
CMPS290 Class Notes (Chap02) Page 1 / 45 by Kuo-pao Yang 

CHAPTER 2 

Instructions: Language of the Computer 
 

2.1 Introduction 62 

2.2 Operations of the Computer Hardware 63 

2.3 Operands of the Computer Hardware 66 

2.4 Signed and Unsigned Numbers 73 

2.5 Representing Instructions in the Computer 80 

2.6 Logical Operations 87 

2.7 Instructions for Making Decisions 90 

2.8 Supporting Procedures in Computer Hardware 96 

2.9 Communicating with People 106 

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 111 

2.11 Parallelism and Instructions: Synchronization 121 

2.12 Translating and Starting a Program 123 

2.13 A C Sort Example to Put It All Together 132 

2.14 Arrays versus Pointers 141 

2.15 Advanced Material: Compiling C and Interpreting Java 145 

2.16 Real Stuff: ARM v7 (32-bit) Instructions 145 

2.17 Real Stuff: x86 Instructions 149 

2.18 Real Stuff: ARM v8 (64-bit) Instructions 158 

2.19 Fallacies and Pitfalls 159 

2.20 Concluding Remarks 161 

2.21 Historical Perspective and Further Reading 163 

2.22 Exercises 164 

 



CMPS290 Class Notes (Chap02) Page 2 / 45 by Kuo-pao Yang 

2.1 Introduction 62 
 

 Instruction Set 

o To command a computer’s hardware, you must speak its language. The words of 

a computer’s language are called instructions, and its vocabulary is called 

instruction set. 

o Different computers have different instruction sets 

 

2.2 Operations of the Computer Hardware 63 
 

 
FIGURE 2.1 MIPS assembly language revealed in this chapter.   
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2.3 Operands of the Computer Hardware 66 
 

 Unlike programs in high-level languages, the operands of arithmetic instructions are 

restricted; they must be from a limited number of special locations built directly in 

hardware called registers. Arithmetic instructions use register operands. 

o Word: The natural unit of access in a computer, usually a group of 32 bits; 

corresponds to the size of a register in the MIPS architecture. 32-bit data called a 

“word” 

 One major difference between the variables of a programming languages and 

registers is the limited number of register, typically 32 on current computers, like 

MIPS. 

 MIPS has a 32 × 32-bit register file 

o The size of a register in the MIPS architecture is 32 bits. 

o Numbered 0 to 31: $0, $1, … $31 

o Assembler names 

 $t0, $t1, …, $t9 for temporary values 

 $s0, $s1, …, $s7 for saved variables 

 Example: Compiling a C Assignment using Registers 

o C code: 

     

f = (g + h) - (i + j); 

 

The variables f, g, h, i, and j are assigned to the register in $s0, $s1, $s2, $s3, 

and $s4, respectively. What is the compiled MIPS code? 

 

o Compiled MIPS code: 

 

add  $t0, $s1, $s2 #$t0 contains g + h 

add  $t1, $s3, $s4 #$t1 contains i + j 

sub $s0, $t0, $t1 # f get $t0 - $t1, which is (g + h) – (i + j) 

 

 

Memory Operands 

 
 Data transfer instruction: A command that moves data between memory and 

registers 

 Address: A value used to delineate the location of a specific data element within a 

memory array.  

 To access a word in memory, the instruction must supply the memory address. 

 Memory is just a large, single-dimensional array, with the address acting as the index 

to that array, starting at 0. 

 Memory is byte addressed: each address identifies an 8-bit byte. 

 The data transfer instruction that copies data from memory to a register is 

traditionally called load. The actual MIPS name for this instruction is lw, standing for 

load word. 
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 The instruction complementary to load is traditionally called store; it copies data 

from a register to memory. The actual MIPS name is sw, standing for store word. 

 Alignment restriction: A requirement that data be aligned in memory on natural 

boundaries. 

 In MIPS, words must start at address that are multiples of 4. This requirement is 

called an alignment restriction. 

 

 
FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements were 

words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word 

representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses. 

  

 Example: Compiling and Assignment When an Operand is in Memory 

o Let’s assume that A is an array of 100 words and that the compiler has associated 

the variable g and h with the registers $s1 and $s2 as before. Let’s also assume 

that the starting address, or base address of the array is in $s3. Compile this C ass 

statement: 

 

g = h + A[8]; 

 

o Compiled MIPS code: 

 g in $s1, h in $s2, base address of A in $s3 

 Index 8 requires offset of 32 (4 bytes per word) 

 

lw  $t0, 32($s3)     # $t0 get A[8] (base register $s3 + 4 X 8) 

add  $s1, $s2, $t0 # g = h + A[8] 

 

 Example: Compiling Using Load and Store 

o Assume variable h is associated with register $s2 and the base address of the array 

A is in $s3. What is the MIPS assembly code for the C assignment statement 

below? 

 

A[12]  = h + A[8]; 

 

o Compiled MIPS code: 

 h in $s2, base address of A in $s3 

 Index 8 requires offset of 32 
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lw  $t0, 32($s3)    # $t0 gets A[8] 

add  $t0, $s2, $t0 # $t0 gets h + A[8] 

sw  $t0, 48($s3)    # $ Store h + A[8] back into A[12]  

 

 Registers vs. Memory 

o Registers are faster to access than memory 

o Operating on memory data requires loads and stores 

o Compiler must use registers for variables as much as possible 

 

 

Constant or Immediate Operands 

 
 This quick add instruction with one constant operand is called add immediate or addi. 

