CHAPTER 2: INTRODUCTION TO VARIABLES AND PROPERTIES OF ALGEBRA

Chapter Objectives

By the end of this chapter, students should be able to:

- ✓ Interpret different meanings of variables
- ✓ Evaluate algebraic expressions
- ✓ Writing algebraic expressions
- ✓ Identify properties of algebra
 - Commutative
 - Associative
 - Identity
 - Inverse
 - Distributive

Contents

CHAPTER 2: INTRODUCTION TO VARIABLES AND PROPERTIES OF ALGEBRA				
SECTIC	ON 2.1 INTRODUCTION TO VARIABLES	90		
Α.	WHAT IS A VARIABLE?	90		
В.	MEANING OF A VARIABLE IN MATHEMATICS	92		
C.	VARIABLE EXPRESSIONS	93		
D.	WRITING ALGEBRAIC EXPRESSIONS	94		
Ε.	EVALUATE ALGEBRAIC EXPRESSIONS	98		
F.	LIKE TERMS AND COMBINE LIKE TERMS	100		
EXE	RCISES	101		
SECTIC	DN 2.2 PROPERTIES OF ALGEBRA	103		
EXE	RCISES	106		
СНАРТ	CHAPTER REVIEW			

SECTION 2.1 INTRODUCTION TO VARIABLES

A. WHAT IS A VARIABLE?

When someone is having trouble with algebra, they may say, "I don't speak math!" While this may seem weird to you, it is a true statement. Math, like English, French, Spanish, or Arabic, is a like a language that you must learn in order to be successful. In order to understand math, you must practice the language.

Action words, like run, jump, or drive, are called verbs. In mathematics, *operations* are like *verbs* because they involve doing something. Some operations are familiar, such as addition, multiplication, subtraction, or division.

Operations can also be much more complex like a raising to an exponent or taking a square root.

A **variable** is one of the most important concepts of mathematics, without variables we would not get far in this study. A **variable** is a symbol, usually an English letter, written to replace an unknown or changing quantity.

Definitions

A variable, usually represented by a letter or symbol, can be defined as:

- A quantity that may *change* within the context of a mathematical problem.
- A *placeholder* for a specific value.

An **algebraic expression** is a mathematical statement that can contain numbers, variables, and operations (addition, subtraction, multiplication, division, etc...).

MEDIA LESSON Introduction to variables and variable expressions (Duration 7:54)

View the video lesson, take notes and complete the problems below.

Definition:

- A ______is a ______that represents an ______.
 - a) How many hours will you study tomorrow?
 - b) How much will you pay to have your car repaired?

A ______ consists of ______, ____, _____, _____, _____, _____, and _______, like _____, _____, _____, _____, _____, and ______, often _______, and ______.
 Often _______ and ______. The difference is a _______. The difference is a _______.

	Mathematical Expressions		Equations
• Writing	g variable expressions		
a)	It costs \$9 per adult and \$5 per child to	go to	o the movies.
	Variable expression for the cost of a gro	oup go	so to the movies:
b)	It costs \$30 per day to rent a car plus \$0).10 p	per mile.
	Variable expression for the total rental	cost:	:
Evaluating c) Evalu	variable expressions late $5x + 7$ when $x = 6$	d)	Evaluate $4m - 3n$ when $m = 9$ and $n = 7$
e) Evalu	hate $p^2 - 3q + 7$ when $p = 11$, $q = 8$	f)	Evaluate $\frac{36}{d}$ +7 e - 9 f when d = 9, e = 3 and f = 1
	MEDIA LESSON Why all the letters in algebra? (Duration) on 3:0	:03)

View the video lesson, take notes and complete the problems below.

What question do students ask a lot when they start Algebra?

What are other things besides letters that can be used as a variable?

Chapter 2

B. MEANING OF A VARIABLE IN MATHEMATICS

MEDIA LESSON Meaning of a variable (Duration 4:13)

View the video lesson, take notes and complete the problems below.

Definitions of a variable

1)	Define variable as a changing value A variable is a letter that represents	or	that may		
	within the context of a mathematical problem. Example:				
2)	Define variable as a placeholder A variable is a letter that represents	or	that will remain		

A variable is a letter that represents	or	that will remain	
based on the confines of the mathematical p	roblem.		
Example:			

Example: Determine if the description describes a changing value (CV) or a placeholder (P) then determine a possible variable.

