Chapter 2

Linear Waveshaping: High-pass Circuits

1. A ramp shown in Fig.2p. 1 is applied to a high-pass $R C$ circuit. Draw to scale the output waveform for the cases: (i) $T=R C$, (ii) $T=0.2 R C$, (iii) $T=5 R C$.

Fig.2p. $1 \quad$ A ramp as input

Solution:

From Eq. (2.64):

$$
\begin{gathered}
v_{\mathrm{o}}=\alpha \tau\left(1-e^{-t / \tau}\right) \\
\alpha=\frac{V}{T} \\
v_{\mathrm{o}}=V\left(\frac{\tau}{T}\right)\left(1-e^{-t / \tau}\right)
\end{gathered}
$$

The peak of the output will occur at $t=T$. We know:

$$
v_{\mathrm{o} \text { (peak })}=V\left(\frac{\tau}{T}\right)\left(1-e^{-T / \tau}\right)
$$

(i) When $T=\tau$:
$\left(\frac{\tau}{T}\right)=1$
$v_{\mathrm{o} \text { (peak) }}=(1)\left(1-e^{-1}\right)=0.632 \mathrm{~V}$.
(ii) When $T=0.2 \tau$:
$\left(\frac{T}{\tau}\right)=0.2, \quad\left(\frac{\tau}{T}\right)=5$
$v_{\mathrm{o} \text { (pak) }}=(5)\left(1-e^{-0.2}\right)=0.907 \mathrm{~V}$
(iii) When $T=5 \tau$:
$\left(\frac{T}{\tau}\right)=5 \quad\left(\frac{\tau}{T}\right)=0.2$
$v_{\mathrm{o} \text { (peak) }}=(0.2)\left(1-e^{-5}\right)=0.198 \mathrm{~V}$.

Fig. 1 Response of the high-pass circuit for ramp input
2. A waveform shown in Fig.2p. 2 is applied as input to an $R C$ high-pass circuit whose time constant is 250 ps . If the maximum output voltage across the resistor is 50 V , what is the peak value of the input waveform?

Fig.2p. 2 Input to the high-pass $R C$ circuit

Solution:

For a ramp input

$$
\begin{aligned}
& v_{\mathrm{o}}(t)=\alpha R C\left(1-e^{-t / R C}\right) \\
& \text { At } t=t_{1}=0.005 \times 10^{-6} s \\
& 50=\frac{v_{i}}{0.005 \times 10^{-6}} \times 250 \times 10^{-12}\left(1-e^{\frac{-0.005 \times 10^{-6}}{250 \times 10^{-12}}}\right) \\
& v_{i}=\frac{1}{50 \times 0.005 \times 10^{-6}} \times 250 \times 10^{-12}\left(1-e^{\frac{-0.055 \times 10^{-6}}{250 \times 11^{-12}}}\right) \\
& \qquad v_{i}(\max) \cong 1000 \mathrm{~V}
\end{aligned}
$$

For $t>t_{1}$
$v_{0}=50 \times e^{-t / 250 \times 10^{-12}}$
$v_{\mathrm{o}}=50 \times e^{\frac{-1 \times 10^{-6}}{250 \times 10^{-12}}}$
$v_{\mathrm{o}}=0 \mathrm{~V}$
3. A limited ramp shown in Fig.2p. 3 is applied to an $R C$ high-pass circuit of Fig. 2.2 (a). The time constant of the $R C$ circuit is 2 ms . Calculate the maximum value of output voltage and the output at the end of the input waveform.

Fig. 2 p. 3 Input to the high-pass circuit

Solution:

For a ramp input
$v_{o}(t)=\alpha R C\left(1-e^{-t / R C}\right)$
At $t=t_{1}=0.4 \times 10^{-3} \mathrm{~s}$
$v(t)=\frac{10}{0.4 \times 10^{-3}} \times 2 \times 10^{-3}\left(1-e^{\frac{-0.4 \times 10^{-3}}{2 \times 10^{-3}}}\right)$
The peak value occurs only at $t=t_{1}=0.4 \times 10^{-3} \mathrm{~s}$
$\therefore v_{o}(\max)=9.063 \mathrm{~V}$
For $t>t_{1}$
$v_{o}=9.063 \times e^{-t / 2 \times 10^{-3}}$
The voltage at $\mathrm{t}=10.4 \mathrm{~ms}$ is:
$v_{o}=9.063 \times e^{-10 \times 10^{-3} / 2 \times 10^{-3}}$
$\therefore v_{o}=0.061 \mathrm{~V}$
The voltage at $t=10.4 \mathrm{~ms}$ is 0.061 V . The output waveform is shown in Fig.3.