To add 4 to register $s3, we just write: 

 

addi  $s3, $s3, 4 # $s3 = s3 + 4 

 

 MIPS register 0 ($zero) is the constant 0. It cannot be overwritten 

 

add $t2, $s1, $zero # $t2 gets $s1 
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2.4 Signed and Unsigned Numbers 73 
 

 Unsigned Binary Integers 

o Given an n-bit number  

 
0

0

1

1

2n

2n

1n

1n 2x2x2x2xx  





   

 

o Range: 0 to +2n – 1 

o Example 

 
0000 0000 0000 0000 0000 0000 0000 10112 

= 0 + … + 1×23 + 0×22 +1×21 +1×20 

= 0 + … + 8 + 0 + 2 + 1  

= 1110 

o Using 32 bits: 0 to +4,294,967,295 (0 to +232 – 1) 

 

 Two’s Complement Signed Integers 

o Given an n-bit number  

o Range: –2n – 1 to +2n – 1 – 1 

o Example 

1111 1111 1111 1111 1111 1111 1111 11002 

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20 

= –2,147,483,648 + 2,147,483,644  

= –410 

o Using 32 bits: –2,147,483,648 to +2,147,483,647 (–231 to +231 – 1) 

 

 Two’s complement has the advantage that all negative numbers have a 1 in the most 

significant bit. Consequently, hardware needs to test only this bit to see if a number is 

positive or negative (with the number 0 considered positive). This bit often called the 

sign bit. 

o 1 for negative numbers 

o 0 for non-negative numbers 

 Non-negative numbers have the same unsigned and 2s-complement representation 

o 0: 0000 0000 … 0000 

o -1: 1111 1111 … 1111 

o Most-negative: 1000 0000 … 0000 

o Most-positive: 0111 1111 … 1111 

 Example: Signed Negation 

o Negate +2 

 +2  = 0000 0000 … 00102 

 Negating this number by inverting the bits (1’s complement) and adding one 

 –2  = 1111 1111 … 11012 + 1      

   = 1111 1111 … 11102 
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 Sign Extension 

o Representing a number using more bits 

 Preserve the numeric value 

o In MIPS instruction set 

 addi: extend immediate value 

 lb, lh: extend loaded byte/halfword 

 beq, bne: extend the displacement 

o Replicate the sign bit to the left 

 unsigned values: extend with 0s 

o Examples: 8-bit to 16-bit 

 +2: 0000 0010  => 0000 0000 0000 0010 

 -2: 1111 1110  => 1111 1111 1111 1110 
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2.5 Representing Instructions in the Computer 80 
 

 Instructions are encoded in binary  

o Called machine code 

 MIPS instructions 

o Encoded as 32-bit instruction words 

o Small number of formats encoding operation code (opcode), register numbers, … 

 Register numbers 

o $t0 – $t7 are reg’s 8 – 15 

o $t8 – $t9 are reg’s 24 – 25 

o $s0 – $s7 are reg’s 16 – 23 

 The layout the instruction is call instruction format. 

 All MIPS instructions are 32 bits long. 

 Hexadecimal 

o Base 16 

o Compact representation of bit strings 

o 4 bits per hex digit 

o Figure 2.4 converts between hexadecimal and binary: 

 

 
FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the 

corresponding four binary digits, and vice versa. If the length of the binary number is not a multiple of 

4, go from right to left. 

 

 Example:    eca8 6420 

   e  c  a  8   6  4  2  0 

1110  1100 1010  1000  0110  0100  0010  0000 
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 MIPS R-format Instructions 

 

 
o Instruction fields 

 op: operation code (opcode) 

 rs: first source register number 

 rt: second source register number 

 rd: destination register number 

 shamt: shift amount (00000 for now) 

 funct: function code (extends opcode) 

 Example: MIPS R-format  

 

add $t0, $s1, $s2 

 

 
Ans: 0000 0010 0011 0010 0100 0000 0010 00002 = 0232402016 

 

 MIPS I-format Instructions 

 

 
o Immediate arithmetic and load/store instructions 

 rt: destination or source register number 

 Constant: –215 to +215 – 1 

 Address: offset added to base address in rs 

 

 Figure 2.5 shows the numbers used in each field for the MIPS instruction (R-format 

and I-format) covered so far. 

 

 
FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between 

0 and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this field does not 

appear in this format. Note that add and sub instructions have the same value in the op field; the 

hardware uses the funct field to decide the variant of the operation: add (32) or subtract (34). 
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o Example: I-format  

 We can now take an example all the way from what the programmer writes to 

what the computer executes. If $t1 has the base of the array A and $s2 

corresponds to h, the assignment statement  

 

A[3000] = h + A[300]; 

 

 Compiled MIPS code: 

 

lw  $t0, 1200($t1)   # $t0 gets A[300] 

add $t0, $s2, $t0  # $t0 get h + h + A[300] 

sw  $t0, 1200($t1)  # stores h + A[300] back to A[300] 

 

 We can determine the three machine language instructions. 

 

 
 

 Figure 2.6 summarized the portion of MIPS machine language in this section 

 

 
FIGURE 2.6 MIPS architecture revealed through Section 2.5. The two MIPS instruction formats so 

far are R and I. The first 16 bits are the same: both contain an op field, giving the base operation; an rs 

field, giving one of the sources; and the rt field, which specifies the other source operand, except for 

load word, where it specifies the destination register. R-format divides the last 16 bits into an rd field, 

specifying the destination register; the shamt field, which Section 2.6 explains; and the funct field, 

which specifies the specific operation of R-format instructions. I-format combines the last 16 bits into 

a single address field.  
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2.6 Logical Operations 87 
 

 Logical Operations are instructions for bitwise manipulation. Useful for extracting 

and inserting groups of bits in a word 

 Figure 2.8 show logical operations in C, Java, and MIPS 

 

 
FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS 

implements NOT using a NOR with one operand being zero.  

 

 Shift Operations 

 

 
o shamt: how many positions to shift  

o Shift left logical 

 Shift left and fill with 0 bits 

 sll by i bits multiplies by 2i 

o Shift right logical 

 Shift right and fill with 0 bits 

 srl by i bits divides by 2i (unsigned only) 

o Example: shift left 4 bits 

 

sll   $t2, $s0, 4  # $t2 = $s0 << 4 bits 

 

 
 

 if register $s0 contained:  

 

$s0: 0000 0000 0000 0000 0000 0000 0000 1001two = 9two 

 

 the instruction to shift left by 4 was executed, $t2 would be: 

 

$t2: 0000 0000 0000 0000 0000 0000 1001 0000two = 144two 
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 AND Operations 

o Useful to mask bits in a word.  