Scenario	Changing Value (CV) or Placeholder (P)	Variable
The elevation of Mount Humphrey's		
The water level of a pool as it is being filled		
The number of calories consumed throughout the day		
The monthly car payment with a fixed interest loan		
The amount of gas consumed by your car as you drive		
The cost of a new textbook for a specific class from the bookstore at the beginning of the semester		

YOU TRY

Scenario	Changing Value (CV) or Placeholder (P)	Variable
The number of cars in the parking lot at this moment		
The number of cars pass by an intersection throughout the day		
The altitude of an airplane during a trip		
The temperature in the Dead Valley on at midnight on January 1 st in 1905		
The balance of your checking account today		

View the video lesson, take notes and complete the problems below.

Why the multiplication sign "x" is not being used much when we get to algebra?

回来加速	

MEDIA LESSON Why is 'x' the symbol for an unknown? (Duration 3:57)

View the video lesson, take notes and complete the problems below.

Why is it that *x* is the unknown?

C. VARIABLE EXPRESSIONS

In mathematics, especially in algebra, we look for **patterns** in the numbers that we see. Using mathematical verbs and variables studied in previous lessons, *expressions* can be written to *describe a pattern*.

Definition

An algebraic expression is a mathematical phrase combining numbers and/or variables using mathematical operations.

An algebraic expression consists of coefficients, variables, and terms. Given an algebraic expression, a

- **coefficient** is the number in front of the variable.
- variable is a letter representing any number.
- **term** is a product of a coefficient and variable(s).
- **constant:** a number with no variable attached. A term whose value never changes.

For example, t, 2x, 3st, $7x^2$, $5ab^3c$ are all examples of terms because each is a product of a coefficient and variable(s).

 $\underbrace{5xy^2}_{term} \underbrace{-2x}_{term} \underbrace{-3}_{constant}_{term}$

MEDIA LESSON

Algebraic expression vocabulary (Duration 5:52)

View the video lesson, take notes and complete the problems below.

Terms: _____

Constant Term: _____

Example 1: Consider the algebraic expression $4x^5 + 3x^4 - 22x^2 - x + 17$

- a) List the terms:
- b) Identify the constant term: _____

Factors:

Coefficient:

Example 2: Complete the table below.

	-4m	- <i>x</i>	$\frac{1}{2}bh$	$\frac{2r}{5}$
List the				
Factors				
Identify the				
Coefficient				

Example 3: Consider the algebraic expression $5y^4 - 8y^3 + y^2 - \frac{y}{4} - 7$.

- a) How many terms are there? ______
- b) Identify the constant term.
- c) What is the coefficient of the first term?
- d) What is the coefficient of the second term? ______
- e) What is the coefficient of the third term? ______
- f) List the factors of the fourth term._____

YOU TRY

Consider the algebraic expression $2m^3 + m^2 - 2m - 8$.

- a) How many terms are there? _____
- b) Identify the constant term.
- c) What is the coefficient of the first term? _____
- d) What is the coefficient of the second term? ______
- e) List the factors of the third term.

D. WRITING ALGEBRAIC EXPRESSIONS

MEDIA LESSON Write algebraic expressions (Duration 6:18)

View the video lesson, take notes and complete the problems below.

Example 1: Juan is 6 inches taller than Niko. Let *N* represent Niko's height in inches. Write an algebraic expression to represent Juan's height.

Niko's height:	
Juan's height:	

Example 2: Juan is 6 inches taller than Niko. Let *J* represent Juan's height in inches. Write an algebraic expression to represent Niko's height.

Niko's height: _____

Juan's height: ______

Example 3: Suppose sales tax in your town is currently 9.8%. Write an algebraic expression representing the sales tax for an item that costs *D* dollars.

Cost: _____

Sales tax: _____

Example 4: You started this year with \$362 saved and you continue to save an additional \$30 per month. Write an algebraic expression to represent the total amount saved after m months.

Number of months: _____

Total amount saved: ______

Example 5: Movie tickets cost \$8 for adults and \$5.50 for children. Write an algebraic expression to represent the total cost for *A* adults and *C* children to go to a movie.

Number of adults: ______

Number of children: _____

Total Cost: _____

YOU TRY

Complete the following problems. Show all steps as in the media examples.

a) There are about 80 calories in one chocolate chip cookie. If we let n be the number of chocolate chip cookies eaten, write an algebraic expression for the number of calories consumed.