Fig. 3 Output of the high-pass circuit for the given input
4. The periodic waveform shown in Fig. 2 p. 4 is applied to an $R C$ differentiating circuit whose time constant is $10 \mu \mathrm{~s}$. Sketch the output and calculate the maximum and minimum values of the output voltage with respect to the ground.

Fig.2p. 4 Periodic square wave as an input to the high-pass circuit

Solution:

Given $T_{1}=100 \mu \mathrm{~s}, T_{2}=1 \mu \mathrm{~s}, \tau=10 \mu \mathrm{~s}$
The steady-state output waveform is drawn by calculating $V_{1}, V_{1}^{\prime}, V_{2}$ and V_{2}^{\prime}.
At $t=0^{-}, v_{\mathrm{o}}=V_{2}^{\prime}$ and at $t=0^{+}, v_{\mathrm{o}}=V_{1}$
For $0<t<T_{1}, \quad v_{0}=V_{1} e^{\frac{-t}{\tau}}$
At $t=T_{1}$
For
At

At $t=T_{1}, \quad v_{0}=V_{1}^{\prime}=V_{1} e^{\frac{-T_{1}}{\tau}}=V_{1} e^{\frac{-100}{10}}=0$
For $T_{1}<t<\left(T_{1}+T_{2}\right), \quad v_{0}=V_{2} e^{\frac{-T_{2}}{\tau}}$
At $t=T_{2}, \quad v_{0}=V_{2}^{\prime}=V_{2} e^{\frac{-T_{2}}{\tau}}=V_{2} e^{\frac{-1}{10}}=0.904 V_{2}$
Peak-to-peak input is 100 V .
$V_{1}^{\prime}-V_{2}=100$
$0-V_{2}=100$
$V_{2}=-100 \mathrm{~V}$
$V_{1}-V_{2}^{\prime}=100$
$V_{1}+0.904 \times 100=100$
$V_{1}=100-0.904 \times 100=9.6 \mathrm{~V}$
$V_{1}^{\prime}=V_{1} e^{\frac{-T_{1}}{\tau}}=9.6 e^{\frac{-100}{10}}=0$
$V_{2}^{\prime}=V_{2} e^{\frac{-T_{2}}{\tau}}=V_{2} e^{\frac{-1}{10}}=0.904 V_{2}=0.904 \times-100=-90.4 \mathrm{~V}$

Fig. 4 Output of the high-pass circuit for the specified input
5. The periodic ramp voltage as shown in Fig. 2 p. 5 is applied to a high-pass $R C$ circuit. Find equations from which to determine the steady-state output waveform when $T_{1}=T_{2}=$ $R C$.

Fig. 5 A periodic ramp as input

Solution:

$$
\begin{equation*}
v_{\mathrm{o}}=\alpha \tau\left(1-e^{-t / \tau}\right) \tag{1}
\end{equation*}
$$

If there is an initial voltage of V_{1} on C, Eq.(1) gets modified as follows:

$$
v_{\mathrm{o}}=\alpha \tau\left(1-e^{-t / \tau}\right)+V_{1} e^{-t / \tau}
$$

For the ramp input, the slope $\alpha=\frac{V}{T_{1}}$.
The capacitor charges from V_{1} to V_{2} in time T_{1}. At $t=T_{1}+$, the capacitor does not respond for sudden changes. Hence, the output changes to $\left(V_{2}-V\right)$. During T_{2}, the capacitor blocks the dc. So the capacitor discharges from V_{3} to V_{1}.