 Select some bits, clear others to 0 

o Example: AND 

 

and  $t0, $t1, $t2  # $t0 = $t1 & $t2 

 

 $t1 masks (selects) 4 bits in $t2   

 

 
 

 OR Operations 

o Useful to include bits in a word 

 Set some bits to 1, leave others unchanged 

o Example: OR 

 

or   $t0, $t1, $t2   # $t0 = $t1 | $t2 

 

 $t1 includes (sets) 4 bits in $t2   

 

 
 

 NOT Operations 

o Useful to invert bits in a word 

 Change 0 to 1, and 1 to 0 

o MIPS has NOR 3-operand instruction 

 a NOR b == NOT (a OR b) 

o Example: NOT 

 

nor   $t0, $t1, $zero   # $t0 = ~ ($t1 | $zero) 

 

 $t0 = NOT $t1   
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2.7 Instructions for Making Decisions 90 
 

 MIPS assembly language includes two decision-making instructions, similar to an if 

statement with a goto: beq and bne 

 Branch to a labeled instruction if a condition is true. Otherwise, continue sequentially 

 beq: Brach equal 

beq rs, rt, L1  # if (rs == rt) branch to instruction labeled L1 

 bne: Brach not equal 

bne  rs, rt, L1  # if (rs /= rt) branch to instruction labeled L1 

 j:  Jump 

j   L1    # Unconditional jump to instruction labeled L1 

 

 Example: Compiling if-then-else into Conditional Branches  

o C code: 

 

if (i==j)   f = g + h; 

else    f = g - h; 

 

f, g, h, i, and j in $s0, $s1, $s2, $s3, $s4 

 

o Compiled MIPS code: 

 

bne  $s3, $s4, Else # go to Else if i = j 

add  $s0, $s1, $s2 # f = g + h (sipped if i /= j) 

j     Exit    # go to Exit 

Else:   sub $s0, $s1, $s2  # f = g – h (skipped if i = j) 

Exit: 

 

 
FIGURE 2.9 Illustration of the options in the if statement above. The left box corresponds to the then 

part of the if statement, and the right box corresponds to the else part.  
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 Example: Compiling a while Loop in C  

o C code: 

 

while (save[i] == k) i += 1; 

 

i in $s3, k in $s5, address of save in $s6 

 

o Compiled MIPS code: 

 

Loop:  sll  $t1, $s3, 2  # $t1 = i * 4 

        add $t1, $t1, $s6 # $t1 = address of save[i] 

        lw    $t0, 0($t1)  # $t0 = save[i] 

        bne $t0, $s5, Exit # go to Exit if save[i] /= k)  

        addi  $s3, $s3, 1  # i = i + 1 

        j     Loop    # go to Loop 

Exit: 

 

 MIPS offer two versions of the set on less than comparison to handle signed and 

unsigned numbers.  

o Set on less than (slt) and set on less than immediate (slti) work signed integers. 

o Unsigned integers are compared using set on less than unsigned (sltu) and set on 

less than immediate unsigned (sltiu) 

 

slt   rd, rs, rt   # if (rs < rt)    rd = 1; else   rd = 0; 

slti  rt, rs, constant # if (rs < constant)  rt = 1; else   rt = 0; 

 

o Use in combination with beq, bne 

slt   $t0, $s1, $s2 # if ($s1 < $s2) 

bne  $t0, $zero, L #  branch to L 

 

 Example: Signed versus Unsigned Comparison 

 

$s0 = 1111 1111 1111 1111 1111 1111 1111 1111 

$s1 = 0000 0000 0000 0000 0000 0000 0000 0001 

 

slt  $t0, $s0, $s1 # signed 

 $s0 (–1)       <  $s1 (+1)    $t0 = 1 

 

sltu  $t0, $s0, $s1 # unsigned 

 $s0 ( +4,294,967,295)  >  $s1 (+1)    $t0 = 0 
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2.8 Supporting Procedures in Computer Hardware 96 
 

 A procedure or function is one tool programmer use to structure programs, both to 

make them easier to understand and to allow code be reused. 

 MIPS software follow the following convention for procedure calling in allocating its 

32 registers: 

o $a0 - $a3: four argument registers in which to pass parameters 

o $v0 - $v1: two value register in which to return values 

o $ra: one return address register to return to the point of origin 

 Procedure Call Instructions: jal and jr 

o MIPS assembly language includes an instruction just for the procedures: it jumps 

to an address and simultaneously saves the address of the following instruction in 

register $ra. The jump-and-link instruction (jal) is simple written: 

  

jal ProcedureLabel 

 

 Address of following instruction put in $ra 

 Jumps to target address 

 

o MIPS use jump register instruction (jr) to allow the procedure to return to the 

proper address. An unconditional jump to the address specified in a register: 

  

jr $ra 

 

 Copies $ra to program counter 

 

 The calling program or caller puts the parameter values in $a0 - $a3 and uses jal X to 

jump to procedure X (sometimes named the callee). The callee then performs the 

calculations, places the results in $v0 and $v1, and returns control the caller using jr 

$ra. 

 Programmer counter (PC): The register containing the address of the instruction in 

the program being excuted. 

 The jal instruction actually saves PC + 4 in register $ra to link to the following 

instruction to set up the procedure return. 

 

 

Using More Registers 

 
 The ideal data structure for spilling registers is a stack – a last-in-first-out queue. 

 A stack need a pointer to the most recently allocated address in the stack to show 

where the next procedure should place the registers to be spilled or where old register 

values are found. The stack pointer is adjusted by one word for each register that is 

saved or restored. 

 MIPS software reserves register 29 for the stack pointer, giving it the obvious name 

$sp. 
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 Placing data onto the stack is called a push, and removing data from the stack is 

called a pop. 

 Example: Compiling a C Procedure That Doesn’t Call Another Procedure 

o C code: 

 

int leaf_example (int g, h, i, j) {  

int f; 

f = (g + h) - (i + j);   

return f; 

} 

 

 The parameter variables g, h, i, and j correspond to the argument registers $a0, 

$a1, $a2, $a3, and f correspond to $s0.  

