
Islamic University – Gaza
Engineering Faculty

 Department of Computer Engineering
ECOM 3010: Computer Architecture Discussion

Chapter 2

Exercises with solutions

Eng. Eman R. Habib

October, 2013

2 Computer Architecture Discussion

Discussion exercises

Exercise 1:
Convert the following C statements to equivalent MIPS assembly language. Assume that the variables
f, g, I and j are assigened to registers $s0, $s1, $s2 and $s3 respectively. Assume that the base
address of the array A and B are in registers $s6 and $s7 respectively.

a) f = g + h + B[4]
lw $t0, 16($s7)

add $s0, $s1, $s2

add $s0, $s0, $t0

b) f = g – A[B[4]]
lw $t0,16($s7)

sll $t1, $t0, 2

add $t2, $t1, $s6

lw $t3, 0($t2)

sub $s0, $s1, $t3

Exercise 2: (2.4 from book)
Why doesn’t MIPS have a subtract immediate instruction?
Since MIPS includes add immediate and since immediate can be positive or negative, its range
 215, add immediate with a negative number is equivalent to subtract immediate with positive
number, so subtract immediate would be redundant.

Exercise 3: (2.6 from book)
Find the shortest sequence of MIPS instructions that extracts a field for the constant values i=5
and j=22 from register $t3 and places it in register $t0.

sll $t0, $t3, 9

srl $t0, $t0, 15

3 Computer Architecture Discussion

 31-j = 31-22 = 9

sll $t0, $t3, 9

 i+1+9 = 5+1+9 = 15
srl $t0, $t0, 15

Another solution:
 i+1 = 6

srl $t0, $t3, 6

 j-i = 22-5=17
andi $t0, $t0, 0x0001FFFF

Exercise 4: (2.32 from book)
Show the single MIPS instruction for this C statement:

b = 25 | a;

ori $t1, $t0, 25

Exercise 5:
Convert the MIPS instruction to machine language:

srl $s1, $t2, 3

srl is R-type, opCode is 0 and function is 2
$s1 = 17 is rd
$t2 = 10 is rt
rs unused
shamt is 3

0000 00/00 000/0 1010 /1000 1/000 11/00 0010 = 0x00A88C2

 Op(6) rs(5) rt(5) rd(5) shamt(5) func(6)

4 Computer Architecture Discussion

Exercise 6:
Translate the following machine code to MIPS:

1010 11/10 000/0 1011 /0000 0000 0000 0100

 43 16 11 4
 Op(6) rs(5) rt(5) immediate(16)

Op = 43 = sw
16 = $s0
11 = $t3

sw $t3, 4($s0)

Exercise 7: (2.37 from book)
For each pseudoinstruction in the following table, produce a minimal sequence of actual MIPS
instructions to accomplish the same thing. In the following table, big refers to a specific
number that requires 32 bits to represent and small to a number that can fit in 16 bits.

Pseudoinstruction What it accomplishes Solution

move $t1, $t2 $t1 = $t2 add $t1, $t2, $zero

clear $t0 $t0 = 0 add $t0, $zero, $zero

beq $t1, small, L if($t1 == small)go to L addi $t0, $zero, small

beq $t1, $t0, L

beq $t2, big, L if($t2 == big)go to L lui $t1, upper(big)

ori $t1, $t1, lower(big)

beq $t2, $$t1, L

li $t1, small $t1 = small addi $t1, $zero, small

li $t2, big $t2 = big lui $t2, upper(big)

ori $t2, $t2, lower(big)

ble $t3, $t5, L if ($t3 <= $t5) go to L slt $t0, $t5, $t3

beq $t0, $zero, L

bgt $t4, $t5, L if ($t4 > $t5) go to L slt $t0, $t5, $t4

bne $t0, $zero, L

bge $t5, $t3, L if ($t5 >= $t3) go to L slt $t0, $t5, $t3

beq $t0, $zero, L

addi $t0, $t2, big $t0 = $t2 + big lui $t1, upper(big)

ori $t1, $t1, lower(big)

add $t0, $t2, $t1

lw $t5, big($t2) $t5 = Memory[$t2 + big] lui $t1, upper(big)

ori $t1, $t1, lower(big)

add $t1, $t1, $t2

lw $t5, 0($t1)

5 Computer Architecture Discussion

Exercise 8:
Convert the following C fragment to equivalent MIPS assembly language. Assume that the
variables a and b are assigened to registers $s0 and $s1 respectively. Assume that the base
address of the array D is in register $s2.