Given $T_{1}=T_{2}=\tau$
At $t=T_{1} v_{\mathrm{o}}(t)=V_{2}$
Using (1)

$$
\begin{aligned}
& V_{2}=\frac{V}{T_{1}} \times T_{1}\left(1-e^{-1}\right)+V_{1} e^{-1}=0.632 V+0.367 V_{1} \\
& \nu_{0}\left(T_{1}+\right)=V_{2}-V \\
& V_{1}=(V-V) e^{-T_{2} / r}=\left(0.632 V+0.367 V_{1}-1\right) e^{-1} \\
& V_{1}=(1-0.134)=-0.135 \\
& V_{1}=\frac{-0.135}{0.864}=-0.156 \mathrm{~V} \\
& V_{2}==0.632 \mathrm{~V}+0.367 V_{1}=0.632 \mathrm{~V}+0.367 \times-0.156 \mathrm{~V}=0.575 \mathrm{~V} \\
& v_{0}\left(T_{1}+\right)=V_{2}-V=0.575 \mathrm{~V}-V=-0.425 \mathrm{~V}
\end{aligned}
$$

Fig. 5 The changes in voltage with time
6. A square wave of pulse width 2 ms and peak amplitude of 12 V as shown in Fig. 2 p. 6 is applied to high-pass $R C$ circuit with time constant 4 ms . Plot the first four cycles of the output waveform.
$T / 2=2 \mathrm{~ms}$

Fig.2p. 6 Symmetric square wave as an input

Solution:

Given $T_{1}=T_{2}=0.2 \mathrm{~ms}, \tau=4 \mathrm{~ms}$
(i) For $t<0, v_{i}=0$, and hence $v_{\mathrm{o}}=0$

At $t=0, v_{i}$ jumps to 12 V
As the voltage across capacitor cannot change instantaneously, v_{o} is also equal to 12 V .
At $t=0, v_{\mathrm{o}}=V_{a}=12 \mathrm{~V}$.
(ii) During the period $0<t<2.0 \mathrm{~ms}$, as the input is constant the output decays.
$v_{0}=V_{a} e^{\frac{-t}{\tau}}$
At $t=2.0 \mathrm{~ms}, v_{\mathrm{o}}=V_{b}=V_{a} e^{\frac{-t}{\tau}}=12 e^{\frac{-2}{4}}=7.27 \mathrm{~V}$
At $t=2 \mathrm{~ms}$, the input falls by 12 V . The output also falls by 12 V .
$V_{c}=V_{b}-12=7.27-12=-4.73 \mathrm{~V}$
(iii) For $2.0<t<4.0 v_{\mathrm{o}}=V_{c} e^{\frac{-(t-T / 2)}{\tau}}$
\therefore At $t=T=4 \mathrm{~ms}, v_{\mathrm{o}}=V_{d}=V_{c} e^{\frac{-2}{4}}=-4.73 e^{-0.5}=-2.86 \mathrm{~V}$
At $t=4 \mathrm{~ms}$, the input rises by 12 V . The output also rises by 12 V .
$V_{e}=V_{d}+100=-2.86+12=9.14 \mathrm{~V}$
(iv) During the period $T<t<3 T / 2$, that is between 4 to 6 ms , the output decays.

At $t=6 \mathrm{~ms} v_{\mathrm{o}}=V_{f}=V_{e} e^{\frac{-2}{4}}=9.14(0.606)=5.53 \mathrm{~V}$
At 6 ms , the input falls by 12 V .
Hence $V_{g}=V_{f}-12=-6.47 \mathrm{~V}$
(v) During $3 T / 2<t<2 T$, that is, during 6 to 8 ms , the output decays.

At $t=2 T=8 \mathrm{~ms}, v_{\mathrm{o}}=V_{h}=V_{g} e^{\frac{-2}{4}}=-6.47 e^{-0.5}=-3.92 \mathrm{~V}$.
$V_{j}=V_{h}+100 \mathrm{~V}=-3.92+12=8.08 \mathrm{~V}$.

Fig. 6 The output waveform
7. A $20-\mathrm{Hz}$ symmetric square wave referenced to 0 volts and, with a peak-to-peak amplitude of 10 V , is fed to an amplifier through the coupling network shown in Fig. 2p.7. Calculate and plot the output waveform when the lower 3-dB frequency is: (i) 0.6 Hz , (ii) 6 Hz and (iii) 60 Hz .