 Result in $v0 
 

o Compiled MIPS code: 

 

leaf_example:  

 addi $sp, $sp, -4   # adjust stack to make room for save registers 

 sw  $s0, 0($sp)   # save register $s0 on stack for use afterwards 

 add $t0, $a0, $a1  # register $t0 contains g + h 

 add $t1, $a2, $a3  # register $t1 contains i + j 

 sub $s0, $t0, $t1  # f = $t0 - $t1, which is (g + h) - (i + j) 

 add $v0, $s0, $zero # returns f ($v0 = $s0 + 0) 

 lw  $s0, 0($sp)   # restore register $s0 for caller      

 addi  $sp, $sp, 4   # adjust stack to delete save registers    

 jr    $ra     # jump back to calling routine      

 

 
FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c) after the 

procedure call. The stack pointer always points to the “top” of the stack, or the last word in the stack in this 

drawing. 

 

 MIPS software separates 18 of the registers into two groups: 

o $t0 - $t9: temporary registers that are not preserved by the callee (called 

procedure) on a procedure 

o $s0 - $s7: saved registers that must be preserved on a procedure call (if used, the 

callee saved and restores them) 
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Nested Procedures 
 

 Procedure that do not calls others are called leaf procedure. Nested Procedures call 

other procedurs. 

 For nested call, caller needs to save on the stack: 

o Its return address $ra 

o Any arguments ($a0 - $a3) and temporaries ($t0 =$t9) needed after the call 

o Restore from the stack after the call 

 Example: Compiling a Recursive C Procedure, Showing Nest Procedure Linking. 

o C code: recursive procedure that calculates factorial 

 

int fact (int n) { 

   if (n < 1)  return  (1); 

   else    return  n * fact (n - 1); 

} 

  Argument n in $a0 

  Result in $v0 

 

o  Compiled MIPS code: 

fact: addi  $sp, $sp, -8   # adjust stack for 2 items     

 sw    $ra, 4($sp)    # save the return address    

 sw    $a0, 0($sp)   # save the argument n     

 slti  $t0, $a0, 1       # test for n < 1     

 beq   $t0, $zero, L1  # if n >= 1, go to L1 

addi  $v0, $zero, 1    # if  (n<1),  result is 1     

 addi  $sp, $sp, 8     #  pop 2 items from stack     

 jr    $ra               #    return to caller 

L1: addi  $a0, $a0, -1     # else  n >= 1; agrument gets (n-1)      

 jal   fact             #  call fact with (n-1)     

 lw    $a0, 0($sp)      # return from jal: restore original n     

 lw    $ra, 4($sp)     # restore the return address     

 addi  $sp, $sp, 8       # adjust stack pointer to pop 2 items    

 mul   $v0, $a0, $v0    # return n * fact (n-1)    

jr    $ra                # and return to the caller 
  

o Figure 2.11 summaries that is preserved across a procedure call. 

 

 
FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies on the 

frame pointer register or on the global pointer register, discussed in the following subsections, they are 

also preserved.  
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Allocating Space for New Data on the Stack 
 

 The segment of the stack containing a procedure’s saved registers and local variables 

is called a procedure frame or activation record. Figure 2.12 shows the state of the 

stack before, during, and after the procedure call. 

 MIPS software uses a frame pointer ($fp) to point to the first word of the frame of a 

procedure. 

 A stack pointer ($sp) might change during the procedure, and so references to a local 

variable in memory might have different offset depending on where they are in the 

procedure. 

 

 
FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the procedure 

call. The frame pointer ($fp) points to the first word of the frame, often a saved argument register, and 

the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for all the 

saved registers and any memory-resident local variables. Since the stack pointer may change during 

program execution, it’s easier for programmers to reference variables via the stable frame pointer, 

although it could be done just with the stack pointer and a little address arithmetic. If there are no local 

variables on the stack within a procedure, the compiler will save time by not setting and restoring the 

frame pointer. When a frame pointer is used, it is initialized using the address in $sp on a call, and $sp 

is restored using $fp. This information is also found in Column 4 of the MIPS Reference Data Card at 

the front of this book. 
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Memory Allocation 
 

 The stack starts in the high end of memory (7fff fffchex) and grow down.  

 The first part of the low end of memory is reserved, followed by home of the MIPS 

machine code, called the text segment (0040 0000hex). 

 Static data segment (1000 0000hex), which is the place for constants and other static 

variables. The global pointer, $gp, is set to an address to make it easy to access data. 

It is initialized to 1000 8000hex so that it can access from 1000 0000hex to 1000 ffffhex 

using the positive and negative 16-bit offsets from $gp. 

 Dynamic data segment (1001 0000hex): C allocates and free space on heap with 

explicit functions. malloc() allocates space on the heap and returns a pointer to it, and 

free() releases space on the heap to which the pointer points. 

 

 
FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are only a 

software convention, and not part of the MIPS architecture. The stack pointer is initialized to 7fff 

fffchex and grows down toward the data segment. At the other end, the program code (“text”) starts at 

0040 0000hex. The static data starts at 1000 0000hex. Dynamic data, allocated by malloc in C and by 

new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is 

set to an address to make it easy to access data. It is initialized to 1000 8000hex so that it can access 

from 1000 0000hex to 1000 ffffhex using the positive and negative 16-bit offsets from $gp. This 

information is also found in Column 4 of the MIPS Reference Data Card at the front of this book. 
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MIPS Register Conventions  

 
 Figure 2.14 summarize the register conventions for MIPS assembly language. 

 Most procedure can be satisfied with up to 4 arguments, 2 registers for a return value, 

8 saved registers, and 10 temporary register without ever going to memory. 

 

 
FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see 

Section 2.12), and registers 26–27, called $k0–$k1, are reserved for the operating system. This 

information is also found in Column 2 of the MIPS Reference Data Card at the front of this book.  

 



CMPS290 Class Notes (Chap02) Page 21 / 45 by Kuo-pao Yang 

2.9 Communicating with People 106 

 
 Most computers today offer 8-bit bytes to represent characters, with American 

Standard Code for Information Interchange (ASCII). 