while(a < 10){

D[a] = b + a;

a += 1;

}

Loop: stli $t0, $s0, 10

 beq $t0, $zero, exit

 sll $t1, $s0, 2

 add $t1, $t1, $s2

 add $t2, $s1, $s0

 sw $t2, 0($t1)

 addi $s0, $s0, 1

 j Loop

exit:

Exercise 9:
Show the effects on memory and registers of the following instructions. Suppose a portion of
memory contains the following data

Address Data

0x10000000 0x12345678

0x10000004 0x9ABCDEF0

And register $t0 contains 0x10000000 and $s0 contains 0x01234567. Assume each of the

following instructions is executed independently of the others, starting with the values given

above. Hint: Don’t forget that the MIPS architecture is Big-Endian.

The memory:

Address Data

0x10000000 0x12

0x10000001 0x34

0x10000002 0x56

0x10000003 0x78

0x10000004 0x9A

0x10000005 0xBC

0x10000006 0xDE

0x10000007 0xF0

6 Computer Architecture Discussion

a) lw $t1, 0($t0)

$t1 = 0x12345678

b) lw $t2, 4($t0)

$t2 = 0x9ABCDEF0

c) lb $t3, 0($t0)

$t3 = 0x00000012

d) lb $t4, 4($t0)

$t4 = 0xFFFFFF9A  lb is sign extended

e) lb $t5, 3($t0)

$t5 = 0x00000078

f) lh $t6, 4($t0)

$t6 = 0XFFFF9ABC  lh is sign extended

g) sw $s0, 0($t0)

at address 0x10000000 will contain 0x01234567

Address Data

0x10000000 0x01

0x10000001 0x23

0x10000002 0x45

0x10000003 0x67

0x10000004 0x9A

0x10000005 0xBC

0x10000006 0xDE

0x10000007 0xF0

h) sb $s0, 4($t0)

the address 0x10000004 will contain 0x67BCDEF0

Address Data

0x10000000 0x12

0x10000001 0x34

0x10000002 0x56

0x10000003 0x78

0x10000004 0x67

0x10000005 0xBC

0x10000006 0xDE

0x10000007 0xF0

7 Computer Architecture Discussion

i) sb $s0, 7($t0)

the address 0x10000004 will contain 0x9ABCDE67

Address Data

0x10000000 0x12

0x10000001 0x34

0x10000002 0x56

0x10000003 0x78

0x10000004 0x9A

0x10000005 0xBC

0x10000006 0xDE

0x10000007 0x67

Exercise 10:
Convert the following program into machine code.

0xFC00000C start: ………………

0xFC000010 loop: addi $t0,$t0,-1

0xFC000014 sw $t0, 4($t2)

0xFC000018 bne $t0, $t3, loop

0xFC00001C j start

addi $t0,$t0,-1

-1 = 0xFFFF

0010 00/01 000/0 1000 /1111 1111 1111 1111

 8 8 8 -1
 Op(6) rs(5) rt(5) immediate(16)

sw $t0, 4($t2)

1010 11/01 010/0 1000 /0000 0000 0000 0100

 43 10 8 4
 Op(6) rs(5) rt(5) immediate(16)

bne $t0, $t3, loop

target address = (immediate * 4) + address of the following instruction

immediate = (target address – address of the following instruction) / 4

= (FC000010 – FC00001C) / 4

= - C /4

 = -3  1111 1111 1111 1101

8 Computer Architecture Discussion

Or convert to bainary first

= 1111 1100 0000 0000 0000 0000 0001 0000 –

 1111 1100 0000 0000 0000 0000 0001 1100

= 1111 1100 0000 0000 0000 0000 0001 0000 +

 0000 0011 1111 1111 1111 1111 1110 0100

= 1111 1111 1111 1111 1111 1111 1111 0100 / 4  srl by 2

= 11 1111 1111 1111 1111 1111 1111 1101

 immediate is 16 only so immediate = 1111 1111 1111 1101

0001 01/01 000/0 1011 /1111 1111 1111 1101

 5 8 11 -3
 Op(6) rs(5) rt(5) immediate(16)

j start

target address = last 4 bits of PC : (immediate * 4)

immediate = first 28 bits from target address / 4

= C00000C / 4 = 3000003

= 1100 0000 0000 0000 0000 0000 1100 / 4  srl by 2

= 11 0000 0000 0000 0000 0000 0011

0000 10/11 0000 0000 0000 0000 0000 0011

 2 3000003
 Op(6) immediate (26)

Exercise 11: (2.38 from book)
Explain why an assembler might have problems directly implementing the branch instruction in
the following code sequence:

here: beq $s0, $s2, there

…
there: add $s0, $s0, $s0

Show how the assembler might rewrite this code sequence to solve these problems.

