is to organize a workshop within the class. Specifically, each student needs
to submit a paper to the workshop organized by the instructor and the teaching assistants. A sample
call-for-papers is given below.

CALL FOR PAPERS

Workshop on Introducing Service-Oriented Computing (WISOC)

Scope Workshop on Introducing Service-Oriented
Computing (WISOC) serves as an initial meeting for
participants of distributed service-oriented software
development course at Arizona State University to
exchange results and visions on all aspects of
Service-Oriented Computing (SOC),
Service-Oriented Architecture (SOA), and
Service-Oriented System Engineering (SOSE).
Starting with this new paradigm and their realization
in Web Services (WS), WISOC covers all areas
related to architecture, semantics, language,
protocols, dependability, reliability, security,
discovery, composition, publishing, testing and
evaluation, interoperability, business process, as
well as the deployment and experience of real
service-oriented systems.

Topics of Interests WISOC invites
state-of-the-art survey submissions on all topics
related to service-oriented computing, including (but
not limited) to the following:

Service Orientation Concepts and Definitions
Service Modeling and Specification
Service Requirements Engineering
Service Semantics and Ontology

Services and Business Processes
Services, Components, and Agents
Design Patterns and Service-Oriented Design
Patterns
Service-Oriented Development Processes and
Methods

Service Publishing, Discovery, and Invocation
Service Composition, Interoperability,
Coordination, Orchestration, and Chaining
Mashup
Service Reputation and Trust
Intelligent Selection, Service Brokering, and
Service Level Agreement and Negotiation
Services and Legacy Systems
Service-Oriented Enterprise Architecture
Service-Oriented System Implementation and
Deployment
Service-Oriented Verification, Testing, and
Evaluation
Service QoS, Dependability, Reliability, and
Performance
Service Policy Management
State Management

D
o
 N

o
t
D

is
tr

ib
u
te

36

Service-Oriented Database and Service-Oriented
Information Management
Service Privacy, Confidentiality, and Security
Service Oriented Real-Time and Embedded
Systems
Service-Oriented Robotics Computing

Service on Peer-to-Peer Network
Service-Oriented Embedded Systems
Service on Grid Network
Web 2.0 and Web 3.0
Cloud Computing, Software as a Service, Platform
as a Service, and Infrastructure as a Service

This project consists of the following activities. The total number of points each student can obtain is
100. Ten percent of the papers will receive 10 bonus points as the best paper award.

1. The paper: 80 points

The
according to the following evaluation criteria, with 10 points for each criterion:

1) The paper is relevant to one of the focus areas given in the call for papers.
2) The paper has well defined questions to address, and the materials are coherent and consistent.
3) The paper clearly presents the ideas, and is easy to read.
4) The paper is technically sound and correct.
5) The paper is interesting and informative, which makes the reviewers feel it is useful to read.
6) The abstract and the summary, which summarize the paper well at the beginning and at the end,

are concise.
7) The paper effectively uses diagrams and/or tables to present the ideas.
8) The paper closely follows the IEEE conference paper format and the given guidelines in the call

for papers.
9) If the paper is a team project, the workload must be divided equally among the team members. It

must be made clear which sections are written by (are the responsibility of) which member. The
reviewers may give different scores to different team members based on the sections and the
paragraph each member responsible for.

10) 2. Peer Evaluation: 10 points
11) Each student will act as a reviewer and will review three papers and submit three review reports.

The quality of the review reports will be evaluated by the instructor. Up to 10 points will be
awarded.

12) 3. Improvement of the paper based on the review reports: 10 points.
13) The authors of each paper must improve the paper based on the comments in the review reports.

. You can turn on the track
changes in the Tool menu. Resubmit the paper after the revision. The instructor and the teaching
assistants will determine if the improved paper addresses the comments given by the reviewers.
A camera-ready copy must be submitted, and the papers will be published in an electronic form.

14) Previous workshop proceedings are available at the Web site:
15) http://www.public.asu.edu/~ychen10/teaching/cse445/index.html

D
o
 N

o
t
D

is
tr

ib
u
te

37

Typical Components of Technical Papers/Reports

Title

Author(s)

Affiliation(s)

Abstract

Summary of important issues and results, assuming the readers have not read the full report.

Introduction

This section may cover background information, related work, the purposes of this writing this paper,
outline of the paper, and so forth.

The Main Sections

They may contain several or all of the following components:

Overview, including the architecture of the system;

Model development: explore a few models model refinements, include graphic, equations,
and so forth;

Procedure (the steps are you going to use to complete this design, assumptions);

Design of experiment, simulation, implementation;

Discussion of results: the numerical and graphic results, and from models, upper and lower
limits.

Summary/Conclusions

Summary of the work and the important results, assuming the readers have read the full report.

Acknowledgements

Who have helped the authors in preparing the research and on what issues?

References

List the all the references that you have based your work on, related to, referred to, and so on. Each
reference you have listed must be cited in the paper. List the references in IEEE proceedings reference
format.

Appendices (if any)

For example, Excel spreadsheet, diagrams, and extra explanations.

Other issues: Include page numbers, cite the references the content is based on, related to, and referred
to. Follow the required format.

D
o
 N

o
t
D

is
tr

ib
u
te

38

Review Form

Workshop on Service-Oriented Computing (WSOC)

Paper ID:

Paper Title:

1. Numerical Evaluation

Scale: (0-2) Strongly disagree, (3-4) Weakly disagree, (5-6) Marginal, (7-8) Weakly agree, (9-10)
Strongly agree

Evaluation questions:
1) The paper is relevant to one of the focus areas given in the call for papers (0-10).
2) The paper has well defined questions to address, and the materials are coherent and consistent

(0-10).
3) The paper clearly presents the ideas and is easy to read (0-10).
4) The paper is technically sound and correct (0-10).
5) The paper is interesting and informative, which makes the reviewers feel it is useful to read (0-10).
6) The abstract and the summary, which summarize the paper well at the beginning and at the end, are

concise (0-10).
7) The paper effectively uses diagrams and/or tables to present the ideas (0-10).
8) The paper closely follows the IEEE conference paper format and the given guidelines in the call for

papers (0-10).

2. Detailed Comments

Please supply detailed comments to support each of your scores. You may also indicate any errors you
have found. The length of the comments must be between 15 and 30 lines.