 Figure 215 summarizes ASCII 

 

 
FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by 

exactly 32; this observation can lead to shortcuts in checking or changing upper- and lowercase. 

Values not shown include formatting characters. For example, 8 represents a backspace, 9 represents a 

tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming 

language C uses to mark the end of a string. This information is also found in Column 3 of the MIPS 

Reference Data Card at the front of this book.  

 

 Java uses Unicode for characters. By default, it uses 16 bits to represent a character. 

 MIPS byte / halfword operations 

 

lb   rt, offset(rs)  # Sign extend to 32 bits in rt 

lh   rt, offset(rs)   

lbu  rt, offset(rs)  # Zero extend to 32 bits in rt 

lhu  rt, offset(rs)  

sb   rt, offset(rs)  # Store just rightmost byte / halfword 

sh   rt, offset(rs)  
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 Example: Compiling a String Copy Procedure, Showing How to Use C Strings 

o The procedure strcpy copies string y to string x using the null byte termination 

convention of C: 

 

void strcpy (char x[], char y[]) {  

  int i; 

   i = 0; 

   while ( (x[i] = y[i] ) != '\0') 

    i += 1; 

} 

 

 Addresses of x, y in $a0, $a1 

 i in $s0 

 

o Compiled MIPS code: 

strcpy: addi  $sp, $sp, -4   # adjust stack for 1 item     

   sw  $s0, 0($sp)    # save $s0    

  

   add  $s0, $zero, $zero # i = 0 

L1:   add $t1, $s0, $a1     # address of y[i] in $t1     

   lbu $t2, 0($t1)    # $t2 = y[i]     

   add $t3, $s0, $a0  # address of x[i] in $t3     

   sb  $t2, 0($t3)   # x[i] = y[i]     

   beq $t2, $zero, L2   # exit loop if y[i] == 0     

   addi $s0, $s0, 1      # i = i + 1     

   j     L1                # next iteration of loop 

 

L2:   lw    $s0, 0($sp)    # restore saved $s0     

   addi  $sp, $sp, 4      # pop 1 item from stack     

   jr    $ra               # and return 



CMPS290 Class Notes (Chap02) Page 23 / 45 by Kuo-pao Yang 

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 111 
 

32-Bit Immediate Operands 

 
 Although constants are frequently short and fit into the 16-bit field, sometimes they 

are bigger.  

 The MIPS instruction set includes the instruction load upper immediate (lui) 

specifically to set the upper 16 bits of constant in a register. 

 Example: Loading a 32-Bit Constant  

o What the MIPS assembly code to load this 32-bit constant into register $s0? 

 

 
 

o Compiled MIPS code: 

lui  $s0, 0x007D     # 0x007D    = 0000 0000 0111 1101 

 
ori  $s0, $s0, 0x0900   # 0x0900   = 0000 1001 0000 0000 

 
 

 Figure 2.17 shows the operation of lui  

 

 
FIGURE 2.17 The effect of the lui instruction. The instruction lui transfers the 16-bit immediate 

constant field value into the leftmost 16 bits of the register, filling the lower 16 bits with 0s. 
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Addressing in Branches and Jumps 
 

 Jump Addressing 

o Jump (j and jal) targets could be anywhere in text segment 

 Encode full address in instruction 

o (Pseudo) Direct jump addressing 

 Target address = PC31…28 : (address × 4) 

 

J   10000    # go to location 10000 

 
 

 Branch Addressing 

o Branch instructions specify  

 Opcode, two registers, target address 

o Most branch targets are near branch: Forward or backward 

o PC-relative addressing 

 Target address = PC + offset × 4 

 PC already incremented by 4 by this time 

 

bne   $s0, $1, Exit  # go to Exit if $s0 = $s1 

 
 

 

 Example Showing Branch Offset in Machine Language 

o The while loop on was compiled into this MIPS assembler code. 

 Assume Loop at location 80000 

 

 
 

 j  loop      # Target address  = PC31…28 : (address × 4)  

           = 0 :  20000 × 4  

           = 80000 

 bne $t0, $s5, Exit   # Target address  = PC + offset × 4  

               = 80016 + 2 × 4  

               = 80024 
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Branching Far Away  

 
 Most condition braches are to a nearby location, but occasionally they branch far 

away, farther than can be represented in the 16 bits of the condition branch instruction. 

 The assembler comes to the rescue just as it did with large address or constants: it 

inserts an unconditional jump to the branch target, and inverts the condition so that 

the branch decides whether to skip the jump. 

 Example: Branching Far Away 

o Giving a branch on register $s0 being equal to register $s1 

 

  beq  $s0, $s1, L1 

 

o If branch target is too far to encode with 16-bit offset, assembler rewrites the 

code: 

 

  bne  $s0, $s1, L2 

  j   L1 

L2: … 
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MIPS Addressing Mode Summary 
 

1. Immediate addressing: the operand is a constant within the instruction itself. 

2. Register addressing: the operand is a register 

3. Base or displacement addressing: the operand is at memory location whose address is 

the sum of a register and a constant in the instruction 

4. PC-relative addressing: the branch address is the sum of the PC and a constant in the 

instruction 

5. Pseudodirect addressing: the jump address is the 26 bits of the instruction 

concatenated with the upper bits of the PC 

 

 
FIGURE 2.18 Illustration of the five MIPS addressing modes. The operands are shaded in color. The 

operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of 

load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction 

itself. Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 

2 bits to the PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of 

the PC. Note that a single operation can use more than one addressing mode. Add, for example, uses 

both immediate (addi) and register (add) addressing.  
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Decoding Machine Language 
 

 Example: Decoding Machine Code 

o What is the assembly language statement corresponding to the machine 

instruction? 