Number of cookies: _____

Number of calories consumed:

b) Brendan recently hired a contractor to do some necessary repair work. The contractor gave a quote of \$450 for materials and supplies plus \$38 an hour for labor. Write an algebraic expression to represent the total cost for the repairs if the contractor works for h hours.

Number of hours worked:	
Total cost:	

c) A concession stand charges \$3.50 for a slice of pizza and \$1.50 for a soda. Write an algebraic expression to represent the total cost for P slices of pizza and S sodas.

Number of slices of pizza:	:
Number of sodas:	
Total cost:	

View the video lesson, take notes and complete the problems below.

Example 1: Tell the story of *x* in each of the following expressions.

a) x-5b) 5-xd) x^2

Example 2: Tell the story of *x* in each of the following expressions.

- a) 2x + 4 b) 2(x + 4)
- c) $5(x-3)^2 2$

Example 3: Write an algebraic expression that summarizes the stories below.

a) Step 1: Add 3 to x Step 2: Divide by 2 b) Step 1: Divide x by 2 Step 2: Add 3

Example 4: Write an algebraic expression that summarizes the stories below.

Step 1: Subtract *x* from 7 Step 2: Raise to the third power Step 3: Multiply by 3 Step 4: Add 1 Below is a table of common English words converted into a mathematical expression. You can use this table to assist in translating expressions.

Operation	Words	Example	Translation
	Added to	4 added to n	<i>n</i> + 4
	More than	2 more than y	<i>y</i> + 2
Addition	The sum of	The sum of <i>r</i> and <i>s</i>	r+s
Addition	Increased by	m increased by 6	<i>m</i> + 6
	The total of	The total of 8 and x	8+x
	Plus	<i>c</i> plus 2	<i>c</i> + 2
	Minus	x minus 1	<i>x</i> – 1
	Less than	5 less than y	<i>y</i> – 5
Subtraction	Less	4 less r	4-r
Subtraction	Subtracted from	3 subtracted from t	t-3
	Decreased by	m decreased by 10	m - 10
	The difference between	The difference between <i>x</i> and <i>y</i>	x - y
	Times	12 times <i>x</i>	$12 \cdot x$
	Of	One-third of <i>v</i>	$\frac{1}{3}v$
Multiplication	The product of	The product of <i>n</i> and <i>k</i>	$nk \ or \ n \cdot k$
	Multiplied by	y multiplied by 3	Зу
	Twice	Twice <i>d</i>	$2d \text{ or } 2 \cdot d$
Division	Divided by	n divided by 4	$\frac{n}{4}$
Division	The quotient of	The quotient of t and x	$\frac{t}{x}$
Division	The ratio of	The ratio of x to p	$\frac{x}{p}$
DIVISION	Per	2 per <i>b</i>	$\frac{2}{b}$
Power	The square of	The square of y	y ²
Fower	The cube of	The cube of <i>k</i>	k ³
	ls	Are	Equal
Equals	Gives	Is equal to	Is equivalent to
	Yields	Results in	was

YOU TRY

Complete the following problems.

- a) Tell the story of x in the expression $\frac{x-3}{5}$.
- b) Write an algebraic expression that summarizes the story below:

Step 1: Multiply *x* by 2Step 2: Add 5Step 3: Raise to the second power.

MEDIA LESSON The beauty of algebra (Duration 10:06)

View the video lesson, take notes and complete the problems below.

What algebraic expression did Sal start with when he discussed why the abstraction of mathematics is so fundamental?

E. EVALUATE ALGEBRAIC EXPRESSIONS

MEDIA LESSON Evaluate algebraic expressions (Duration 9:33)

View the video lesson, take notes and complete the problems below

Example 1: Find the value of each expression when w = 2. Simplify your answers.

a)
$$w - 6$$

b) $6 - w$
c) $5w - 3$
d) w^3
e) $3w^2$
f) $(3w)^2$
g) $\frac{4}{5w}$
h) $\frac{5w}{4}$
i) 3^w

Example 2: Evaluate ab + c given a = -5, b = 7, and c = -3.

Example 3: Evaluate $a^2 - b^2$ given a = -5 and b = -3.

Example 4: A local window washing company charges \$11.92 for each window plus a reservation fee of \$7.

a) Write an algebraic expression to represent the total cost from the window washing company for washing *w* windows.

b) Use this expression to determine the total cost for washing 17 windows.

YOU TRY

Given a = 5, b = -1, c = 2, evaluate the expressions below. Show all steps.

a) Evaluate $b^2 - 4ac$.

b) Evaluate 2a - 5b + 7c.

