
Chapter 2

Embedded programming

Contents
2.1 Multithreading and scheduling . 2-1

2.1.1 First-In, First-Out (FIFO) scheduling . 2-2
2.1.2 Round Robin (RR) scheduling . 2-3
2.1.3 Shortest Remaining Time First (SRTF) scheduling . 2-3
2.1.4 Priority scheduling, dynamic priority adjustment, and multilevel schedulers 2-3
2.1.5 Multicore: load balancing, processor a�nity, & power management 2-5
2.1.6 Characterizing “real time” application requirements . 2-6

2.2 Operating Systems (OSs) . 2-6
2.2.1 Bare-metal programming . 2-6
2.2.2 Real-Time Operating Systems (RTOSs) . 2-6
2.2.3 Linux . 2-7
2.2.4 Realizing hard real time with Linux: dual-kernel approaches vs. RTL 2-7
2.2.5 Android . 2-7
2.2.6 Robot Operating System (ROS) . 2-7

2.3 Programming languages . 2-7
2.3.1 C, C++ . 2-7
2.3.2 Python . 2-7
2.3.3 Graphical programming environments . 2-7

2.4 Text editing & command-line programming versus IDEs 2-9
2.4.1 Command-line programming . 2-9
2.4.2 Programming in an Integrated Development Environment (IDE) 2-9

2.5 Debuggable, maintainable, and portably fast coding styles 2-10
2.5.1 Platform-optimized libraries: BLAS, LAPack, FFTW . 2-10
2.5.2 POSIX compliance . 2-10

2.6 Git, github, and doxygen . 2-10
2.7 Software approximation of transcendental functions . 2-10

2.1 Multithreading and scheduling
A central element in the e�icient use of limited computational resources for the coordination of complex elec-
tromechanical systems is multithreading; that is, the simultaneous running of many threads (a.k.a. processes or
tasks), each at di�erent rates and priorities, on a microcontroller with only a handful of CPU cores.

2-1

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

The coordination of multiple threads on a microcontroller is handled by the part of the OS called the sched-
uler. At any moment, a thread can be in one of three states: executing (a.k.a. running), ready (to run again, or to
run some more...), or waiting (to be shi�ed back to the ready state). The component of the scheduler that shi�s
threads from the ready list to actually executing on the CPU is called the dispatcher.

Time-critical threads in an embedded se�ing generally require short periods of computation, called CPU
bursts, followed by idle wait periods [during which file or bus i/o might be performed]. A request to the sched-
uler for a thread to begin a new CPU burst is initiated by some sort of trigger (a.k.a. interrupt) signal, such as

(a) a timer, which triggers requests for new CPU bursts on a thread at precisely predefined intervals ∆t,
(b) a delay, which triggers such requests a set time a�er completion of previous CPU bursts on the same thread,
(c) a notification of the completion of a file or bus i/o (read or write) previously requested by the thread,
(d) a notification generated by the physical system, such as when a target temperature is reached, or
(e) a notification of new user input.

Other threads (e.g., video encoding) in an embedded se�ing are CPU-bound (requiring much longer compu-
tation time on the CPU), and may be worked on from time to time in the background, when the CPU bursts
associated with all of the currently-triggered time-critical (higher priority) threads are complete. Note that:

(i) a running thread may shi� back to the waiting list because its current CPU burst is complete, and the thread
needs to wait for its next trigger (see above – in particular, a request for file or bus i/o is usually blocking, mean-
ing that the corresponding thread is shi�ed back to the waiting list until the i/o is complete),
(ii) a running thread may terminate, simply because it finishes its task completely, or
(iii) a running thread may be preempted once the length of time (a.k.a. quantum) alo�ed to it is expired, or a
higher-priority (time-critical) thread is triggered and needs to run, with the scheduler moving the preempted
thread back to the ready list before the current set of computations in that thread complete, thus giving other
threads a chance to run.

