
Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

2

Chapter 2. PIC 16F877 Microcontroller - Overview

1. PIC 16F877 Architecture
PIC 16F877 is a 40-pin 8-Bit CMOS FLASH Microcontroller from Microchip. The core
architecture is high-performance RISC CPU with only 35 single word1 instructions. Since it
follows the RISC architecture, all single cycle instructions take only one instruction cycle except
for program branches which take two cycles. 16F877 comes with 3 operating speeds with 4, 8, or
20 MHz clock input. Since each instruction cycle takes four operating clock cycles, each
instruction takes 0.2 µs when 20MHz oscillator is used.

It has two types of internal memories: program memory and data memory. Program memory is
provided by 8K words (or 8K*14 bits) of FLASH Memory, and data memory has two sources.
One type of data memory is a 368-byte RAM (random access memory) and the other is
256-byte EEPROM (Electrically erasable programmable ROM).

The core feature includes interrupt capability up to 14 sources, power saving SLEEP mode, and
single 5V In-Circuit Serial Programming (ICSP) capability. The sink/source current, which
indicates a driving power from I/O port, is high with 25mA. Power consumption is less than 2
mA in 5V operating condition.

The peripheral features include:

(a) 3 time blocks: Timer0 for 8-bit timer/counter; Timer1 for 16-bit timer/counter; and
Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler.

(b) Two Capture, Compare, PWM modules for capturing, comparing 16-bit, and PWM
generation with 10-bit resolution.

(c) 10-bit multi-channel (max 8)Analog-to-Digital converter module.
(d) Synchronous Serial Port (SSP) with SPI (Master Mode) and I2C2 (Master/Slave)
(e) Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit

address detection
(f) Parallel Slave Port (PSP) 8-bits wide, with external RD, WR and CS controls
(g) I/O ports.

The key feature of 16F877 is summarized below:

FLASH Program Memory (14-bit
word)

8K Words

Data Memory (RAM) 368 Bytes
Data Memory (EEPROM) 256 Bytes
Interrupts 14
I/O Ports Ports A, B, C, D, E
Timers 3
Capture/Compare/PWM Modules 2
Serial Communications MSSP, USART

1 The 'word' here is not the usual term we use to indicate 2 bytes (or 16 bits). The 'word' in PIC could be 12, 14, or
any number of bits. For 16F877, the word means a size of 14 bits.
2 I2C stands for Inter-IC bus.

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

3

Parallel Communications PSP
10-bit Analog-to-Digital Module 8 channels
Instruction Set 35 Instructions

2. Pin and Package
There are three package types are available: DIP, PLCC, and QFP. This book assumes that we
all use the DIP because of its best fit to breadboard or proto-board.