Fig.2p. 7 The given coupling network

Solution:

Given $V=10 \mathrm{~V}$
(i) $f_{1}=0.6 \mathrm{~Hz}$
$\tau=R C=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(0.6)}=0.265 \mathrm{~s}$
$T=\frac{1}{f}=\frac{1}{20}=0.05 \mathrm{~s}$.
$\therefore \frac{T}{2}=0.025 \mathrm{~s}$.
$V_{1}=\frac{V}{1+e^{-T / 2 \tau}}=\frac{10}{1+e^{-0.025 / 0.265}}=5.25 \mathrm{~V}$.
$V_{1}^{\prime}=V_{1} e^{\frac{-T}{2 \tau}}=5.25 e^{\frac{-0.025}{0.265}}=5.25(0.91)=4.8 \mathrm{~V}$.

$$
\therefore \quad V_{1}=-V_{2} \text { and } V_{1}^{\prime}=-V_{2}^{\prime}
$$

$V_{1}=\left|V_{2}\right|=5.25 \mathrm{~V}$
$V_{1}^{\prime}=\left|V_{2}^{\prime}\right|=4.8 \mathrm{~V}$
The output in this case is plotted in Fig.7.1.

Fig.7.1Output when $f_{1}=0.6 \mathrm{~Hz}$
(ii) $f_{1}=6 \mathrm{~Hz}$
$\tau=R C=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(6)}=0.0265 \mathrm{~s}$
$V_{1}=\frac{V}{1+e^{-T / 2 \tau}}=\frac{10}{1+e^{-0.025 / 0.0265}}=7.20 \mathrm{~V}$
$V_{1}^{\prime}=V_{1} e^{\frac{-T}{2 \tau}}=7.20 e^{\frac{-0.025}{0.0265}}=7.20(0.389)=2.8 \mathrm{~V}$.
$\therefore \quad V_{1}=-V_{2}$ and $V_{1}^{\prime}=-V_{2}^{\prime}$
$V_{1}=\left|V_{2}\right|=7.20 \mathrm{~V}$
$V_{1}^{\prime}=\left|V_{2}^{\prime}\right|=2.8 \mathrm{~V}$
The output for this condition is plotted in Fig.7.2.

Fig.7.2 Output when $f_{1}=6 \mathrm{~Hz}$
(iii) $f_{1}=60 \mathrm{~Hz}$

$$
\begin{aligned}
\tau & =R C=\frac{1}{2 \pi f_{1}}=\frac{1}{2 \pi(60)}=0.00265 \mathrm{~s} \\
V_{1} & =\frac{V}{1+e^{-T / 2 \tau}}=\frac{2}{1+e^{-0.025 / 0.00265}}=10.0 \mathrm{~V} \\
V_{1}^{\prime} & =V_{1} e^{\frac{-T}{2 \tau}}=10(0.00008)=0.0008 \mathrm{~V} \\
& \therefore \quad V_{1}=-V_{2} \text { and } V_{1}^{\prime}=-V_{2}^{\prime} \\
V_{1} & =\left|V_{2}\right|=10.00 \mathrm{~V} \\
V_{1}^{\prime} & =\left|V_{2}^{\prime}\right|=0.0008 \mathrm{~V}
\end{aligned}
$$

The output for this case is plotted in Fig.7.3..

Fig.7.3 Output when $f_{1}=60 \mathrm{~Hz}$
8. A square wave is applied as input to an amplifier through a coupling condenser of $10 \mu \mathrm{~F}$. The amplifier has input resistance of $10 \mathrm{k} \Omega$. Determine the lowest frequency if the tilt is not to exceed 10 per cent.

Solution:

We have $P=0.1, R=10 \mathrm{k} \Omega$ and $C=10 \mu \mathrm{~F}$
Per cent tilt, $P=\frac{T}{2 \tau} \times 100$ per cent
$f=\frac{1}{2 \tau P}=\frac{1}{2 \times 10 \times 10^{3} \times 10 \times 10^{-6} \times 0.1}=50 \mathrm{~Hz}$
$P=\frac{\pi f_{1}}{f} \times 100$ per cent
$f_{1}=\frac{P f}{\pi}=\frac{0.1 \times 50}{\pi}=1.59 \mathrm{~Hz}$
9. A pulse of 10 V amplitude and duration 1 ms is applied to a high-pass $R C$ circuit with $R=20 \mathrm{k} \Omega$ and $C=0.5 \mu \mathrm{~F}$. Plot the output waveform to scale and calculate the per cent tilt in the output.