F. LIKE TERMS AND COMBINE LIKE TERMS

Definition

Two terms are like terms if the base variable(s) and exponent on each variable are identical.

For example, $3x^2y$ and $-7x^2y$ are like terms because they both contain the same base variables, x and y, and the exponents on x (the x is squared on both terms) and y are the same.

Combining like terms: If two terms are like terms, we add (or subtract) the **coefficients**, then keep the variables (and exponents on the corresponding variable) **the same**.

MEDIA LESSON Like terms and combine like terms (Duration 6:30)

View the video lesson, take notes and complete the problems below.

Example 1: Identify the like terms in each of the following expressions.

3a - 6a + 10a - a	5x - 10y + 6z - 3x	$7n + 3n^2 - 2n^3 + 8n^2 + n - n^3$

Example 2: Combine the like terms.

3a-6a+10a-a	5x - 10y + 6z - 3x	$7n + 3n^2 - 2n^3 + 8n^2 + n - n^3$

YOU TRY

Combine the like terms.

a) 3x - 4x + x - 8x

b)
$$-5 + 2a^2 - 4a + a^2 + 7$$

EXERCISES

Tell the story of *x* in each of the following expressions.

1) $x - 11$	2) $x + 5$	3) 5 <i>x</i>
4) x ⁵	5) x ³	6) 2 - x
7) $2x - 3$	8) $8x^2$	9) $(2x)^2$
10) $7 - 2x$	11) $5(7-x)^3$	12) $\left(\frac{3x-3}{5}\right)^3$

Write an algebraic expression that summarizes the stories below.

13) Step 1: Add 8 to <i>x</i>	14) Step 1: Divide <i>x</i> by 8
Step 2: Raise to the third power	Step 2: Subtract 5
15) Step 1: Subtract 3 from <i>x</i>Step 2: Multiply by 7	16) Step 1: Multiply x by 10Step 2: Raise to the 3rd powerStep 3: Multiply by 2
 17) Step 1: Add 5 to x Step 2: Divide by 2 Step 3: Raise to the second power Step 4: Add 8 	18) Step 1: Raise x to the second power Step 2: Multiply by 5 Step 3: Subtract from 9
 19) Step 1: Subtract x from 2 Step 2: Multiply by -8 Step 3: Raise to the third power Step 4: Add 1 Step 5: Divide by 3 	 20) Step 1: Multiply x by −4 Step 2: Add 9 Step 3: Divide by 2 Step 4: Raise to the fifth power

Find the value of each expression when b = -8. Simplify your answers.

21) <i>b</i> - 11	22) <i>b</i> + 5	23) 5 <i>b</i>
24) <i>b</i> ²	25) <i>b</i> ³	26) 2 – <i>b</i>

Evaluate each of the following given q = 10.

27) 2q - 3	28) 8q ²	29) (2q) ²
30) $\frac{4}{7q}$	31) 7 – 2q	32) 2 ^q

Evaluate the following expressions for the given values. Simplify your answers.

33)
$$\frac{-b}{2a}$$
 for $a = 6, b = 4$ **34**) $\frac{4x-8}{5+x}$ for $x = 3$ **35**) $\frac{3}{5}ab$ for $a = 8, b = 1\frac{2}{3}$ **36**) $3x^2 + 2x - 1$ for $x = -1$ **37**) $x^2 - y^2$ for $x = -3, y = -2$ **38**) $2x - 7y$ for $x = 5, y = 3$

- **39)** Shea bought *c* candy bars for \$1.50 each. Write an algebraic expression for the total amount Shea spent.
- **40)** Suppose sales tax in your town is currently 9%. Write an algebraic expression representing the sales tax for an item that costs d dollars.
- **41)** Ben bought m movie tickets for \$8.50 each and p bags of popcorn for \$3.50 each.
 - a) Write an algebraic expression for the total amount Ben spent.
 - b) Use this expression to determine the amount Ben will spend if he buys 6 movie tickets and 4 bags of popcorn.
- **42)** Noelle is 5 inches shorter than Amy. Amy is *A* inches tall. Write an algebraic expression for Noelle's height.
- **43)** Jamaal studied h hours for a big test. Karla studied one fourth as long. Write an algebraic expression for the length of time that Karla studied.
- 44) A caterer charges a delivery fee of \$45 plus \$6.50 per guest.
 - a) Write an algebraic expression to represent the total catering cost if g guests attend the reception.
 - b) Use the expression to determine the amount of a company luncheon of 50 guests.
- **45)** Tickets to the museum cost \$18 for adults and \$12.50 for children.
 - a) Write an algebraic expression to represent the cost for *a* adults and *c* children to visit the museum.
 - b) Use this expression to determine the cost for 4 adults and 6 children to attend the museum.
- **46)** Consider the algebraic expression $5n^8 n^5 + n^2 + \frac{n}{s} 2$
 - a) How many terms are there?_____
 - b) Identify the constant term.
 - c) What is the coefficient of the first term? _____
 - d) What is the coefficient of the second term? ______
 - e) What is the coefficient of the third term?
 - f) What is the coefficient of the fourth term?