 

00af8020hex 

 

Converting hexadecimal to binary: 

 

0  0  a  f  8  0  2  0 

0000 0000 1010 1111 1000 0000 0010 0000 

 

It is R-formation instructions referring to Figure 2.19. Let’s reformat the binary 

instruction into R-format fields in Figure 2.20 

 

op   rs   rt   rd   shamt  funct 

000000 00101 01111 10000 00000 100000 

 

The decimal values are 5 for rs field, 15 for rt, and 16 for rd. Now we can reveal 

the assembly instruction. 

add  $s0, $a1, $t7 # $s0 (1610), $a1 (510), and $t7 (1510) 
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FIGURE 2.19 MIPS instruction encoding. This notation gives the value of a field by row and by 

column. For example, the top portion of the figure shows load word in row number 4 (100two for bits 

31–29 of the instruction) and column number 3 (011two for bits 28–26 of the instruction), so the 

corresponding value of the op field (bits 31–26) is 100011two. Underscore means the field is used 

elsewhere. For example, R-format in row 0 and column 0 (op 5 000000two) is defined in the bottom 

part of the figure. Hence, subtract in row 4 and column 2 of the bottom section means that the funct 

field (bits 5–0) of the instruction is 100010two and the op field (bits 31–26) is 000000two. The floating 

point value in row 2, column 1 is defined in Figure 3.18 in Chapter 3. Bltz/gez is the opcode for four 

instructions found in Appendix A: bltz, bgez, bltzal, and bgezal. This chapter describes instructions 

given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. 

Appendix A covers all instructions. 

 

  

 
FIGURE 2.20 MIPS instruction formats 
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2.11 Parallelism and Instructions: Synchronization 121 
 

 Synchronization 

o Two processors sharing an area of memory 

 P1 writes, then P2 reads 

 Data race if P1 and P2 don’t synchronize 

 Result depends of order of accesses 

o Lock and unlock synchronization can nr used straightforwardly to create regions 

where only a single processor can operate, call a mutual exclusion. 

o Hardware support required 

 Atomic read/write memory operation 

 No other access to the location allowed between the read and write 

o Could be a single instruction 

 Ex, atomic swap of register ↔ memory 

 Or an atomic pair of instructions 

 Synchronization in MIPS   

o Load linked:    ll   rt, offset(rs) 

o Store conditional:  sc   rt, offset(rs) 

 Succeeds if location not changed since the ll 

 Returns 1 in rt 

 Fails if location is changed 

 Returns 0 in rt 

o Example: atomic swap (to test/set lock variable) 

try:  add  $t0, $zero, $s4  # copy exchange value 

      ll  $t1, 0($s1)      # load linked 

      sc  $t0, 0($s1)    # store conditional 

      beq  $t0, $zero, try   # branch store fails 

      add  $s4, $zero, $t1  # put load value in $s4 
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2.12 Translating and Starting a Program 123 
 

Compiler 
 

 The compiler transforms the C program into an assembly language program, a 

symbolic form of what the machine understands.  

 Assembly language: A symbolic language that can be translated into binary machine 

language. 

  

 
FIGURE 2.21 A translation hierarchy for C. A high-level language program is first compiled into an 

assembly language program and then assembled into an object module in machine language. The 

linker combines multiple modules with library routines to resolve all references. The loader then places 

the machine code into the proper memory locations for execution by the processor. To speed up the 

translation process, some steps are skipped or combined. Some compilers produce object modules 

directly, and some systems use linking loaders that perform the last two steps. To identify the type of 

file, UNIX follows a suffix convention for files: C source files are named x.c, assembly files are x.s, 

object files are named x.o, statically linked library routines are x.a, dynamically linked library routes 

are x.so, and executable files by default are called a.out. MS-DOS uses the 

suffixes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same effect. 
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Assembler 

 
 The assembler converts this assembly language instruction into the machine language. 

 Pseudoinstruction: A common variation of assembly language instruction often 

treated as if it were an instruction in its own right. 

o The MIPS assembler accepts this instruction even though it is not found in the 

MIPS architecture. The MIPS assembler converts move into add instruction. 

 

move $t0, $t1  →    add $t0, $zero, $t1 

 

o The MIPS assembler also converts blt (branch on less than) into the two 

instructions slt and bne. 

 

blt $t0, $t1, L   →    slt $at, $t0, $t1 

           bne $at, $zero, L 

 

o Other examples include bqt, bge, and ble 

 

 Pseudoinstructions give MIPS a richer set of assembly language instruction than 

those implemented by the hardware. 

 Symbol table: A table that matches names of labels to the address of the memory 

words that instruction occupy. 

 Assembler keep track of labels used in branches and data transfer instructions in a 

symbol table.  

 

 

Linker 

 
 Linker: Also called link editor. A systems program that combines independently 

assembled machine language programs and resolves all undefined labels into an 

executable file. 

 Executable file: A functional program in the format of an object file that contains no 

unresolved references. It can contain symbol tables and debugging information.  

 

 

Loader 

 
 Loader: A systems program that places an object program in main memory so that it 

is ready to execute. 

 The executable file is on disk the operating system reads it to memory and start it. 

 Load from image file on disk into memory 
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Dynamically Linked Libraries (DLL) 

 
 Dynamically linked libraries (DLLs): Library routines that are linked to a program 

during execution. 

 The lazy procedure linkage version of DLL, where each routine is linked only after 

it is call. 

o Figure 2.22 shows the technique. It started with the nonlocal routine calling a set 

of dummy routines at the end of the program, with one entry per nonlocal routine. 

These dummy entries each contain an indirect jump. 

o The linker/loader finds the desired routine remaps it, and changes the address in 

the indirect jump location to point to that routine. 

o Thereafter, the call to the library routine jump indirectly to routine without the 

extra hops. 

 

 
FIGURE 2.22 Dynamically linked library via lazy procedure linkage. (a) Steps for the first time a 

call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on 

subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired 

routine by remapping it using virtual memory management.  
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Starting a Java Program 

  
 Java is compiled first to instructions that are easy to interpret; the Java bytecode 

instruction set. 

 A software interpreter, called a Java Virtual Machine (JVM), can execute Java 

bytecode. 

 The downside of interpretation is lower performance. 

 Just In Time compiler (JIT): The name commonly given to a compiler that operates 

at runtime, translating the interpreted code segments into the native code of the 

computer. 

 To preserve portability and improve execution speed, the next phase of Java 

development was compilers that translated while the program was running. 