Solution:

$\tau=R C=10 \mathrm{~ms}$
For $0<t<t_{p}$
$v_{i}=10 \mathrm{~V}$
$v_{\mathrm{o}}=10 \mathrm{e}^{-t / 10 \times 10^{-3}}$
At $t=t_{p-}, v_{\mathrm{o}}=V_{1}^{\prime}=10 e^{-1 \times 10^{-3} / 10 \times 10^{-3}}=9.05 \mathrm{~V}$
At $t=t_{p+}, v_{\mathrm{o}}=V_{2}=V_{1}^{\prime}-V=9.05-10=-0.95 \mathrm{~V}$
For $t>t_{p}, v_{\mathrm{o}}=-0.95 \mathrm{e}^{-\left(t-1 \times 10^{-3}\right) / 10 \times 10^{-3}}$
\therefore per cent tilt $=\frac{V-V_{1}^{\prime}}{V} \times 100=\frac{10-9.05}{10} \times 100=9.5$ per cent

Fig. 9 The output waveform
10. The input to the high-pass circuit in Fig. 2p. 10 is the waveform shown in Fig. 2p.10. Calculate and plot the output waveform to scale, given that $R C=\tau=0.1 \mathrm{~ms}$.

Fig.2p. 10 Input to the high-pass circuit

Solution:

For $t<0.1 \mathrm{~ms} v_{i}=0, v_{\mathrm{o}}=0$
(i) At $t=0.1 \mathrm{~ms}$, the input suddenly falls to -5 V , and the output also changes by the same amount as the capacitor acts as a short circuit.
For $0.1<t<0.2, v_{i}$ remains constant at -5 V . Therefore, v_{o} decays exponentially with the time constant 0.1 ms .
(ii) At $t=0.2 \mathrm{~ms}$,
$v_{\mathrm{o}}=-5 e^{\frac{-0.1111^{-3}}{0.1 \times 10^{-3}}}=-1.839 \mathrm{~V}$
At $t=0.2 \mathrm{~ms}$, the input suddenly rises by $15 \mathrm{~V}, v_{0}$ also rises by the same amount.
$v_{\mathrm{o}}(t=0.2 \mathrm{~ms})=-1.839+15=13.16 \mathrm{~V}$
For $0.2 \mathrm{~ms}<t<0.3 \mathrm{~ms}, v_{i}$ remains at 10 V . Hence v_{o} decays exponentially with the time constant 0.1 ms
(iii) At $t=0.3 \mathrm{~ms}$
$v_{\mathrm{o}}=13.16 e^{-\frac{0.1 \times 1 \times 10^{-3}}{0.1 \times 10^{-3}}}=4.84 \mathrm{~V}$
At $t=0.3 \mathrm{~ms}$, input suddenly falls by 20 V . The output also changes by the same amount. $v_{\mathrm{o}}(t=0.3 \mathrm{~ms})=4.84-20=-15.16 \mathrm{~V}$
For $0.3 \mathrm{~ms}<t<0.4 \mathrm{~ms}, v_{i}$ remains constant at -10 V . Hence, v_{o} will decay exponentially with the time constant 0.1 ms .
(iv) At $t=0.4 \mathrm{~ms}$,
$v_{\mathrm{o}}=-15.16 e^{-\frac{0.1 \times 10^{-3}}{0.1 \times 10^{-3}}}=-5.58 \mathrm{~V} \mathrm{~V}$

Fig. 10 The output waveform
11. A pulse of $10-\mathrm{V}$ amplitude with a pulse width of 0.5 ms , as shown in Fig.2p.9, is applied to a high-pass $R C$ circuit of Fig. 2.1(a), having time constant 10 ms . Sketch the output waveform and determine the per cent tilt in the output.

Solution:

$\tau=10 \mathrm{~ms}$
For, $0<t<t_{p}$
$v_{i}=10 \mathrm{~V}$
$v_{0}=10 \mathrm{e}^{-t / 10 \times 10^{-3}}$
At $t=t_{p-}, v_{\mathrm{o}}=V_{1}^{\prime}=10 e^{-0.5 \times 10^{-3} / 10 \times 10^{-3}}=9.512 \mathrm{~V}$
At $t=t_{p+}, v_{\mathrm{o}}=V_{2}=V_{1}^{\prime}-V=9.512-10=-0.488 \mathrm{~V}$ $-\left(t-0.5 \times 10^{-3}\right) /$
For $t>t_{p}, v_{\mathrm{o}}=-0.488 \mathrm{e} \quad 10 \times 10^{-3}$
\therefore per cent tilt $=\frac{V-V_{1}^{\prime}}{V} \times 100=\frac{10-9.512}{10} \times 100=4.88$ per cent
The output is also shown in Fig. 2p.9.