Combine the like terms.

47) 3*d* − 5*d* + *d* − 7*d*

49) a - 2b + 4a + b - (-2b)

48) $3x^2 + 3x^3 - 9x^2 + x - x^3$ **50)** 3x - 7y + 9x - 5y - 7

SECTION 2.2 PROPERTIES OF ALGEBRA

Properties of real numbers are the basic rules when we work with expressions in Algebra.

	Addition	Multiplication
Identity Hint: the number stays true to its "identity".	a + 0 = a Any number plus zero is the same number. $7 + 0 = 7$ $x + 0 = x$ $\Rightarrow + 0 = \Rightarrow$	$a \cdot 1 = a$ Any number multiplies by one is the same number. $7 \cdot 1 = 7$ $x \cdot 1 = x$ $\Rightarrow \cdot 1 = \Rightarrow$
Inverse Hint: "Inverse" → reverse → undo	Additive Inverse a + (-a) = 0 Any number plus its opposite equals zero. 2 + (-2) = 0 x + (-x) = 0	Multiplicative inverse $a \cdot \frac{1}{a} = 1$ if <i>a</i> is not zero Any number multiplied by its reciprocal is one. $3 \cdot \frac{1}{3} = 1$ $x \cdot \frac{1}{x} = 1$
Commutative Hint: "Commute" → move → switch places	a + b = b + a You can add in any order. $2 + 3 = 3 + 2$ $x + 5 = 5 + x$ $(:) + \Rightarrow = \Rightarrow + (:)$	$a \cdot b = b \cdot a$ You can multiply in any order. $2 \cdot 3 = 3 \cdot 2$ $x \cdot 2 = 2 \cdot x$ $(:) \cdot \forall = \forall \cdot (:)$
Associative Hint: "associate" → different groups → parenthesis	(a + b) + c = a + (b + c) When you add, you can group in any combination. (3 + 5) + 2 = 3 + (5 + 2) $(x + y) + z = x + (y + z)$	$(a \cdot b) \cdot c = a \cdot (b \cdot c)$ When you multiply, you can group in any combination. $(6 \cdot 2) \cdot 7 = 6 \cdot (2 \cdot 7)$ $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
Distributive Hint: "Distribute" → give out to	a(b + c) = ab + ac Multiplying a number by a group of n each other is the same as doing 5(100 + 20) = 2(x + y) =	a(b-c) = ab - ac sumbers added together or subtracted geach multiplication separately. $5 \cdot 100 + 5 \cdot 20$ $= 2x + 2y$

View the video lesson, take notes and complete the problems below.

The commutative properties	
The associative properties	
Identity properties	
Inverse properties	
1	1

Distributive property		

• NOTE: Subtraction and division do not have the associative and communicative properties.

EXERCISES

Identify the property that justifies each problem below.

w + 0 = w	Name:
-x + x = 0	Name:
3(u+v) = 3u + 3v	Name:
5w(6z) = (6z)5w	Name:
$(5)^{\frac{1}{2}}x = 1x$	Name:
$2 \cdot (4a)b = (2 \cdot 4)ab$	Name:
(5x + 5) + 4 = 5x + (5 + 4)	Name:
2x(3y + 7z) = 2x(7z + 3y)	Name:
	w + 0 = w -x + x = 0 3(u + v) = 3u + 3v 5w(6z) = (6z)5w (5) $\frac{1}{5}x = 1x$ 2 · (4a)b = (2 · 4)ab (5x + 5) + 4 = 5x + (5 + 4) 2x(3y + 7z) = 2x(7z + 3y)

Find the additive inverse and the multiplicative inverse for each problem below.

	Additive inverse	Multiplicative inverse
9) 6		
10) $\frac{1}{2}$		
11) -2.5		
12) m (given $m \neq 0$)		

Complete the following table by performing the indicated operations by computing the result in the parentheses first as the order of operations requires.