The scheduling algorithm (a.k.a. scheduling policy) is the set of rules used to determine the sequence that the
threads in the ready list will be run, and the quantum that each thread is allowed to run before it is preempted
to give CPU time to other threads. A scheduling algorithm must balance several competing objectives based
on a limited amount of information regarding what might happen next, including:

(1) respecting assigned priorities: the user should be able to assign which threads are most important to complete
in a timely fashion, and this preference should be enforced (thus giving “real-time” behavior – see §2.1.6),
(2) responsiveness: interactive threads should react quickly,
(3) e�iciency : the CPU should be kept doing productive work all the time, minimizing the overhead involved in
switching threads (see point iii above), and making maximum use of microcontroller I/O subunits (which are
generally slow compared to the CPU), so that waiting on these I/O subunits does not hold up other threads,
(4) fairness: each thread of the same priority should receive about equal access to CPU time,
(5) throughput : the number of threads that accomplish something significant per second should be maximized,
(6) avoiding starvation: even low-priority threads should get a chance to run from time to time, and
(7) graceful degradation: as the CPU demands approach 100% or more, performance on all threads (particularly
the lower-priority threads) should degrade gradually, and none of the threads should freeze.

Di�erent compromises between these competing objectives are reached by di�erent scheduling policies and
di�erent choices of the time quantums used, as illustrated by the following examples.

2.1.1 First-In, First-Out (FIFO) scheduling

To understand what a scheduler does, it is enlightening to consider first the simplest, non-preemptive First-In,
First-Out (FIFO) scheduler. This scheduler simply waits for the CPU burst in the currently running thread to

2-2

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

complete, and for the thread to enter the waiting list on its own (because, to continue, it needs to wait for a new
trigger – like a timer interrupt, a notification of the completion of a blocking i/o request, etc). The dispatcher
then shi�s the oldest thread on the ready list over to begin executing on the CPU. Once any waiting thread
receives the trigger it is waiting for, that thread is moved from the waiting list back the end of the ready list.

Though extremely simple, and e�ective at minimizing the overhead involved in switching threads, the FIFO
approach reaches a relatively poor compromise between the seven competing objectives described in the pre-
vious section: it does not respect assigned priorities for time-critical tasks, interactive threads can be unre-
sponsive when long CPU-bound tasks come up to run, etc. FIFO scheduling on its own is thus generally not
recommended in practice (except in limited, controlled circumstances).

2.1.2 Round Robin (RR) scheduling
Round Robin (RR) scheduling amounts simply to a preemptive variant of FIFO scheduling, which improves
upon the properties of the FIFO approach by limiting the quantum of time that any thread can tie up the CPU
before the next thread gets a chance to run.

Using a large quantum, RR scheduling is e�ectively the same as FIFO scheduling, whereas using a smaller
quantum results in more frequent switching between ready threads, which makes the overall system more
responsive. However, reducing the quantum also increases percentage of time involved in switching threads
(which typically takes a few ms), which reduces e�iciency. For example, assuming a 3 ms switch time, a policy
with 10 ms quantums spends 3/(10 + 3) = 23% of the time switching, whereas a policy with 50 ms quantums
spends 3/(50 + 3) = 5.7% of the time switching. A compromise must thus be reached with an intermediate
quantum (typically 10 to 50 ms) that provides both su�icient responsiveness and also reasonable e�iciency.

2.1.3 Shortest Remaining Time First (SRTF) scheduling
Shortest Remaining Time First (SRTF) scheduling is a variant of RR scheduling that, based on historical averag-
ing, estimates the upcoming CPU burst time associated with each thread on the ready list and, whenever the
CPU becomes available, shi�s the thread on the ready list with the shortest estimated CPU burst time over to
begin executing on the CPU. A quantum is again used, so any thread with an actual CPU burst longer than the
quantum is again preempted, and moved back to the ready list when its time is up.

A challenge with this approach is estimating future CPU burst times for any thread in the ready list, based
only on previous CPU bursts in the same thread. One way to obtain such an estimate, En, of the n’th CPU
burst time, Bn, is via an exponential average (a sort of IIR filter) given by En+1 = aBn + (1 − a)En for n ≥ 2
with 0.1 . a ≤ 1, where we initialize E1 = 0 and E2 = B1, with n = 1 corresponding to the first CPU burst.

An advantage of SRTF scheduling is that it tends to move interactive tasks (with, typically, short CPU bursts)
to the head of the ready list (thus improving responsiveness) and, by running the shortest tasks first, it reduces
the mean response time of the system (that is, the average time a thread spends between entering the ready list
to the completion of its corresponding CPU burst), thus maximizing throughput.