Fig 1. PIC 16F877 IC Package: DIP

MCLR/VPP/THV

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+
RA4/TOCKI

RA/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

VDD

RD0/PSP0

RC0/T1OS0/T1CKI

OSC2/CLKOUT

OSC1/CLKIN

VSS

RC1/T1OS1/CCP2

RD1/PSP1

RC3/SCK/SCL

RC2/CCP1

 RB7/PGD

 RB5

 RB4

RB3/PG

 RB2

 RB1

RB0/INT

 VDD

 VSS

 RD7/PSP7

 RD6/PSP6

 RD5/PSP5

 RD4/PSP4

 RC7/RX/DT

RC6/TX/CK

 RC5/SDO

 RC4/SDI/SDA

 RD3/PSP3

 RD2/PSP2

 RB6/PGC

1

3

2

 4

 5

 6

 7

 8

 10

 9

 11

 12

 13

 14

 15

 16

 17

 18

 19

30

29

 20

32

31

33

34

35

36

37

38

39

40

28

27
26

25

24

23

22
21

PI
C

16
F8

77
/8

74

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

4

Table 1. Pin Description

Pin

Pin Name Description Pin

Pin Name Description

1 ~MCLR 21 RD2 PORTD.2
2 RA0/AN0 PORTA.0 /Analog Channel 0 22 RD3 PORTD.3
3 RA1/AN1 PORTA.1 /Analog Channel 1 23 RC4/SDI/SDA PORTC.4/SDI(for SPI)/SDA(for I2C)
4 RA2/AN2 PORTA.2 /Analog Channel 2 24 RC5/SDO PORTC.5 /SDO (for SPI)
5 RA3/AN3 PORTA.3 /Analog Channel 3 25 RC6/TX PORTC.6 /TX (for Serial Com.)
6 RA4/T0CK1 PORTA.4 / External Clock for Timer 0 26 RC7/RX PORTC.7 /RX (for Serial Com.)
7 RA5/AN4 PORTA.5 /Analog Channel 4 27 RD4 PORTD.4
8 RE0/AN5 PORTE.0 /Analog Channel 5 28 RD5 PORTD.5
9 RE1/AN6 PORTE.1 /Analog Channel 6 29 RD6 PORTD.6
10 RE2/AN7 PORTE.2 /Analog Channel 7 30 RD7 PORTD.7
11 Vdd +3 ~ +5V 31 Vss GND
12 Vss GND 32 Vdd +3 V ~ +5 V
13 OSC1/CLKIN Oscillator Connection /Clock In 33 RB0/INT PORTB.0/External Interrupt
14 OSC2/CLKOUT Oscillator Connection / Clock Out 34 RB1 PORTB.1
15 RC0/T1CK1 PORTC.0 /External Clock for Timer 1 35 RB2/PGM PORTB.2 /Programming Input
16 RC1/CCP2 PORTC.1 /CCP2 36 RB3 PORTB.3
17 RC2/CCP1 PORTC.2 /CCP1 37 RB4 PORTB.4
18 RC3/SCK/SCL PORTC.3 /SCK(for SPI)/SCL(for I2C) 38 RB5 PORTB.5
19 RD0 PORTD.0 39 RB6/PGC PORTB.6 /Debugger/ICSP
20 RD1 PORTD.1 40 RB7/PGD PORTB.7 /Debugger/ICSP

3. Block Diagram
The internal schematic of PIC16F877 is illustrated in the following block diagram. In the block
diagram, we first see built-in function modules in boxes such as PORTA, PORTB for inputs and
outputs, a 10-bit Analog-to-Digital (AD) module, 3 timer modules (Timer 0, Timer 1, and Timer
2), EEPROM, etc. We also see the modules are connected via internal data bus of 8-bit width.
This is the reason why 16F877 is called an 8-bit microcontroller. Since the program memory
(FLASH) is organized with 14-bit word, it's content is accessed (or fetched) via 14-bit program
bus by the instruction register. Instruction registers are not in the file (RAM) area so is not
accessible by program. Another internal register, program counter (PC) accesses the program
memory location ("addressing") via 13 bit information. With 13 bits, the addressing range goes
to 213=23*210=8K word.

RAM file registers for data are connected via 8-bit data bus. The W register is a user accessible
register. As you see in the block diagram, W directly accesses the ALU and the 8-bit data bus.
As we can see, there should be W involved to move data between modules and inside the file
RAM, except via indirect addressing mode. This means that writing to the output ports is done
via the W register. The details of the indirect addressing are discussed in the PIC instruction.

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

5

Fig. 2 PIC16F877 Block Diagram

4. Program Memory
The PIC16F877 has a 13-bit program counter (PC) capable of addressing an 8K word of
program memory pace, and accessing a location above the physically implemented address will
cause a wrap-around.
The reset vector is at address 0000 and the interrupt vector is at address 00043. Details of this
will be discussed through out the book as related subjects pop up.

3 All addresses are in hexadecimal number unless stated otherwise. Hexadecimal numbers are usually indicated by a
multiple-digit number followed by a letter h. In assembly language programming, however, we indicate a
hexadecimal number with preceding 0x followed by a multi-digit number. For example, 1001h and 0x1001 both
indicate a 4 digit hexadecimal number 1001.

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

6

5. Data Memory (RAM)

The data memory in RAM is partitioned into multiple banks (or pages) which contain the
General Purpose Registers (GPR) and the Special Function Registers (SFR). The SFRs are
already internally defined by the system so users are not allowed to override these registers.
These are the main tools to utilize the built-in functions. In other words, assigning a port
(PORTA, PORTB, etc) or a pin of a port as input or output, for example, is done using one or
more of the SFRs. The GPRs are actually empty spaces to be used to store data or variables. In
other words, when you define a variable like, x, y, or temp, then you have to allocate a space
(a byte size) for each in the GPRs in RAM area. The registers in the RAM area are called file
registers.