Fig.2p. 9 Input and output of the high-pass circuit
12. A high-pass $R C$ circuit is desired to pass a 3-ms sweep (ramp input) with less than 0.4 per cent transmission error. Calculate the highest possible value of the lower 3-dB frequency.

Solution:

Consider the circuit in Fig. 2.1(a).
$T=3 \times 10^{-3} \mathrm{~s}$
per cent $e_{t(\max)}=0.4$ per cent or $e_{t(\max)}=0.004$

$$
\begin{aligned}
& e_{t}=\frac{T}{2 \tau}=\pi f_{1} T \\
& 0.004=\pi f_{1} \times 3 \times 10^{-3} \\
& \therefore f_{1}=\frac{0.004}{\pi \times 3 \times 10^{-3}}=0.4244 \mathrm{~Hz} \quad \begin{array}{l}
\text { A symmetric square wave with } f=500 \mathrm{kHz} \text { shown } \\
\text { Fig.2.1(a). Calculate and plot the transient and the }
\end{array}
\end{aligned}
$$

steady-state response if: (i) $\tau=5 T$ and (ii) $\tau=T / 20$.

Fig.2p. 13 Input to the coupling network

Solution:

Given $f=500 \mathrm{~Hz}$, hence $T=2.0 \mathrm{~ms}$.

Case 1:

Given, $\tau=5 T=10 \mathrm{~ms}$.
When τ is large, the capacitor charges and discharges very slowly. The output has a small tilt. The voltages are calculated to plot the transient response.
i. For $t<0, v_{i}=0$, and hence $v_{\mathrm{o}}=0$

At $t=0, v_{i}$ jumps to 150 V .
As the voltage across capacitor cannot change instantaneously, v_{o} is also equal to 150 V .
At $t=0 v_{\mathrm{o}}=V_{a}=150 \mathrm{~V}$.
ii. During the period $0<t<1.0 \mathrm{~ms}$, as the input is constant the output decays.

$$
v_{\mathrm{o}}=V_{a} e^{\frac{-t}{\tau}}
$$

At $t=1.0 \mathrm{~ms}, v_{\mathrm{o}}=V_{b}=V_{a} e^{\frac{-t}{\tau}}=150 e^{\frac{-1}{10}}=135.72 \mathrm{~V}$.
At $t=1.0 \mathrm{~ms}$, the input falls by 100 V . The output also falls by 100 V .

$$
V_{c}=V_{b}-100=135.72-100=35.72 \mathrm{~V}
$$

iii. For $1.0<t<2.0, v_{0}=V_{c} e^{\frac{-(t-T / 2)}{\tau}}$
\therefore At $t=T=2 \mathrm{~ms}, v_{\mathrm{o}}=V_{d}=V_{c} e^{\frac{-1.0}{10}}=35.72 e^{-0.1}=32.32 \mathrm{~V}$.
At $t=2 \mathrm{~ms}$, the input rises by 100 V . The output also rises by 100 V .
$V_{e}=V_{d}+100=32.32+100=132.32 \mathrm{~V}$.
iv. During the period $T<t<3 T / 2$, that is, between 2 to 3 ms , the output decays.

At $t=3 \mathrm{~ms} v_{\mathrm{o}}=V_{f}=V_{e} e^{\frac{-1.0}{10}}=132.32(0.9048)=119.73 \mathrm{~V}$.
At 3 ms , the input falls by 100 V . Hence
$V_{g}=V_{f}-100=19.73 \mathrm{~V}$
v. During $3 T / 2<t<2 T$, that is, during 3 to 4 ms , the output decays.

At $t=2 T=4 \mathrm{~ms}, v_{\mathrm{o}}=V_{h}=V_{g} e^{\frac{-1.0}{10}}=19.73 e^{-0.1}=17.85 \mathrm{~V}$.
$V_{j}=V_{h}+100 \mathrm{~V}=17.85+100=117.85 \mathrm{~V}$.
In a few cycles, the output reaches the steady state.