2.1.4 Priority scheduling, dynamic priority adjustment, and multilevel schedulers
To allow the user to indicate a preference regarding which threads are most important to complete in a timely
fashion (objective number 1 discussed above for schedulers for embedded systems), some sort of priority schedul-
ing is required. In the simplest, static form of such a policy, priorities are assigned (either externally, by the user,
or internally, by the OS) for the life of each thread, and the threads on the ready list with the highest priority
run first, with higher-priority threads preempting lower priority threads that may already be running as soon
as they are moved to the ready list. In the event that multiple threads in the ready list are assigned the same

2-3

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

priority, one of the simple policies described above (FIFO, RR, or SRTF) is used to break the tie; preempting may
still be used, of course, to prevent individual threads from consuming the CPU for too long.

A clear advantage of priority-based approaches is that their behavior is easily predicted, and high-priority
threads (e.g., those responsible for time-critical machine control loops, and interactive response) may be set
to always run in a timely fashion, as needed. A challenge with such approaches is that some lower-priority
threads may ultimately be completely starved of CPU time when the total requested CPU load exceeds 100%.
To address this challenge, dynamic forms of this policy are sometimes used. Dynamic approaches occasionally
boost the priority of some low-priority threads that haven’t run in a while, thus making sure that they at
least get a limited opportunity to run (this is sometimes referred to as process aging). Once such a boosted
lower-priority thread runs for a full quantum, its priority is reduced back towards its original value. O�en,
longer quantums are implemented by the scheduler at lower priority levels, so with such dynamic approaches
a thread can e�ectively se�le into a priority level with a quantum that matches its typical CPU burst time,
which is e�icient. Note that such dynamic priority adjustments may be implemented in such a way as to never
exceed the priorities assigned to the highest-priority (“real-time”) threads.

It is common for a priority-based scheduler to group threads (distributed over about a hundred di�erent
priority levels) into a handful of priority classes [a.k.a. priority queues, for “real-time” (e.g., machine control)
processes, system (a.k.a. kernel) processes, interactive processes, background processes, etc], each with a (pos-
sibly) di�erent scheduling policy (like RR), and each with its own range of quantums implemented. Each of
these priority classes themselves span well over a dozen priority levels, so priority-based scheduling algorithms
(with or without dynamic priority adjustment) may still be used within each class. A multilevel scheduler may
then choose to devote the CPU, when fully loaded, a certain maximum percentage of time to each class of
processes, and to use a simpler priority-based scheduling policy within each class. The Completely Fair Share
(CFS) scheduler implemented in modern Linux kernels is a general purpose multilevel scheduler implement-
ing dynamic priority adjustment within a handful of priority classes, including a RR scheduler at the highest
priority levels for “real-time” tasks.

2-4

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

2.1.5 Multicore: load balancing, processor a�inity, & power management

SMP and HMP
Most modern embedded processors can actually run multiple threads at the same time, including:

• systems with multithreaded cores, which present themselves as two virtual cores to the scheduler, allowing
multiple instructions [e.g., integer operations (IOPs) and floating-point operations (FLOPS)] to execute simul-
taneously on a single core, as long as they don’t compete for the same resources;
• systems with multiple cores on one CPU, or with multiple CPUs, with or without shared memory caches but
all with Uniform Memory Access (UMA) to all of the main memory, either:
- in a symmetric multiprocessing (SMP) arrangement, in which all cores are equivalent, or
- in a heterogeneous multiprocessing (HMP) arrangement, as in ARM’s big.LITTLE and DynamIQ implemen-
tations, which combine high-performance cores (for computationally-intensive, time-critical tasks), and high-
e�iciency cores (for simpler, lower-priority tasks);
• systems with multiple CPUs in a Nonuniform Memory Access (NUMA) arrangement, in which each compute
core has a certain portion of the main memory closely a�iliated with it, and thus can reach some parts of the
it faster than others (such systems may also be SMP or HMP) - embedded processors with large GPU-based
computational subsystems, and those with dedicated “Neural Processing Units”, are typical examples.

The same general considerations and scheduling policies discussed previously still apply in these se�ings, but
now with the complex additional consideration of needing to manage the delicate question of which core should
be used to run a particular thread next, and which cores can be run at reduced clock speeds, or powered down
entirely, during relatively idle periods of time in order to save power.