Each bank extends to 7Fh (128 bytes). The lower locations of each bank are reserved for the
SFRs. Above the SFRs are GPRs, implemented as static RAM. All implemented banks contain
SFRs. Some “high use” SFRs, such as STATUS register, PCL register, FSR register, and
INTCON register from one bank may be mirrored in another bank for code reduction and
quicker access. For example, the STATUS register presents at 0003h (bank 0), 0083h(bank 1),
0103h(bank 2), and 0183h(bank 3), simultaneously.

To access registers properly, the bank location of them must be selected. In other words, you
have keep track which bank of registers the CPU currently accesses. If the current bank access
is Bank0, and your next register is located in Bank1, you have to select the Bank1 before
accessing the register. The PIC CPU is very strict on the bank location. If we use an analogy of
word processing, when we want to select a word, we have to move the cursor around the word
then we click the mouse to select: without moving the cursor to the word, you do select the word
you intend to do, it would select any word near the current cursor position. The selection of a
bank is done by setting two bits of the STATUS register.

Let's examine the file register map briefly. As mentioned above, the fourth register (address 03h,
83h, 103h, and 183h) at each bank is assigned to STATUS register (see the Register file map).
The STATUS register tells you about the status arithmetic and logical status. It also has very
important function of selecting a bank.

The detail of the STATUS register is shown below. Here, we highlight only bits of 6, 5, 2, and 0
of the register. Note that the bit number of the byte of the register starts from 0 ending at 7. As
we see, bits 5 and 6 of the register, as we indicate them as STATUS<6:5>, are RP1 and RP0 bits
which select banks. In other words, for example, if you access a register in bank 3, you have to
set the two bits as 11, or STATUS<6:5>=11b4. In this selection, we change each bit of a
register. In such case, we may better use bit-oriented instruction (Details on instruction come
later). STATUS<2> is for Z flag to see if an operation results in zero or not.

4 a letter following a number indicates that the number is a binary number. In assembly language programming, we
use letter B followed by a single quote, a binary number, then a single quote to indicate a binary number. For
example, B'01101100' represents in a code a binary number 01101100b.

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

7

Fig. 3 Register file map for SFRs and GPRs.

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

8

Fig 4. Details of the STATUS register

Even though we have not formally discussed about instruction sets, it's always helpful to be
exposed some instructions. So here is one example code to select bank for file register access.
Every code in the book follows the Microchip MPLAB assembly programming notations and
regulations (Chapter 3 explains about the MPLAB).

This example is to send an output signal (the term 'output signal' means an either High (+5V) or
Low (0 V)) to a pin of a port. A port has 8 pins and each pin can work either as an input or
output. Each pin's assignment as input or output is determined by a bit assignment of a
corresponding direction assignment file register.

Fig 5. Port register and corresponding direction register

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

9

In practice, if you select a pin of PORTB as your output, then the corresponding direction
assignment file register is TRISB register. TRISA is for PORTA, TRISC for PORTC, TRISD
for PORTD, etc. If you want to use all 8 pins of PORTC as outputs, then you have to reset (or
make 0) all 8 bits of TRISC. When you want to use the pin 1 of PORTC (notes as PORTC<1>)
as input and all others as outputs, then you set TRISC<1> and reset all other bits of TRISC.
Details of I/O port and settings come in next section. The example uses the pin0 of PORTB
(noted as PORTB<0>) as an output. We see that PROTB is in Bank 0 and its corresponding
direction assignment TRISB is in Bank 1.

;Example for Bank Selection
;

list P = 16F877 ;Target processor = 16F877
;STATUS<6:5> will select banks
; 00 bank0
; 01 bank1
; 10 bank2
; 11 bank3
;
;PORTB is in Bank 0
;TRISB is in Bank 1
;
;Declaration of the SFRs –refer the file register map
STATUS EQU 0x03 ;STATUS register is located in 03h (all 4 banks)
PORTB EQU 0x06 ;PORTB in 06h (bank0)
TRISB EQU 0x86 ;TRISB in 86h (bank1)
; When started, bank 0 is automatically selected. So we are at bank 0 now
; In other words STATUS<6:5>=00
; Now we want to access and write a byte information to TRISB
; TRISB is in bank 1
; Select bank1

bsf STATUS, 0x05 ;set the 5th bit of STATUS
;now STATS<6:5>=01

movlw 0x00 ;load 00 to W register
;(W register is more like an accumulator)

movwf TRISB ;store the value of W to TRISB register
;Now all 8 pins of PORTB are used as outputs

; Now let's access PORTB which is located in bank 0
; bank 0 selection

bcf STATUS, 0x05 ;now STATUS<6:5>=00
bsf PORTB, 0x00 ;meaning that set the bit 0 of PORTB

;which means, send +5V output through the
;pin 1 of PORTB.
;If you connect an LED to PORTB<0>, the LED
;will turn on.

