Chapter 2

One-Dimensional Kinematics

Description of motion in one dimension

Units of Chapter 2

- Position, Distance, and Displacement

- Average Speed and Velocity
- Instantancous Velocity
- Acceleration
- Motion with Constant Acceleration
- Applications of the Equations of Motion
- Freely Falling Objects

Review: 2-3 Instantaneous Velocity

This plot shows the average velocity being measured over shorter and shorter intervals. The instantaneous velocity is tangent to the curve.

Review: 2-4 Acceleration

Graphical Interpretation of Average and Instantaneous Acceleration:

2-5 Motion with Constant Acceleration

If the acceleration is constant, the velocity changes linearly:

$$
v=v_{0}+a t \quad \text { (2-7) }
$$

Average velocity:

Note: valid only for constant acceleration

(a)

2-5 Motion with Constant Acceleration

Average velocity:

$$
\begin{equation*}
v_{\mathrm{av}}=\frac{1}{2}\left(v_{0}+v\right) \tag{2-9}
\end{equation*}
$$

Position as a function of time:

$$
x=x_{0}+v_{\mathrm{av}} t
$$

$$
\begin{align*}
& x=x_{0}+\frac{1}{2}\left(v_{0}+v\right) t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{align*}
$$

Velocity as a function of position: $v=v_{0}+a t$

$$
\begin{equation*}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)=v_{0}^{2}+2 a \Delta x \tag{2-12}
\end{equation*}
$$

2-5 Motion with Constant Acceleration

The relationship between position and time follows a characteristic curve.

EXAMPLE 2-5 FULL SPEED AHEAD

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s}^{2}$. (a) How fast is the boat moving after accelerating for 5.00 s ? (b) How far has the boat traveled in this time?

Note: show PDF file next

Copyright © 2010 Pearson Education, Inc.

2-5 Motion with Constant Acceleration

TABLE 2-4 Constant-Acceleration Equations of Motion

Variables related	Equation	Number
velocity, time, acceleration	$v=v_{0}+a t$	$2-7$
initial, final, and average velocity	$v_{\mathrm{av}}=\frac{1}{2}\left(v_{0}+v\right)$	$2-9$
position, time, velocity	$x=x_{0}+\frac{1}{2}\left(v_{0}+v\right) t$	$2-10$
position, time, acceleration	$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$	$2-11$
velocity, position, acceleration	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)=v_{0}^{2}+2 a \Delta x$	$2-12$

2-6 Applications of the Equations of Motion Hit the Brakes!

EXAMPLE 2-6 PUT THE PEDAL TO THE METAL

A drag racer starts from rest and accelerates at $7.40 \mathrm{~m} / \mathrm{s}^{2}$. How far has it traveled in (a) 1.00 s , (b) 2.00 s , (c) 3.00 s ?

EXAMPLE 2-7 TAKEOFF DISTANCE FOR AN AIRLINER

REAL-WORLD Jets at JFK International Airport accelerate from rest at one end of a runway, and must attain takeoff What is the minimum length of runway, Δx_{A}, required for this plane? Give a symbolic answer. (b) Plane B has the same acceleration as plane A, but requires twice the takeoff speed. Find Δx_{B} and compare with Δx_{A}. (c) Find the minimum runway length for plane A if $a=2.20 \mathrm{~m} / \mathrm{s}^{2}$ and $v_{\text {to }}=95.0 \mathrm{~m} / \mathrm{s}$. (These values are typical for a 747 jetliner.)

© 2010 Pearson Education, Inc.

2-7 Freely Falling Objects

Free fall is the motion of an object subject only to the influence of gravity. The acceleration due to gravity is a constant, g.

TABLE 2-5	Values of g at Different Locations on Earth $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	
Location	Latitude	g
North Pole	$90^{\circ} \mathrm{N}$	9.832
Oslo, Norway	$60^{\circ} \mathrm{N}$	9.819
Hong Kong	$30^{\circ} \mathrm{N}$	9.793
Quito, Ecuador	0°	9.780

2-7 Freely Falling Objects

An object falling in air is subject to air resistance (and therefore is not freely falling).

(a)

(b)

2-7 Freely Falling Objects

Question 2.8b Acceleration II

When throwing a ball straight up, which of the following is true about its velocity v and its acceleration at the highest point in its path?
a) both $v=0$ and $a=0$
b) $v \neq 0$, but $a=0$
c) $v=0$, but $a \neq 0$
d) both $v \neq 0$ and $a \neq 0$
e) not really sure

Question 2.8b Acceleration II

When throwing a ball straight up, which of the following is true about its velocity v and its acceleration at the highest point in its path?
a) both $v=0$ and $a=0$
b) $v \neq 0$, but $a=0$
c) $v=0$, but $a \neq 0$
d) both $v \neq 0$ and $a \neq 0$
e) not really sure

At the top, clearly $v=0$ because the ball has momentarily stopped. But the velocity of the ball is changing, so its acceleration is definitely not zero! Otherwise it would remain at rest!!