 Just In Time compiler (JIT) typically profile the running program to find where the 

“hot” methods are and then compile them into the native instruction set on which the 

virtual machine is running.  

 The compiled portion is saved for the next time the program is run, so that it can run 

faster each time it is run. 

 Java on the fly, the performance gap between Java and C or C++ is closing. 

 

 

 

 
FIGURE 2.23 A translation hierarchy for Java. A Java program is first compiled into a binary 

version of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready 

to run on the interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in 

the Java library while the program is running. To achieve greater performance, the JVM can invoke the 

JIT compiler, which selectively compiles methods into the native machine language of the machine on 

which it is running. 
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2.13 A C Sort Example to Put It All Together 132 
 

 This program sorts an array of integers, using bubble or exchange sort. 

 

The Full sort Procedure  
############################################################### 

#  void sort (int v[], int n) { 

#  int i, j; 

#  for (i = 0; i < n; i += 1) { 

#   for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) { 

#    swap(v,j); 

#   } 

#  } 

# } 

# v in $a0, n in $a1, i in $s0, j in $s1 

sort:  addi $sp, $sp, -20  # make room on stack for 5 registers 

         sw   $ra,16($sp)   # save $ra on stack 

         sw   $s3,12($sp)  # save $s3 on stack ($a1, n) 

         sw   $s2, 8($sp)  # save $s2 on stack ($a0, address of v[ ]) 

          sw  $s1, 4($sp)  # save $s1 on stack 

          sw   $s0, 0($sp)  # save $s0 on stack 

 

   move  $s2, $a0    # save $a0 into $s2 

       move  $s3, $a1   # save $a1 into $s3 

        move  $s0, $zero   # i ($s0) = 0 

for1tst: slt  $t0, $s0, $s3  # $t0 = 0 if $s0 >= $s3 (i >= n) 

        beq $t0, $zero, exit1  # go to exit1 if $s0 >= $s3 (i >= n) 

        addi  $s1, $s0, -1   # j ($s1) = i($s0) - 1 

for2tst:  slti  $t0, $s1, 0   # $t0 = 1 if $s1 < 0 (j < 0) 

        bne $t0, $zero, exit2  # go to exit2 if $s1 < 0 (j < 0) 

         sll  $t1, $s1, 2   # $t1 = j * 4 

         add  $t2, $s2, $t1  # $t2 = v + (j * 4) 

        lw    $t3, 0($t2)   # $t3 = v[j] 

     lw    $t4, 4($t2)   # $t4 = v[j + 1] 

         slt  $t0, $t4, $t3   # $t0 = 0 if $t4 >= $t3 

         beq $t0, $zero, exit2  # go to exit2 if $t4 >= $t3 

         move  $a0, $s2      # 1st param of swap is v (old $a0) 

         move  $a1, $s1        # 2nd param of swap is j 

         jal  swap            # call swap procedure 

         addi  $s1, $s1, -1   # j –= 1 

         j      for2tst          # jump to test of inner loop 

exit2:    addi  $s0, $s0, 1      # i += 1 

           j      for1tst         # jump to test of outer loop 

 

exit1:   lw   $s0, 0($sp)  # restore $s0 from stack 

         lw   $s1, 4($sp)  # restore $s1 from stack 

        lw   $s2, 8($sp)  # restore $s2 from stack 

        lw   $s3,12($sp)   # restore $s3 from stack 

         lw   $ra,16($sp)   # restore $ra from stack 

         addi  $sp, $sp, 20      # restore stack pointer 

         jr   $ra               # return to calling routine 

############################################################### 
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The Full swap Procedure  
############################################################### 

# C code: Swap procedure (leaf) 

# void swap(int v[], int k) {   

#  int temp; 

#  temp = v[k]; 

#  v[k] = v[k+1]; 

#  v[k+1] = temp; 

# } 

# v in $a0, k in $a1, temp in $t0  

swap: sll   $t1, $a1, 2   # $t1 = k * 4 

  add  $t1, $a0, $t1   # $t1 = v + (k*4); $t1 has the address of v[k] 

       lw   $t0, 0($t1)   # $t0 (temp) = v[k] 

       lw   $t2, 4($t1)   # $t2 = v[k+1] 

       sw   $t2, 0($t1)   # v[k] = $t2 

       sw   $t0, 4($t1)   # v[k+1] = $t0 (temp) 

       jr   $ra     # return to calling routine 

############################################################### 
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2.14 Arrays versus Pointers 141 
 

 This section shows C and MIPS assembly versions of two procedures to clear a 

sequence of words in memory: one using array indices and one using pointer.    

 

Array Version of Clear 
############################################################### 

# clear1(int array[], int size) { 

#  int i; 

#  for (i = 0; i < size; i += 1) 

#   array[i] = 0; 

# } 

# $a0 = array[], $a1 = size, i in $t0 = i 

clear1:         

        move  $t0, $zero     # i = 0 

loop1:  sll   $t1, $t0, 2      # $t1 = i * 4   

        add  $t2, $a0, $t1  # $t2 = &array[i]  

        sw   $zero, 0($t2)   # array[i] = 0 

        addi  $t0, $t0, 1     # i = i + 1 

        slt   $t3, $t0, $a1  # $t3 = (i < size) 

        bne  $t3, $zero, loop1  # if (i < size) goto loop1 

        jr   $ra               # return to calling routine 

############################################################### 

 

Pointer Version of Clear 
############################################################### 

#  clear2(int *array, int size) { 

#    int *p; 

#  for (p = &array[0]; p < &array[size]; p = p + 1) 

#       *p = 0; 

# } 

# 

# $a0 = *array, $a1 = size, i in $t0 = p (address of array[0]) 

clear2:         

  move  $t0, $a0       # p = & array[0] 

        sll   $t1, $a1, 2   # $t1 = size * 4   

        add  $t2, $a0, $t1   # $t2 = &array[size]  

loop2:  sw   $zero, 0($t0)  # Memory[p] = 0 

        addi  $t0, $t0, 4   # p = p + 4 

        slt   $t3, $t0, $t2   # $t3 = (p<&array[size]) 

        bne  $t3, $zero, loop2  # if (p<&array[size]) goto loop2 

        jr   $ra               # return to calling routine 

############################################################### 
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Comparing the two Versions (Array indices and Pointer) of Clear 

 
 The array indices version must have the “multiple” and add inside the loop because i 

is incremented and each address must be recalculated from the new index. 