These delicate questions need to be handled carefully by modern schedulers in order to balance compu-
tational throughput and power e�iciency in the system, and very di�erent solutions are needed for servers,
laptops, cellphones, and microcontrollers for “real-time” control of embedded systems. Notably, balancing com-
putational performance with power e�iciency is becoming increasingly important in all types of computational
platforms, and solutions originally developed for small ba�ery-powered systems (cellphones) are working their
way up to laptops and large server farms, which are increasingly limited by power considerations.

In multicore se�ings, the issues of processor a�inity and load balancing must be addressed. That is, it is
usually much more e�icient to run a new CPU burst on the same core (or at least on the same CPU) that a thread
ran on previously, because the memory cache corresponding to that core (or CPU) is probably already set up
with much of the data that that thread needs to run again. However, sometimes threads still need to be shi�ed
from one core to another in order to balance the load across multiple cores in the system, as the scheduler seeks
to maintain its target balance between computational throughput and power e�iciency. Hierarchical scheduling
domains are o�en introduced in order to handle these questions, with lower-level schedulers handling each
individual core, and higher-level schedulers occasionally moving threads from one core to another as necessary
(i.e., whenever a given core becomes relatively overloaded, or underloaded, with tasks to complete). To improve
the predictable performance of the most time-critical threads, including those that might share certain cached
data, it is o�en beneficial to implement hard processor a�inity for such threads, binding them permanently to
specific “reserved” cores, while allowing the OS to manage the other threads that might come and go on the
system (but possibly restricting the other major threads on the system from running on the reserved cores,
thereby preventing them from interfering with the most time-critical processes).

Thankfully, the complex coupled problems of scheduling, load balancing, and power management for SMP
and HMP multicore systems are generally taken care of by the OS, not by the embedded programmer, and the
sophistication with which modern schedulers for multicore systems address these problems, to appropriately
balance computational performance with power e�iciency, is evolving rapidly. However, understanding gener-
ally how such schedulers work is essential for the embedded programmer, in order to select and use a scheduler

2-5

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://www.arm.com/why-arm/technologies/dynamiq

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

appropriately, and to tweak its behavior e�ectively (in particular, to set priorities correctly, and to use hard pro-
cessor a�inity where appropriate), in order to strike the desired balance between the seven objectives outlined
previously: namely, to get su�iciently reliable “real-time” performance for high-priority time-critical tasks (see
§2.1.6), su�icient responsiveness from interactive tasks, and e�icient performance on all other threads that the
computational system needs to manage, even as the computational system becomes fully loaded.

2.1.6 Characterizing “real time” application requirements
In §2.1, the #1 objective listed for a scheduler on a microcontroller is that the user should be able to assign
which threads are most important to complete in a timely fashion, and that these preferences should some-
how be enforced. In embedded systems, we need to define the importance of such preferences with precision.
Consideration must first be given to the application itself. Embedded programmers o�en catagorize controllers
based on the consequences of not completing a task within a specified time constraint (a.k.a. deadline):

• hard real-time controllers are designed for systems in which a missed deadline may result in total system
failure [an assembly line shuts down and needs to be physically repaired, a rocket blows up, ...];
• firm real-time controllers are designed for systems in which, a�er a missed deadline, the utility of a result is
zero [a single part will be rejected (automatically) o� an assembly line, a toy falls over, ...]; and
• so� real-time controllers are designed for systems in which, a�er a missed deadline, the utility of a result is re-
duced somewhat [an RC car is momentarily unresponsive to user input, a hamburger bun is slightly singed, ...].

In addition to specifying the relevant deadlines themselves, the above characterizations of the consequences
of missed deadlines are valuable when deciding how to allocate limited computational resources to potentially
complex electromechanical systems.

Hard real time requirements are actually somewhat rare in well-designed mechanical systems; examples
might include the control of an unstable chain reaction, or a pacemaker for a human heart. In hard real-time
systems, particularly those that are safety-critical, mathematical guarantees of no missed deadlines are o�en
required. Guaranteeing such hard real-time behavior is generally only possible by applying a controller in
a relatively isolated se�ing with simple (and, thus, highly predictable) bare-metal programming (see §2.2.1),
without several other threads running simultaneously that might occasionally through the timing o�.

