
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory
 Incrementally smaller and faster memories, each containing a

subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the

processor

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references
 = 409.6 GB/s!

 DRAM bandwidth is only 6% of this (25 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduction

6Copyright © 2012, Elsevier Inc. All rights reserved.

Performance and Power

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

Introduction

7

Terminology

 A Block: The smallest unit of information
transferred between two levels.

 Hit: Item is found in some block in the
upper level (example: Block X)

 Miss: Item needs to be retrieved from a
block in the lower level (Block Y)
 Miss Rate = 1 - (Hit Rate)

 Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Copyright © 2012, Elsevier Inc. All rights reserved.

8

Cache operation

 Questions

1. Where a block be placed in the cache
(placement)

2. How is a block is found if it is in the cache
(identification)

3. Which block should be replaced on a
miss (replacement)

4. What happens on a write (write strategy)

Copyright © 2012, Elsevier Inc. All rights reserved.

9

Cache Organization: Placement
1 Direct mapped cache: A block can be placed in only one

location (cache block frame), given by the mapping
function:

index= (Block address) MOD (Number of blocks in
cache)

2 Fully associative cache: A block can be placed anywhere
in cache. (no mapping function).

3 Set associative cache: A block can be placed in a
restricted set of places, or cache block frames. A set is a
group of block frames in the cache. A block is first
mapped onto the set and then it can be placed anywhere
within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in
cache)
If there are n blocks in a set the cache placement is called
n-way set-associative.

10

Cache Miss

 Compulsory: The very first access to a
block is always a miss– Occurs even if you
have an infinite cache

 Capacity: The cache is not big enough to
hold all the blocks required for the
execution of the program– A bigger cache
helps

 Conflict: If not a fully associative, a block
may be discarded and brought back again.

Copyright © 2012, Elsevier Inc. All rights reserved.

11

Cache Organization: Placement

 Direct mapped Cache

CSE4201

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

0
0

0

C a c h e

M e m o ry

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

12

Placement: DM

2 0 1 0

B y te

o ffs e t

V a l id T a g D a taIn d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

In d e x

H it D a ta

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0

1K = 1024 Blocks

Each block = one word

Can cache up to

232 bytes = 4 GB

of memory

Mapping function:

Cache Block frame number =

(Block address) MOD (1024)

i.e. index field or

10 low bit of block address

Block offset

= 2 bits

Block Address = 30 bits

Tag = 20 bits Index = 10 bits

Byte address

13Fall 2009CSE4201

Placement DM
A d d re s s (s ho w in g b it p o s itio n s)

1 6 1 2 B yte

o ffs e t

V T ag D a ta

H it D a ta

1 6 32

4 K

e n trie s

1 6 b its 12 8 b its

M u x

3 2 3 2 3 2

2

3 2

B lo c k o f fs e tInd ex

T a g

3 1 16 1 5 4 3 2 1 0

Block Address = 28 bits

Tag = 16 bits Index = 12 bits
Block offset

= 4 bits

14

Cache Organization

15

Cache Organization

 Each block frame in cache has an address tag.

 The tags of every cache block that might contain the required
data are checked in parallel.

 A valid bit is added to the tag to indicate whether this entry
contains a valid address.

 The address from the CPU to cache is divided into:
 A block address, further divided into:

 An index field to choose a block set in cache.

 (no index field when fully associative).

 A tag field to search and match addresses in the selected set.

 A block offset to select the data from the block.

Block Address Block

OffsetTag Index

16

Cache Organization

Block Address Block

OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size - index size - offset size

Physical Memory Address Generated by CPU

Mapping function:

Cache set or block frame number = Index =

= (Block Address) MOD (Number of Sets)

Number of Sets

17

Set Associative: 4KB 4Way
Address

2 2 8

V TagIndex

0

1

2

253

254

255

D ata V Tag Data V T ag Data V T ag D ata

3222

4 - to -1 m ultip lexo r

H it D a ta

123891011123031 0

1024 block frames

Each block = one word

4-way set associative

1024 / 4= 256 sets

Can cache up to

232 bytes = 4 GB

of memory

Block Address = 30 bits

Tag = 22 bits Index = 8 bits
Block offset

= 2 bits

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

18

Miss Rate

 Associativity: 2-way 4-way 8-way

 Size LRU Random LRU Random LRU Random

 16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

 64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

