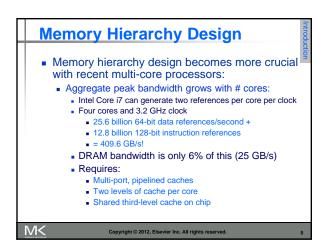
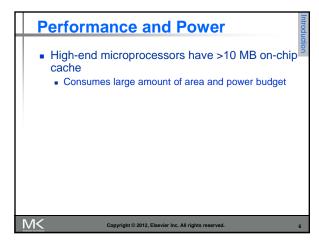

	Computer Architecture A Quantitative Approach, Fifth Edition				
Contraction Contraction C	Chapter 2				
	Memory Hierarchy Design				
M<	Copyright © 2012, Elsevier Inc. All rights reserved.				





Terminology

- <u>A Block:</u> The smallest unit of information transferred between two levels.
- <u>Hit:</u> Item is found in some block in the upper level (example: Block X)
- <u>Miss</u>: Item needs to be retrieved from a block in the lower level (Block Y)
 - Miss Rate = 1 (Hit Rate)
 - Miss Penalty: Time to replace a block in the upper level +
 Time to deliver the block the processor

Copyright © 2012, Elsevier Inc. All rights reserved.

Cache operation

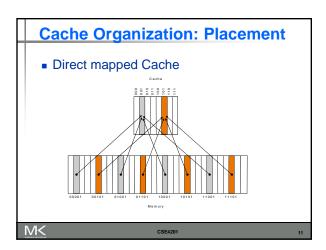
Questions

M<

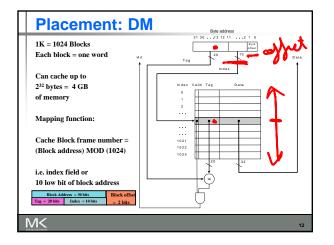
- Where a block be placed in the cache (placement)
- 2. How is a block is found if it is in the cache (identification)
- Which block should be replaced on a miss (replacement)
- 4. What happens on a write (write strategy)

M<

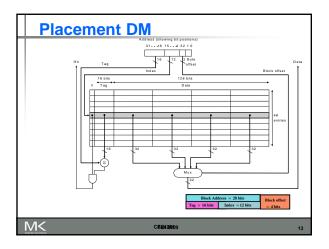
Copyright © 2012, Elsevier Inc. All rights reserved.

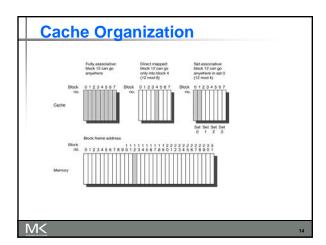

Cache Organization: Placement 1 Direct mapped cache: A block can be placed in only one function: index= (Block address) MOD (Number of blocks in cache) Fully associative cache: A block can be placed anywhere in cache. (no mapping function). Set associative cache: A block can be placed in a restricted set of places, or cache block firmes. A set is a group of block trames in the cache. A block is first mapped onto the set and then it can be placed anywhere index = (Block address) MOD (Number of sets in cache). If there are *n* blocks in a set the cache placement is called *n*-way set-associative.

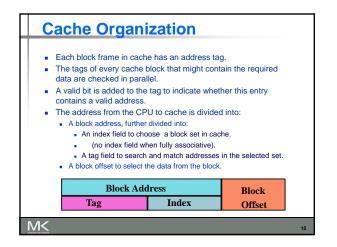
Cache Miss

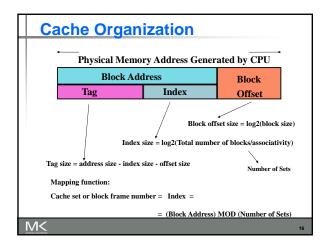

M<

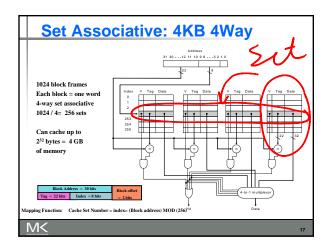
- Compulsory: The very first access to a block is always a miss- Occurs even if you have an infinite cache
- Capacity: The cache is not big enough to hold all the blocks required for the execution of the program– A bigger cache helps
- Conflict: If not a fully associative, a block may be discarded and brought back again.


Copyright © 2012, Elsevier Inc. All rights reserved.









Miss	Rate	9				
 Associativity: 	2-way		4-way		8-way	
 Size 	LRU			Random	LRU	
16 KB		5.69%	4.67%	5.29%	4.39%	4.96%
 64 KB 	1.88%	2.01%	1.54%	1.66%	1.39%	1.53%
 256 KB 	1.15%	1.17%	1.13%	1.13%	1.12%	1.12%
						18