More o�en than not, however, threads running on embedded systems call for firm real-time and/or so�
real-time behavior. In such systems, the priority-based preemptive scheduling strategies described above, as
implemented by a well-designed OS (e.g., the PREEMPT_RT patch of the Linux kernel) and used properly by a
careful programmer, are most o�en entirely su�icient.

2.2 Operating Systems (OSs)

2.2.1 Bare-metal programming
In this section and the two that follow, we outline the three fundamental programming paradigms for embedded
systems, in order of simplicity.

Arduino
ladder logic
programmable logic controllers (PLCs) used in industrial control applications

2.2.2 Real-Time Operating Systems (RTOSs)
nu�x (posix compliant)

2-6

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

keil RTX
Real Time Executive for Multiprocessor Systems (RTEMS)
real time linux
more realtime linux
Case study: FreeRTOS

2.2.3 Linux

2.2.3.1 Embedded Linux distros

distros (distributions)
Debian (derivatives: Ubunto, Raspberry Pi OS).
Yocto. OpenWrt.
Commercial: Wind River Linux. Red Hat Embedded
Look for lightweight IoT version (but, man pages are useful...)
shells

2.2.3.2 Chmod

2.2.3.3 Makefiles

real time computing

2.2.4 Realizing hard real time with Linux: dual-kernel approaches vs. RTL

PREMPT-RT
NTP service

2.2.5 Android

2.2.6 Robot Operating System (ROS)

2.3 Programming languages
Many programming languages are growing in importance in di�erent aspects of robotics, including CUDA for
GPU programming, TinyML for machine learning,

2.3.1 C, C++

2.3.2 Python

2.3.3 Graphical programming environments

Scratch
Simulink
Labview

2-7

https://www.linux.com/news/inside-real-time-linux/
https://wiki.linuxfoundation.org/realtime/start
https://en.wikipedia.org/wiki/Real-time_computing

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

ping 192.168.8.1 measure speed of connection to machine with IP number 192.168.8.1
ssh 192.168.8.1 securely open a shell on 192.168.8.1
echo $0 show what kind of shell you are currently in
uname -a show info about processor architecture, system hostname, and kernel version
zsh or bash ; exit spawn & enter a new zsh or bash shell (inside current shell); exit this shell
chsh -s /bin/zsh change your default shell to zsh (recommended, if it isn’t already)
pwd print the name of the current working directory
ls -lah list all files in current directory, including ownership, privileges, and size
mkdir foo make a new directory named foo
cd foo ; cd .. change directory to foo; change back to parent directory
touch bar create a new file named bar (or, just update its timestamp)
echo ’hello’ > bar create (or, erase and create) the file bar, and write “hello” to this file
echo ’world’ >> bar append “world” to the file bar (or, create and write to this file)
man echo ; (space) ; q display detailed manual page (alternative to Google) for the command echo
cat bar show contents of the file bar (all at once)
less bar ; (space) ; q show contents of the file bar (pausing a�er each screenfull)
head bar ; tail bar show the 10 lines at the head (or, the tail) of the file bar
(up arrow) ; (down arrow) scroll up to recently executed commands; scroll down
history show a list of recently executed commands
hist (tab) complete (as far as possible) name of command(s) starting with “hist”
rm bar remove (warning: permanently!) the file named bar
rmdir foo remove directory foo, but only if it is empty
rm -rf foo remove recursively the directory foo and all files contained in it (danger‼!)
cp foo/bar* foo1/. copy all files starting with the le�ers bar in foo into the directory foo1
cp -r foo foo1 copy recursively everything in foo to the directory foo1
mv bar foo/bar1 move and rename the file bar as bar1 inside the directory foo
chmod 644 bar change mode (§2.2.3.2) of bar to read/write for owner, read for group & world
chown foo1:foo bar change ownership of file bar to user foo1 and group foo
sudo rm bar do the command rm bar as superuser (danger!)
su ; exit enter superuser mode for subsequent commands (danger‼!); exit su mode
df -h report disk free space on the available filesystems
du -sh foo report significant disk use within directory foo
grep psfrag *.tex search files ending in .tex (in current directory) for the string “psfrag”
top periodically report a list of all running threads, sorted by top CPU usage
ps -ef report all running processes (once)
ps -ef |grep kernel pipe output of ps to grep, to extract the lines with “kernel” in them
file bar test bar to determine what type of file it is
find bar scan current directory and all its children for filenames containing bar
tar cvfz fb.tgz fb compress all contents of fb into a (compact) gzipped tarball fb.tgz
scp fb.tgz bar:. securely copy fb.tgz to machine with name bar on local network
tar xvf fb.tgz extract contents of fb.tgz, retaining its original directory structure
alias l=’ls -lah’ use “l” as a shorthand alias for the command “ls -lah” in this shell
env list all aliases and other environmental variables defined in this shell
vim ; nano command-line text editors (see §2.4.1.2) available in all linux distros
~/.bashrc initial run commands executed when a bash or zsh shell is spawned
make foo run commands in Makefile (see §2.2.3.3) to make an executable boo