9 Computer Architecture Discussion

The problem is that we are using PC-relative addressing, so if that address is too far away, we
won’t be able to use 16 bits to describe where it is relative to the PC.

If there refers to a location further than 128 KB from the PC, the solution would be:

here: bne $s0, $s2, skip

j there

skip:

…

there: add $s0, $s0, $s0

If there refers to a location further than 256 MB from the PC, the solution would be:

here: bne $s0, $s2, skip

lui $ra, there(upper)

ori $ra, $ra there(lower)

jr $ra

skip:

…

there: add $s0, $s0, $s0

Exercise 12:
Suppose that you have already written a MIPS function with the following signature:

int sum(int A[], int first, int last).

This function calculates the sum of the elements of A starting with element first and ending
with element last. Write a fragment of MIPS assembly language which calls this function and
uses it to calculate the average of all values in A. You may assume that the size of the array A is
N, the base address of A in $a0.

Average:

add $a1, $zero, $zero # index of first element

addi $a2, $zero, N

addi $a2, $a2, -1 # index of last element is N-1

jal sum

add $t0, $zero, $v0 # Save the return value in $t0

addi $t1, $zero, N # Load size of array into $t1

div $t2, $t0, $t1 # This form of div is provided as

a pseudoinstruction.

10 Computer Architecture Discussion

Exercise 13:
Below is a recursive version of the function BitCount. This function counts the number of bits
that are set to 1 in an integer.
Your task is to translate this function into MIPS assembly code. The parameter x is passed to
your function in register $a0. Your function should place the return value in register $v0.

int BitCount(unsigned x) {

int bit;

if (x == 0)

 return 0;

bit = x & 0x1;

return bit + BitCount(x >> 1);

}

BitCount:

 addi $sp, $sp, -8

 sw $s0, 4($sp)

 sw $ra, 0($sp)

 bne $a0, $0, else

 add $v0, $0, $0

 addi $sp, $sp, 8

 jr $ra

else:

 andi $s0, $a0, 1

 srl $a0, $a0, 1

 jal BitCount

 add $v0, $v0, $s0

 lw $ra, 0($sp)

 lw $s0, 4($sp)

 addi $sp, $sp, 8

 jr $ra

11 Computer Architecture Discussion

Extra exercises

Exercise 14: (2.29 from book)
Add comments to the following MIPS code describe in one sentence what it computes. Assume
that $a0 and $a1 are used for the input and both initially contain the integers a and b,
respectively. Assume that $v0 used for the output.

add $t0, $zero, $zero # initialize running sum $t0 = 0
loop: beq $a1, $zero, finish # finished when $a1 is 0

add $t0, $t0, $a0 #compute running sum of $a0
sub $a1, $a1, 1 # compute this $a1 times
j loop

finish: addi $t0, $t0, 100 # add 100 to a * b
 add $v0, $t0, $zero # return a * b + 100

t0=0
while(a1 != 0){

t0 = t0 + a0;
a1 = a1 – 1;

}
t0 = t0 + 100;
v0 = t0;

The program computes a * b + 100.

Exercise 15: (2.34 from book)
The following program tries to copy words from the address in register $a0 to the address in
register $a1, counting the number of words copied in register $v0. The program stops copying
when it finds a word equal to 0. You do not have to preserve the contents of registers %v1, $a0
and $a1. This terminating word should be copied but not counted.

addi $v0, $zero, 0 # Initialize count

loop:lw, $v1, 0($a0) # Read next word from source

sw $v1, 0($a1) # Write to destination

addi $a0, $a0, 4 # Advance pointer to next source

addi $a1, $a1, 4 # Advance pointer to next destination

beq $v1, $zero, loop # Loop if word copied != zero

There are multiple bugs in this MIPS program; fix them and turn in a bug-free version.

Bug 1: Count ($v0) is initialized to zero, not –1 to avoid counting zero word.
Bug 2: Count ($v0) is not incremented.
Bug 3: Loops if word copied is equal to zero rather than not equal.

