Chapter 2. Motion in 1-dimension

Why do we study motion?

A lot of things move!
Simplest kind of motions is: Motion along a straight line that is, 1-dimensional motion.

Important concepts to learn:

Position
Displacement
Velocity
Acceleration

Position

What is motion?
Change of position over time
How to represent position along a straight line:
define: $x=0$ some position (Origin)
positive direction for x
length unit, e.g., meter

Displacement

Displacement : Change in position

(Displacement) $=\Delta x=x_{2}-x_{1} \quad \Delta x=-2 m-(+3 \mathrm{~m})=-5 \mathrm{~m}$

+ or - sign represents direction
Length unit, e.g., meter

Average velocity, $\mathrm{v}_{\text {avg }}$

(Average velocity between time t_{1} and t_{2}) $\mathrm{v}_{\text {avg }}$

$$
=\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t}=\frac{(\text { Displacement })}{(\text { Time change) })}
$$

Unit : [Length unit]/[Time unit], e.g., m / s

Average speed, $\mathrm{s}_{\text {avg }}$

(Average speed between time t_{1} and t_{2}) $s_{\text {avg }}$
$=\frac{\text { (Total distance the object has traveled) }}{\text { (Time change) }}$
Distance does not care about direction, unlike displacement
Distance \& $s_{\text {avg }}$: always positive, no direction
In general, Distance $=$ Displacement
Average speed $=$ Average velocity

Example:

Displacement, distance, average velocity, average speed

```
O
\[
\begin{array}{ll}
X=0 \mathrm{~km} & x=50 \mathrm{~km} \\
t=0 \mathrm{~min} &
\end{array}
\]
```

Example:
Displacement, distance, average velocity, average speed

$X=0 \mathrm{~km} \quad$| $x=50 \mathrm{~km}$ |
| :--- |
| |
| $t=50 \mathrm{~min}$ |

Example:

Displacement, distance, average velocity, average speed

$X=0 \mathrm{~km} \quad$| $x=50 \mathrm{~km}$ |
| :--- |
| $t=50 \mathrm{~min}$ |

Example:

Displacement, distance, average velocity, average speed
Between $+1=0$ and $+2=100 \mathrm{~min}$,
find displacement, distance, average velocity, average speed

| $x=20 \mathrm{~km}$ |
| :---: | :---: |
| $t=100 \mathrm{~min}$ |$\quad x=50 \mathrm{~km}$

Instantaneous velocity, or velocity

Instantaneous velocity, or simply, velocity
$=$ Average velocity between t and $t+\Delta t$, where $\Delta \mathrm{t}$ is tiny
\rightarrow How fast at a given time \dagger

Motion with a constant velocity, v
$x(\dagger)$ vs. \dagger :
$v=v_{a v g}=\frac{x(t)-x_{0}}{t-0} \rightarrow x(t)-x_{0}=v t \rightarrow x=x_{0}+v t$

Instantaneous Speed, or Speed
(Instantaneous Speed) $=($ magnitude of instantaneous velocity $)$

A car moves at a constant velocity $-3 \mathrm{~m} / \mathrm{s}$.
Position at $t=0$ was -4.0 m

$$
v=-3 \mathrm{~m} / \mathrm{s}
$$

Find its position at $t=50 \mathrm{sec}$

$$
x 0=-4.0 \mathrm{~m} \text { at } \mathrm{t}=0
$$

Velocity changes!
\rightarrow Acceleration!

Average acceleration

(Average acceleration between time t_{1} and t_{2}) $=a_{\text {avg }}$
$=\frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t}=\frac{\text { (Velocity change) }}{\text { (Time change) }}$
Unit: $(\mathrm{m} / \mathrm{s}) / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$

Instantaneous acceleration

Instantaneous acceleration, or simply, acceleration
$=$ Average acceleration between t and $t+\Delta t$, where $\Delta \mathrm{t}$ is tiny

How to calculate velocity change: Careful with the velocity sign !!

What is average acceleration?
A) zero, (B) $20 \mathrm{~m} / \mathrm{s}^{\wedge} 2,(C)-20 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, (D) None of above

$t 2=2 s$
$\dagger 1=0 s$
iClicker Quiz: The acceleration between $0 s$ and $2 s$ is \qquad
(a) Positive
(b) zero
(c) negative
(d) Not enough information

$\dagger 2=2 \mathrm{~s}$
$\mathrm{v} 1=-10 \mathrm{~m} / \mathrm{s}$

$t 1=0 s$

Example: Find average acceleration between 0 s and 2 s .
iClicker Quiz: The acceleration between $0 s$ and $2 s$ is \qquad
(a) Positive
(b) zero
(c) negative (d) Not enough information $\mathrm{v} 2=+20 \mathrm{~m} / \mathrm{s}$ $\mathrm{v} 1=-10 \mathrm{~m} / \mathrm{s}$

$\dagger 2=2 \mathrm{~s}$
$\dagger 1=0 \mathrm{~s}$
Example: Find average acceleration between 0 s and 2 s .
iClicker Quiz: The acceleration between $0 s$ and $2 s$ is \qquad
(a) Positive
(b) zero
(c) negative
(d) Not enough information

$\dagger 2=2 \mathrm{~s}$
$\mathrm{v} 1=-10 \mathrm{~m} / \mathrm{s}$

$\dagger 1=0 \mathrm{~s}$

Example: Find average acceleration between $0 s$ and 2 s .