 The pointer version moves the scaling shift and the array bound addition outside the 

loop, thereby reducing the instruction executed per iteration from 6 to 4.  

 This manual optimization corresponds to the compiler optimization of strength 

reduction (shift instead of multiply) and induction variable elimination (eliminating 

array address calculations within loops) 
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2.16 Real Stuff: ARM v7 (32-bit) Instructions 145 
 

 ARM is the most popular instruction set architecture for embedded devices, with 

more than 9 billion devices in 2011 using ARM, and recent growth has been 2 billion 

per year 

 Standing originally for Acorn RISC Machine, later changed to Advanced RISC 

Machine. ARM came out the same year at MIPS and followed similar philosophies. 

Figure 2.31 lists the similarities. 

 The principal difference is the MIPS has more registers and ARM has more 

addressing modes. 

 

 
FIGURE 2.31 Similarities in ARM and MIPS instruction sets 

 

 

 
FIGURE 2.34 Instruction formats, ARM and MIPS. The differences result from whether the 

architecture has 16 or 32 registers. 
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2.17 Real Stuff: x86 Instructions 149 
 

Evolution with backward compatibility 

 
 8080 (1974): 8-bit microprocessor 

o Accumulator, plus 3 index-register pairs 

 8086 (1978): 16-bit extension to 8080 

o Complex instruction set (CISC) 

 8087 (1980): floating-point coprocessor 

o Adds FP instructions and register stack 

 80286 (1982): 24-bit addresses, MMU 

o Segmented memory mapping and protection 

 80386 (1985): 32-bit extension (now IA-32) 

o Additional addressing modes and operations 

o Paged memory mapping as well as segments 

o Like the 80286, the 80386 has a compatibility mode to execute 8086 program 

without change 

 80486 (1989): pipelined, on-chip caches and FPU 

o Compatible competitors: AMD, Cyrix, … 

 Pentium (1993): superscalar, 64-bit datapath 

o Later versions added MMX (Multi-Media eXtension) instructions 

o The infamous FDIV bug 

 Pentium Pro (1995), Pentium II (1997) 

o New microarchitecture (see Colwell, The Pentium Chronicles) 

 Pentium III (1999) 

o Added SSE (Streaming SIMD Extensions) and associated registers 

 Pentium 4 (2001) 

o New microarchitecture 

o Added SSE2 instructions 

 AMD64 (2003): extended architecture to 64 bits 

o Long mode: execution of all x86 instructions  

 EM64T (2004), Extended Memory 64 Technology  

o AMD64 adopted by Intel (with refinements) 

o Added SSE3 instructions 

 Intel Core (2006) 

o Added SSE4 instructions, virtual machine support 

 AMD64 (2007): announced SSE5 instructions 

 Intel (2011): Advanced Vector Extension  

o Longer SSE registers (128 to 256 bits), more instructions 

 

 If Intel didn’t extend with compatibility, its competitors would! 

o Technical elegance ≠ market success 
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X86 Registers and Data Addressing Modes 

 
 Basic x86 Registers 

o The registers of the 80386 extended all 16-bit register (except the segment 

registers) to 32 bits such as EAX, EBX. 

o The 80386 contains only 8 GPRs (general-purpose registers). 

o The means MIPS program can use 4 times (32 registers) as many and ARMv7 

twice (16 registers) as many. 

o The 8086 provides support for both 8-bit (byte) and 16-bit (word) data type.   

o The 80386 add 32-bit address and data (double words) in the x86. 

 

 
FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended 

to 32 bits and could also be used as general-purpose registers. 

  

 Basic x86 Addressing Modes 

 

 
FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions. The x86 

allows the combinations shown. The only restriction is the absence of a memory-memory mode. 

Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 

2.36 (not EIP or EFLAGS). 
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X86 Instruction Format  

 
 The encoding of instructions in the 80386 is complex, with many different instruction 

formats. 

 Instructions for the 80386 may vary form 1 byte up to 15 bytes in length. 

 

 

 
FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. 

Many instructions contain the 1-bit field w, which says whether the operation is a byte or a double 

word. The d field in MOV is used in instructions that may move to or from memory and shows the 

direction of the move. The ADD instruction requires 32 bits for the immediate field, because in 32-bit 

mode, the immediates are either 8 bits or 32 bits. The immediate field in the TEST is 32 bits long 

because there is no 8-bit immediate for test in 32-bit mode. Overall, instructions may vary from 1 to 15 

bytes in length. The long length comes from extra 1-byte prefixes, having both a 4-byte immediate 

and a 4-byte displacement address, using an opcode of 2 bytes, and using the scaled index mode 

specifier, which adds another byte. 
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Implementing IA-32  

 
 Complex instruction set makes implementation difficult 

o Hardware translates instructions to simpler micro operations 

 Simple instructions: 1–1 

 Complex instructions: 1–many 

 Comparable performance to RISC 

o Compilers avoid complex instructions 
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 2.18 Real Stuff: ARM v8 (64-bit) Instructions 158 
 

 In moving to 64-bit, ARM did a complete overhaul 

 ARM v8 resembles MIPS 

 Changes from ARM v7: 

o No conditional execution field 

o Immediate field is 12-bit constant 

o Dropped load/store multiple 

o PC is no longer a GPR 

o GPR set expanded to 32 

o Addressing modes work for all word sizes 

o Divide instruction 

o Branch if equal/branch if not equal instructions 
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2.20 Concluding Remarks 161 
 

 MIPS Assembly Language 
 

 
FIGURE 2.1 MIPS assembly language revealed in this chapter.   
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 MIPS Machine Language 

 

 
 

 

 MIPS Instruction Formats 
 

 
FIGURE 2.20 MIPS instruction formats 

 

 