; end of example
end

In the example code above, the prefix 0x indicate the number follows is a hexadecimal number.
Also, a semicolon (;) starts a comment line of section. The program should end with end.

6. Input/Output Ports

Since we already have our example code involving PORTB and TRISB, one of the Input/Output
(I/O) ports, it's the best time to explore the I/O ports of 16F877. The I/O Ports are the simplest
of peripherals and this is part of the reasons why the microcontroller was named by PIC, which
stands for Peripheral Interface Controller. They allow the PIC to monitor and control external
devices like sensors and relays. For most of the I/O Ports, the direction of I/O pins (input or

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

10

output) is controlled by the data direction register called TRIS register. A '1' for TRISB<n>
makes the pin PORTB<n> an input, while a '0' makes an output. An easy way to remember of
this input/output setting is that '1' looks like an alphabet I (Input) and '0' an O (Output). From the
previous example code, since all 8 bits of TRISB are reset, all the pins of PORTB are selected as
output:

movlw 0x00
movwf TRISB ;TRISB<7:0>=00000000

;This makes all 8 pins of PORTB output pins

When we want to make only PORTB<1> as output and all other pins as input, we would do the
following code revision.

movlw 0xFD ;which is equivalent to (movlw b'11111101')
movwf TRISB ;TRISB<7:0>=11111101
 ;PORTB<1> as output, all other pins as input

As you saw in the example code and above example, to send a value to any file register including
the port registers like PORTB, PORTC, etc, you load a select number to W register, then move
the content of W register to a file register.

Figure below shows a typical I/O Port and read and writing operations. The writing to an I/O pin
is to send data into a data latch. By the control of the TRIS, the data in available on the pin.

Fig 6. Input (left) and Output (right) operation of a port register.

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

11

Then how do we actually write to the pin? In PIC, writing to a port is writing to a port register.
This means you can send out all 8-bit information to a port, for example PORTB. Then, how do
we write to a port? Writing to a port is to send data in W register to the port. In line with the
first example code, let's write 11110000 to the pins of PORTB.

bsf STATUS, 0x05 ;we are now in bank 1
movlw 0x00 ;load 00 to W register
movwf TRISB ;PORTB pins are set as output
bcf STATUS, 0x05 ;we are now in bank 0
movlw 0xF0 ;W=11110000
movwf PORTB ;PORTB=11110000

;B0=0, B1=0, B2=0, B3=0, B4=1,
;B5=1, B6=1, B7=1

When this code is running inside PIC, you can measure the voltage levels of the pins of PORTB
to check the logical information's physical transformation at the pins. A measurement of B0
would give you 0 volt and a measurement of B6 would indicate +5 volt (or the supply voltage to
the Vdd pin of the PIC chip). So when you connect an LED to B6, you would see a lit LED.

The above example code is to write a byte information. But we can send only 1 bit information
too. This is done by using a bit-oriented instruction instead of a byte-oriented instruction. Let's
turn on only B6 of the PORTB.

bsf STATUS, 0x05 ;we are now in bank 1
movlw 0x00 ;load 00 to W register
movwf TRISB ;PORTB pins are set as output
bcf STATUS, 0x05 ;we are now in bank 0
bsf PORTB, 0x06 ;Set the B6 of PORTB

;All the pins are remained with the
;previous values.

Care should be exercised in port writing. The writing operation to a pin is, since writing is to
write into a latch, actually so-called Read-Modify-Write. In other words, when you want send
out '0' to a pin of a port by saying

bcf PORTB, 0x00

you may think that the CPU will just clear the bit so that the voltage at the pin is 0 volt. What
actually happens is the whole port (PORTB register: 8 bits) is first read (READ), then the bit 0
(single bit) is cleared (MODIFY), then finally new modified value (8 bits including the affected
bit) is written (WRITE) back to the port of PORTB.

Actually, any instruction that depends on a value currently in the register is going to be a Read-
Modify-Write instruction. This includes ADDWF, SUBWF, BCF, BSF, INCF, XORWF, etc.
Instructions that do not depend on the current register value, like MOVWF, CLRF, and so on are
not R-M-W instructions.