Steady-state response:

Under steady state, the output is symmetrical with respect to zero volts, since the capacitor blocks dc. Therefore, the dc component in the output is zero.
Let V_{1} be the voltage at $t=0$
For $0<t<T / 2, v_{\mathrm{o}}=V_{1} e^{\frac{-t}{\tau}}$
At $t=T / 2=1 \mathrm{~ms}, v_{\mathrm{o}}=V_{1}^{\prime}=V_{1} e^{-0.1}=0.905 V_{1}$
$V_{1}^{\prime}=0.905 V_{1}$
As the input abruptly falls, output also falls by the same amount to V_{2}.
For $T / 2<t<T v_{\mathrm{o}}=V_{2} e^{\frac{-(t-T / 2)}{\tau}}$
At $t=T, v_{\mathrm{o}}=V_{2}^{\prime}=V_{2} e^{-0.1}=0.905 V_{2}$
$V_{2}^{\prime}=0.905 V_{2}$
For symmetrical wave

$$
\begin{align*}
& V_{1}^{\prime}=-V_{2}^{\prime} \text { and } V_{1}=-V_{2} \text { (5) } \\
& V_{1}^{\prime}-V_{2}=100 \mathrm{~V} \text { and } V_{1}-V_{2}^{\prime}=100 \mathrm{~V} \tag{6}
\end{align*}
$$

From (6), we have $V_{1}^{\prime}-V_{2}=100 \mathrm{~V}$ (7)
And from (3), we have $V_{1}=-V_{2}$ (8)
Substituting (8) in (7), we have $V_{1}^{\prime}+V_{1}=100 \mathrm{~V}$ (9)
From (3), we have $V_{1}^{\prime}=0.905 V_{1}$
Substituting in (9)

$$
0.905 V_{1}+V_{1}=100 \mathrm{~V}
$$

$1.905 V_{1}=100 \mathrm{~V}$.
$V_{1}=52.49 \mathrm{~V}$ and $V_{1}^{\prime}=0.905 V_{1}=(0.905)(52.49)=47.50 \mathrm{~V}$
From (5) as $V_{1}^{\prime}=-V_{2}^{\prime}$ and $V_{1}=-V_{2}$

$$
V_{2}=-52.49 \mathrm{~V} \quad V_{2}^{\prime}=-47.50 \mathrm{~V}
$$

We can now plot the steady-state response as we know

$$
\therefore V_{1}=52.49 \mathrm{~V} \quad V_{1}^{\prime}=47.50 \mathrm{~V}
$$

$$
V_{2}=-52.49 \mathrm{~V} \quad V_{2}^{\prime}=-47.50 \mathrm{~V}
$$

The transient and steady-state responses are plotted in Figs.13.1 and 13.2.

Fig.13.1 Transient response

Fig.13.2 Steady-state response
Case 2:
For very low time constant, i.e. when $\tau=T / 20=0.1 \mathrm{~ms}$.
Since the time constant is very small, the capacitor charges and discharges very fast.
\therefore The input and output are shown in Fig.13.3.

Fig.13.3 Output for the given input when time constant is very small
14. A current pulse of amplitude 5 A in Fig. 2 p .11 is applied to a parallel $R C$ combination shown in Fig.2p.12. Plot to scale the waveforms of the current flowing through capacitor for the cases: (i) $t_{p}=0.1 R C$, (ii) $t_{p}=R C$, (iii) $t_{p}=5 R C$

Fig.2p.11The given input to the circuit

Fig. 2p. 12 The given circuit

Solution:

Till $t=t_{p}$, using Laplace transforms, the circuit can be drawn as in Fig.14.1.

Fig.14.1 Circuit in terms of Laplace transforms
Applying KCL, we have
$I_{C}(s)=R \frac{5 / s}{R+\frac{1}{C s}}=\frac{5 \mathrm{RCs}}{(\mathrm{RCs}+1) s}=\frac{5}{\left(s+\frac{1}{R C}\right)}$
Taking
$i_{C}(t)=5 e^{-t / R C}$
At $t=t_{p}$, the current suddenly falls from 5 A to 0 . The voltage across the capacitor at $t=$ t_{p} is $\left[5-i_{C}\left(t_{p}\right)\right] R$
Therefore for $t \geq t_{p}$,
$I_{C}(s)=-\frac{\left[5-i_{C}\left(t_{p}\right)\right] R}{s\left(R+\frac{1}{C s}\right)}=-\frac{\left[5-i_{C}\left(t_{p}\right)\right]}{\left(s+\frac{1}{R C}\right)}$
Taking Laplaceinverse $i_{C}(t)=-\left[5-i_{C}\left(t_{p}\right)\right] e^{\frac{-\left(t-t_{p}\right)}{R C}}$
The circuit that represents the discharge of the condenser is presented in Fig.14.2.