Table 2.1: Some essential linux and unix commands (in zsh and bash). Explore! You’ll find your way quickly...

2-8

https://en.wikipedia.org/wiki/Foobar

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

2.4 Text editing & command-line programming versus IDEs

2.4.1 Command-line programming
2.4.1.1 Workflow: edit locally, sync files with SBC, compile, link, run, rinse, repeat

2.4.1.2 Command-line editors (vim and nano) vs text editors

vim and nano
text editors:
Sublime Text
Atom
Notepad++

2.4.1.3 Command-line scp/s�p/rcp vs FTP Clients

SFTP
FileZilla

2.4.2 Programming in an Integrated Development Environment (IDE)
Eclipse,

STM32CubeIDE (for STM32 devices, based closely on Eclipse)
ARM Keil MDK (for ARM devices)
Visual Studio Code (Microso�),

NetBeans
Code::Blocks
CodeLite
Qt Creator,

PyCharm (for Python),

MPLAB X (PIC, AVR)

2.4.2.1 Workflow: debug directly within the IDE

Case study: Eclipse
Version of Eclipse for STM32CubeIDE

2-9

https://www.sublimetext.com/
https://atom.io/
https://www.webfx.com/blog/web-design/best-free-ftp-clients/
https://www.eclipse.org/
https://www.st.com/en/development-tools/stm32cubeide.html
http://www2.keil.com/mdk5/
https://code.visualstudio.com/
https://netbeans.org/
http://www.codeblocks.org/
https://codelite.org/

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

2.5 Debuggable, maintainable, and portably fast coding styles
self-optimizing compilers

2.5.1 Platform-optimized libraries: BLAS, LAPack, FFTW

2.5.2 POSIX compliance

2.6 Git, github, and doxygen
doxygen

2.7 So�ware approximation of transcendental functions
Significant a�ention has been put into developing e�icient and accurate numerical approximation of tran-
scendental functions (sin, cos, tan, atan, exp, . . .). The definitive text on this subject, which presents all of
the commonly needed (complicated-to-derive, yet simply-to-use) formula, based on truncated Chebyshev and
Bessel series expansions with tabulated coe�icients, is Hart (1978), a few results of which are summarized be-
low. As mentioned previously, in embedded applications, we are primarily interested in half precision and single
precision applications, which form our focus here.

The following formula (which may be computed using single precision arithmetic) approximates cos(z) over
the range 0 ≤ z ≤ π/2 to about 3.2 decimal digits (appropriate for use in half precision applications):

c1 = 0.99940307, c2 = −0.49558072, c3 = 0.03679168 ⇒ cos(z) ≈ c1 + z2(c2 + c3 z
2), (2.1)

and the following formula (which may be computed using double precision arithmetic) approximates cos(z)
over the range 0 ≤ z ≤ π/2 to about 7.3 decimal digits (appropriate for use in single precision applications):

c1 = 0.999999953464, c2 = −0.4999999053455, c3 = 0.0416635846769, c4 = −0.0013853704264,

c5 = 0.00002315393167 ⇒ cos(z) ≈ c1 + z2(c2 + z2(c3 + z2(c4 + c5 z
2))).