Let's consider an LED case. Suppose we make PORTB all outputs and drive the pins low. On
each of the port pins is an LED connected to ground, such that a high output lights it. Let's

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

12

suppose that the processor is running very fast, say, at 20 MHz. Now if we go down the port
setting each pin in order;

bsf PORTB,0x00
bsf PORTB,0x01
bsf PORTB,0x02
.
.
.
 we may see that only the last pin is set, and only the last LED actually turns on. Probably, all
LEDs are dim, kind of half-on.

Fig 7. Example of LEDs on PORTB

This is because the LED takes a while to turn on. As each pin was set, the pin before it was not
turned yet and so was read as a zero. This zero is written back out to the port latch (R-M-W)
which clears the bit you just tried to set the instruction before. So we may have to have a few
ms delays between the operations of LED.

Another important consideration about the output at the pin is not the voltage level but the
amount current can flow by the voltage. It is clear that there would not be any current when the
pin voltage is 0 volt. However, it is not always clear how much current can a source with a +5
volt provide to a connected load like LED. According to the specification of PIC, each pin can
drive maximum 25 mA. In other words, if one device needs more than 25mA from the pin, your
code may work but your pin cannot activate the device. Fortunately, however, most of devices
like LED, relay, motor driver, motor control chip, and others do not require high current driving
inputs. So we do not have to worry about the driving power of PIC, but we surely have to check
when we connect any devise at the output pin of the PIC of this driving limit of 25mA.

Let's further discuss about LED. Most LEDs have their characteristics specified at a current of 20
mA. So now you see the maximum current driving ability of PIC is not just randomly
determined. But we do not light an LED with full brightness; it would shorten the life time of
the LED. So we usually add a resister in series to reduce the amount of current flowing through
the LED. When current flows through an LED, there is a voltage drop across the LED. The
voltage drop is not the same for all types of LEDs, but it is reasonably right to assume that the
voltage drop is about 1.7 – 2.0 volt. Therefore, when an LED with a series resistor is connected

Chapter 2. PIC 16F877 Microcontroller - Overview

Embedded Computing with PIC 16F877 – Assembly Language Approach. Charles Kim © 2006

13

to an output pin, then the resistor picks up about 3 volt. Now we all know that the resistor value
will determine the current through the resistor and the LED. So if you want to have half the
maximum brightness, you would want to have only 10 mA flowing. To make that, your resistor
should be 3/0.01 = 300 ohm. In this selection, the resistor consumes about 30 mW therefore a
resistor wattage rating of 1/8 W is more than enough.

When we read data from a pin, we read it directly from the pin, without the latch involvement.
Reading from input pins is the same as reading from the port to W register in assembly language
programming.

bsf STATUS, 0x05 ;we are now in bank 1
movlw 0xFF ;load FF to W register
movwf TRISB ;PORTB pins are set as input
bcf STATUS, 0x05 ;we are now in bank 0
movf PORTB,0 ;W now holds PORTB<7:0>

;the trailing 0 is for the destination
;of the operation (chapter 3 discusses about
;the direction of operation in detail.)
;In short, 0 indicates the result is stored in W
; 1 stores in a file register (but 1 is a
; default value, so you do not see 1 in the
; code.)

The above byte-oriented file register reading can be replaced to a bit-oriented reading (and
monitoring) if only one input pin is the interest.

bsf STATUS, 0x05 ;we are now in bank 1
movlw 0xFF ;load FF to W register
movwf TRISB ;PORTB pins are set as input
bcf STATUS, 0x05 ;we are now in bank 0
btfss PORTB,0x06 ;test the B6 bit of file register PORTB

;Skip the next line of instruction
;if B6 is set.

goto A ;if B6=1 this line is skipped.
goto B ;

It is enough for an example code with I/O description. And it's about time to discuss more on the
instruction sets of PIC, and the coding and program development environment. Chapter 3 gives
details about the instruction sets of PIC 16F877.

	Chapter 0.pdf
	Chapter 1
	CISC is the Computer architecture prior to mid-1980's notably of IBM 390, Motorola 680x0, and Intel 80x86 processors. The basic fetch-execute sequence is designed to support a large number of complex instructions. And this approach brings complex decod

	Chapter 2
	Chapter 3
	Chapter 4
	Starting MPLAB
	Execute MPLAB.EXE or click on the MPLAB icon to start up the system. You will see MPLAB’s desktop as shown below.
	
	
	
	Creating a New Source File

	Running Your Program
	Creating a Watch Window

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16