Fig.14.2 Circuit that indicates the discharge of the condenser
Case 1:
For $0<t<t_{p}$

$$
i_{C}(t)=5 e^{-t / R C}
$$

i_{C} decays exponentially,
at $t=t_{p}, i_{C}\left(t_{p}\right)=5 \times e^{\frac{-0.1 R C}{R C}}=4.524 \mathrm{~A}$
For $t>t_{p}, i_{C}$ rises exponentially as
$i_{C}=-\left[5-i_{C}\left(t_{p}\right)\right] e^{\frac{-\left(t-t_{p}\right)}{R C}}=-0.4758 e^{-\frac{\left(t-t_{p}\right)}{R C}}$

Case 2:

For $0<t<t_{p}$

$$
i_{C}(t)=5 e^{-t / R C}
$$

i_{C} decays exponentially,

$$
\text { at } t=t_{p}, I_{c}\left(t_{p}\right)=5 e^{\frac{-R C}{R C}}=5 e^{-1}=1.839 \mathrm{~A}
$$

For $t>t_{p} i_{C}$ decays exponentially as

$$
-\left[5-I_{C}\left(t_{p}\right)\right] e^{-\frac{\left(t-t_{p}\right)}{R C}}=-3.16 e^{-\frac{\left(t-t_{p}\right)}{R C}}
$$

Case 3:

For $0<t<t_{p}$
For $0<t<t_{p}$
i_{C} decays exponentially, $i_{C}(t)=5 e^{-t / R C}$
at $t=t_{p}, I_{c}\left(t_{p}\right)=5 \times e^{\frac{-5 R C}{R C}}=5 e^{-5}=0.0336 \mathrm{~A}$
For $t>t_{p} i_{C}$ rises exponentially as
$-\left[5-i_{C}\left(t_{p}\right)\right] e^{-\frac{\left(t-t_{p}\right)}{R C}}=-4.966 e^{-\frac{\left(t-t_{p}\right)}{R C}}$
The input and outputs are plotted in Fig.14.3.

Fig.14.3 Input and outputs for the given circuit
15. Draw the output waveform if the waveform shown in Fig.2p.15(a) is applied at the input of the $R C$ circuit shown in Fig.2p.15(b).

Fig.2p.15(a) The input to the high-pass circuit in Fig.2p.15(a)

Fig.2p.15(b) The given high-pass circuit

Solution:

Time constatnt $=R C=100 \times 10 \times 10^{-9}$

$$
=1000 \times 10^{-9} \mathrm{~s}
$$

Time period of input waveform is
$T=4 \mathrm{~ms}$
Since $R C \ll T$, the $R C$ circuit acts as a good differentiator.
\therefore The expression for output is $v_{\mathrm{o}}=R C \frac{d v_{i}}{d t}=1000 \times 10^{-9} \times \frac{d v_{i}}{d t}$
For $0<t<2 \mathrm{~ms}, v_{i}=\frac{100}{2 \times 10^{-3}} t$,
$v_{\mathrm{o}}=1000 \times 10^{-9} \times \frac{d}{d t} \frac{100}{2 \times 10^{-3}} t=1000 \times 10^{-9} \times \frac{100}{2 \times 10^{-3}}=50 \mathrm{mV}$
v_{o} remains at 50 mV . At $t=2 \mathrm{~ms}, v_{i}$ falls by 100 V . Since capacitor acts as a short circuit, v_{0} also falls by the same amount.
$v_{\mathrm{o}}(t=2 \mathrm{~ms})=0.05-100=-99.95 \mathrm{~V}$

For $2<t<4 \mathrm{~ms}, v_{i}=\frac{100}{2 \times 10^{-3}}\left(t-2 \times 10^{-3}\right)$
$\therefore v_{\mathrm{o}}=1000 \times 10^{-9} \frac{d}{d t}\left(\frac{-100}{2 \times 10^{-3}}\right)\left(t-2 \times 10^{-3}\right)$
$=1000 \times 10^{-9} \times \frac{(-100)}{2 \times 10^{-3}}=-50 \mathrm{mV}$
The output waveform is shown in Fig. 15..

Fig. 15 Output of the high-pass circuit