Follow-up: ... and the value of a is...?

Question 2.9a Free Fall I

You throw a ball straight up into the air. After it leaves your hand, at what point in its flight does it have the maximum value of acceleration?
a) its acceleration is constant everywhere
b) at the top of its trajectory
c) halfway to the top of its trajectory
d) just after it leaves your hand
e) just before it returns to your hand on the way down

Question 2.9a Free Fall I

You throw a ball straight up into the air. After it leaves your hand, at what point in its flight does it have the maximum value of acceleration?
a) its acceleration is constant everywhere
b) at the top of its trajectory
c) halfway to the top of its trajectory
d) just after it leaves your hand
e) just before it returns to your hand on the way down

The ball is in free fall once it is released. Therefore, it is entirely under the influence of gravity, and the only acceleration it experiences is g, which is constant at all points.

EXAMPLE 2-10 DO THE CANNONBALL!

A person steps off the end of a 3.00-m-high diving board and drops to the water below. (a) How long does it take for the person to reach the water? (b) What is the person's speed on entering the water?

Copyright © 2010 Pearson Education, Inc.

Question 2.10a Up in the Air I

You throw a ball upward with an
initial speed of $10 \mathrm{~m} / \mathrm{s}$. Assuming
that there is no air resistance,
what is its speed when it returns
to you?
a) more than $10 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) less than $10 \mathrm{~m} / \mathrm{s}$
d) zero
e) need more information

Question 2.10a Up in the Air I

You throw a ball upward with an initial speed of $10 \mathrm{~m} / \mathrm{s}$. Assuming that there is no air resistance, what is its speed when it returns to you?
a) more than $10 \mathrm{~m} / \mathrm{s}$
b) $10 \mathrm{~m} / \mathrm{s}$
c) less than $10 \mathrm{~m} / \mathrm{s}$
d) zero
e) need more information

The ball is slowing down on the way up due to gravity. Eventually it stops. Then it accelerates downward due to gravity (again). Because $a=g$ on the way up and on the way down, the ball reaches the same speed when it gets back to you as it had when it left.

2-7 Freely Falling Objects

Trajectory of a projectile:

Copyright © 2010 Pearson Education, Inc.

EXAMPLE 2-12 LOOK OUT BELOW! A SANDBAG IN FREE FALL

A hot-air balloon is rising straight upward with a constant speed of $6.5 \mathrm{~m} / \mathrm{s}$. When the basket of the balloon is 20.0 m above the ground, a bag of sand tied to the basket comes loose. (a) How long is the bag of sand in the air before it hits the ground? (b) What is the greatest height of the bag of sand during its fall to the ground?

Copyright © 2010 Pearson Education, Inc.

Question 2.10b Up in the Air II

Alice and Bill are at the top of a cliff of height H. Both throw a ball with initial speed v_{0}, Alice straight down and Bill straight up. The speeds of the balls when they hit the ground are v_{A} and v_{B}. If there is no air resistance, which is true?
a) $v_{A}<v_{B}$
b) $v_{A}=v_{B}$
c) $v_{A}>v_{B}$
d) impossible to tell

Question 2.10b Up in the Air II

$$
\begin{array}{ll}
\text { Alice and Bill are at the top of a cliff of } & \text { a) } v_{A}<v_{B} \\
\text { height } H \text {. Both throw a ball with initial } & \text { b) } v_{A}=v_{B} \\
\text { speed } v_{0} \text {, Alice straight down and Bill } & \text { c) } v_{A}>v_{B} \\
\text { straight up. The speeds of the balls when } & \text { d) impossible to tell } \\
\text { they hit the ground are } v_{A} \text { and } v_{B} \text {. If there } & \\
\text { is no air resistance, which is true? } &
\end{array}
$$

Bill's ball goes up and comes back down to Bill's level. At that point, it is moving downward with v_{0}, the same as Alice's ball. Thus, it will hit the ground with the same speed as Alice's ball.

Follow-up: what happens if there is air resistance?

Summary

- Constant acceleration: equations of motion relate position, velocity, acceleration, and time
- Freely falling objects: constant acceleration

$$
g=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