(2.2)

Note the tradeo�: the first approximation is simpler (smaller table of numbers and faster to compute, but less
accurate), while the second is more complex (larger table of numbers and slower to compute, but more accurate).
This tradeo� is evident in all such approximations. To extend the range to −∞ ≤ x ≤ ∞, note that

cos(x) =

cos(y) if q = 0,

− cos(π − y) if q = 1,

− cos(y − π) if q = 2,

cos(2π − y) if q = 3,

where
c = �oor(x/(2π)),

y = x− 2πc, (and thus 0 ≤ y ≤ 2π),

q = �oor(y/(π/2)) ∈ {0, 1, 2, 3},
(2.3)

where �oor denotes integer division (rounding down), and cos(z) may be approximated (in any of the four
cases) using (2.1) or (2.2). Applying (2.3) in order to extend the approximation (2.1) or (2.2) to the larger range
−∞ ≤ x ≤ ∞ is called range reduction. With the above formulas, cos(x) and sin(x) = cos(x− π/2) may be
computed e�iciently for half and single precision applications for any real x.

Similarly, the following formula (which may be computed using single precision arithmetic) approximates
tan(z) over the range 0 ≤ z ≤ π/4 to about 3.2 decimal digits (appropriate for half precision applications):

c1 = −3.6112171, c2 = −4.6133253 ⇒ z0 = 4z/π, tan(z) ≈ c1 z0/(c2 + z2
0), (2.4)

2-10

https://www.doxygen.nl/index.html

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

and the following formula (which may be computed using double precision arithmetic) approximates tan(z)
over the range 0 ≤ z ≤ π/4 to about 8.2 decimal digits (appropriate for single precision applications):

c1 = 211.849369664121, c2 = −12.5288887278448, c3 = 269.7350131214121,

c4 = −71.4145309347748 ⇒ z0 = 4z/π, tan(z) ≈ z0 (c1 + c2 z
2
0)/(c3 + z2

0(c4 + z2
0)).

(2.5)

To extend the range to −∞ ≤ x ≤ ∞, note that

tan(x) =

tan(y) if o = 0,

1/ tan(π/2− y) if o = 1,

−1/ tan(y − π/2) if o = 2,

− tan(π − y) if o = 3,

tan(y − π) if o = 4,

1/ tan(3π/2− y) if o = 5,

−1/ tan(y − 3π/2) if o = 6,

− tan(2π − y) if o = 7,

where
c = �oor(x/(2π)),

y = x− 2πc, (and thus 0 ≤ y ≤ 2π),

o = �oor(y/(π/4)) ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
(2.6)

The following formula (which may be computed using double precision arithmetic) approximates atan (z)
over the range 0 ≤ z < atan (π/12) to 6.6 decimal digits (appropriate for single precision applications):

c1 = 1.6867629106, c2 = 0.4378497304, c3 = 1.6867633134 ⇒ atan (z) ≈ x (c1 + x2 c2)/(c3 + x2). (2.7)

To extend the range to −∞ ≤ x ≤ ∞, define c = tan(π/6), and apply any or all of the following identities

atan (x) = −atan (−x) if x < 0,

atan (x) = π/2− atan (1/x) if 1 < x,

atan (x) = π/6 + atan [(x− c)/(1 + cx)] if tan(π/12) < x ≤ 1.

(2.8)

Defining c = 2.75573192e − 6, the following formula (derived from a simple Taylor series) approximates
exp(z) over the range −1 ≤ z < 1):

exp(z) ≈ c (362880+x (362880+x (181440+x (60480+x (15120+x (3024+x (504+x (72+x (9+x))))))))).
(2.9)

To extend the range, one may define c = tan(π/6), and apply
Simple Matlab codes that demonstrate the above several formulas (cos_32.m, cos_73.m, tan_32.m, tan_82.m,

atan_66.m) are available at github site for this text. Any practical (fast) embedded application must rewrite
these codes in C.

2-11

https://github.com/tbewley/RR/blob/main/chap02/cos_32.m
https://github.com/tbewley/RR/blob/main/chap02/cos_73.m
https://github.com/tbewley/RR/blob/main/chap02/tan_32.m
https://github.com/tbewley/RR/blob/main/chap02/tan_82.m
https://github.com/tbewley/RR/blob/main/chap02/atan_66.m
https://github.com/tbewley/RR

Renaissance Robotics (v.2021-09-01) Chapter 2: Programming Environments and Languages

2-12

	I Technology
	Embedded programming
	Multithreading and scheduling
	Operating Systems (OSs)
	Programming languages
	Text editing & command-line programming versus IDEs
	Debuggable, maintainable, and portably fast coding styles
	Git, github, and doxygen
	Software approximation of transcendental functions