	Problem 1	Problem 2	Are the Results the Same?
13) Addition	(5 + 7) + 3	5 + (7 + 3)	
14) Subtraction	(10 - 5) - 4	10 - (5 - 4)	
15) Multiplication	(2 · 3) · 4	2 · (3 · 4)	
13) Wattplication			
10) Division	$(600 \div 30) \div 5$	600 ÷ (30 ÷ 5)	

Use the commutative or associative properties to perform the operations in the order you find most simple. Show all your work.

17) (13 + 29) + 7	18) 5 · (6 · 8)
19) (15 + 4) + 6	20) 4 · 13 · 5

Apply distributive property and combine like terms if possible.

21) $8n(5-m)$	22) $7k(-6x+6)$
23) $-6(1+6x)$	24) $-8x(5+10n)$
25) $-(-5+9a)$	26) (<i>n</i> + 1)2
27) $4(x+7) + 8(x+4)$	28) $-8(n+6) - 8(n+8)$
29) $-8x + 9(-9x + 9)$	30) 4v - 7(1 - 8v)
31) $-10(x-2) - 3$	32) 7(7 + 3 <i>v</i>) + 10(3 - 10 <i>v</i>)
33) $(x^2 - 8) - (2x^2 - 7)$	34) 9(<i>b</i> + 10) + 5 <i>b</i>

35) 2n(-10n+5) - 7(6-10n-3m)

ば Online Quiz	Log on to Canvas to take the section quiz
---------------	---

KEY TERMS AND CONCEPTS		
Look for the following term meaning of each of these those in the text or in the r	ns and concepts as you work through the workbook. In the space below, explain the concepts and terms in your own words. Provide examples that are not identical to nedia lesson.	
Variable		
Algebraic expression		
Coefficient		
Term		
Constant		
Like terms		
Identity property of addition		
Identity property of multiplication		
Additive Inverse property		
Multiplicative Inverse property		
Associative property of addition		
Associative property of multiplication		
Commutative property of addition		
Commutative property of multiplication		
Distributive property		

Chapter 2

3) $\frac{x+3}{2}$

Tell the story of *x* in each of the following expressions.

 1) $x + 2 - 2^1$ 2) $4(x^2 + 3)$

Write an algebraic expression that summarizes the stories below.

4)	Step 1: Add 2 to x	5)	Step 1: Subtract 2 from x
	Step 2: Raise to the second power		Step 2: Divide by 2
	Step 3: Divide by 3		Step 3: Add 1
			Step 4: Divide by 3

Evaluate the following expressions when a = -4, b = 2, and c = -1. Simplify your answers.

6)
$$-c^{3}$$

7) $\frac{6}{b}+c$
9) $\frac{b}{2}c-3$
7) $\frac{6}{b}+c$
10) $a^{2}+2a-ac$
8) $-a-b-c$
11) $\frac{c}{2}+\frac{1}{2}b$

- **12)** Suppose sales tax in your city is 8.25%. Write an algebraic expression representing the sales tax for an item that cost x dollars.
- **13)** Will bought *c* candy bars for \$1.25 each. Write an algebraic expression for the total amount Will spent.
- 14) Consider the algebraic expression $2x + 3x^2 \frac{x}{2} x^{13}$ a) How many terms are there?
 - b) Identify the constant terms._____
 - c) What is the coefficient of the first term?_____
 - d) What is the coefficient of the second term?_____
 - e) What is the coefficient of the third term?_____

Combine the like terms of the following expressions.

- **15)** 2x 3x + -4y **16)** 2x + y 1 y 5x
- **17)** $1x + 2x x^2 + 3x 2x^2$

16) 2x + y - 1 - y - 5x**18)** 4x - 2y + 3x + 4y + 2xy

Simplify. Combine like terms when possible.

19) (13 + 29) + 1	20) 4 · (12 · 2)	21) $n(5-2)$
22) $(n+1)2 + n + 1$	23) $9n - (n + 1) + 7n$	24) $2y + y(y + y)$
25) $z(z+1) - z + 1$	26) $\frac{1}{2}(2x-4) + 6$	27) $\frac{2x+4}{2} + 10(2x - \frac{1}{2})$

Find the additive and multiplicative inverse of the following problems.

28) 10 **29)**
$$-\frac{3}{4}$$

30) $\frac{-x}{1}$