12 Computer Architecture Discussion

Bug-free version:
 addi $v0, $zero, -1 # Initialize to avoid counting zero word

loop:lw, $v1, 0($a0) # Read next word from source

addi $v0, $v0, 1 # Increment count words copied

sw $v1, 0($a1) # Write to destination

addi $a0, $a0, 4 # Advance pointer to next source

addi $a1, $a1, 4 # Advance pointer to next destination

bne $v1, $zero, loop # Loop if word copied != zero

Exercise 16:
Convert the following C fragment to equivalent MIPS assembly language. Assume that the variables a,
b, c, d, i and x are assigened to registers $t1, $t2, $t3, $t4, $s0 and $s1 respectively. Assume
that the base address of the array A and B is in register $a0 and $a1 respectively.

a) if ((a<b) && (c==0)) d = 1;

slt $t0, $t1, $t2

beq $t0, $0, not #if (a>=b) go to not

bne $t3, $0, not #if (c!=0) go to not

addi $t4, $0, 1

not:

b) if (a > 0)
b = a + 10;

else

b = a - 10;

slt $t0, $0, $t1 # if $0 < $t1 then $t0 = 1, else $t0 = 0

beq $t0, $0, else # if $t0 == $0 then branch to else

addi $t2, $t1, 10

j exit

else: addi $t2, $t1, -10

exit:

c) A[x+3] = B[x+2] | 0x10

addi $t0, $s1, 2 # $t0 = x+2

sll $t0, $t0, 2 # $t0 = (x+2)*4

add $t1,$a1,$t0 # $t1 = (base address of B + (x + 2))

lw $t2,0($t1) # $t2 = B[x+2]

ori $t3,$t2,0x10 # $t3 = B[x+2] | 0x10

addi $t4,$s0,3 # $t4 = x+3

sll $t4, $t4, 2 # $t4 = (x+3)*4

add $t5,$a0,$t4 # $t5 = (base address of A + (x + 3))

sw $t3,0($t5) # A[x+3] = $t3

13 Computer Architecture Discussion

d) for(int i=0; i<5; i++){
 a += b;

}

 add $s0, $zero, $zero

Loop: stli $t0, $s0, 5

 beq $t0, $zero, exit

 add $t1, $t1, $t2

 addi $s0, $s0, 1

 j Loop

exit:

Exercise 17:
Convert this high level language code into MIPS code. Do not forget to write MIPS code for the
abs(x) procedure. (i saved in $s0, the address of a in $s1, y in $s2)

i = 3;

y = y + abs(a[i]);

addi $s0,$zero,3

 sll $t0,$s0,2

 add $t1,$t0,$s1

 lw $a0,0($t1)

 jal abs

 add $s2,$s2,$v0

 j exitall

abs:

 slt $t0,$a0,$zero

 bne $t0,$zero,else

 add $v0,$a0,$zero

jr $ra

else:

sub $v0,$zero,$a0

 jr $ra

exitall:

Exercise 18:
For each of the following, write the shortest sequence of MIPS assembly instructions to
perform the specified operation.

 (Hint: 12345678 = 188 x 216 + 24910
 31415924 = 479 x 216 + 24180)

a) $v0 = 12345678
lui $v0, 188

ori $v0, $vo, 24910

14 Computer Architecture Discussion

b) if ($t0 < 12345678) go to address less
lui $t1, 188

ori $t1, $t1, 24910

slt $t2, $t0, $t1

bne $t2, $zero, less

c) t1 = 12345678 + 31415924

lui $t0, 188

ori $t0, $t0, 24910

lui $t2, 479

ori $t2, $t2, 24180

add $t1, $t0, $t2

Exercise 19:
Given the register values in two's complement representation

$s1 = 0000 0000 0000 0000 0000 0000 0000 0101 = 5
$s2 = 0000 0000 0000 0000 0000 0000 0000 0011 = 3
$s3 = 1111 1111 1111 1111 1111 1111 1111 1100 = -4

What are the values of registers $s1 through $s4 after executing the following MIPS
instructions:

slt $s1, $s1, $s2 Result: $s1 = 0

slt $s2, $s1, $s3 Result: $s2 = 0

sltu $s3, $s1, $s2 Result: $s3 = 0

sltu $s4, $s1, $s3 Result: $s4 = 1

sltu compares the unsigned values in the registers, so in the

last instruction $s1 less than $s3 because $s3 has big unsigned

value, so $s4 = 1.

 Best Wishes 

