
Chapter 2

Second Quantisation

In this section we introduce the method of second quantisation, the basic framework for
the formulation of many-body quantum systems. The first part of the section focuses on
methodology and notation, while the remainder is devoted to physically-motivated appli-
cations. Examples of the operator formalism are taken from various fields of quantum
condensed matter.

2.1 Notations and Definitions

Second quantisation provides a basic and e�cient language in which to formulate many-
particle systems. As such, extensive introductions to the concept can be found throughout
the literature (see, e.g., Feynman’s text on Statistical Mechanics [10]). The first part
of this section will be concerned with the introduction of the basic elements of second
quantisation, while the remainder of this section will be concerned with developing fluency
in the method by addressing a number of physical applications.

Let us begin by defining the (normalised) wavefunctions | �i and corresponding eigen-
values ✏� of the single-particle Hamiltonian Ĥ, viz.

Ĥ| �i = ✏�| �i.

With this definition, populating states 1 and 2, the symmetrised (normalised) two-particle
wavefunction for fermions and bosons is respectively given by
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In the Dirac bracket representation, we can write
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More generally, a symmetrised N -particle wavefunction of fermions (⇣ = �1) or bosons
(⇣ = +1) is expressed in the form
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20 CHAPTER 2. SECOND QUANTISATION

where n� is the total number of particles in state � (for fermions, Pauli exclusion en-
forces the constraint n� = 0, 1, i.e. n�! = 1) – see Fig. 2.1. The summation runs over
all N ! permutations of the set of quantum numbers {�

1

, . . .�N}, and P denotes the

Enrico Fermi 1901-1954: 1938
Nobel Laureate in Physics for his
demonstrations of the existence of
new radioactive elements produced
by neutron irradiation, and for his
related discovery of nuclear reactions
brought about by slow neutrons.

parity, defined as the number of trans-
positions of two elements which brings
the permutation (P

1

, P
2

, · · · PN) back
to the ordered sequence (1, 2, · · · N).
Note that the summation over per-
mutations is necessitated by quantum
mechanical indistinguishability: for
bosons/fermions the wavefunction has
to be symmetric/anti-symmetric under particle exchange. It is straightforward to confirm
that the prefactor 1p

N !

Q
�

n
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!

normalises the many-body wavefunction. In the fermionic

case, the many-body wavefunction is known as a Slater determinant.
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Figure 2.1: Schematic showing typical occupation numbers for a generic fermionic and bosonic
system.

The expression above makes it clear that this ‘first quantised’ representation of the
many-body wavefunction is clumsy. We will see that the second quantisation provides the
means to heavily condense the representation. Let us define the vacuum state |⌦i, and
introduce a set of field operators a� together with their adjoints a†

�, as follows:1

a�|⌦i = 0,
1pQ
� n�!

a†
�

N

· · · a†
�
1

|⌦i = |�
1

,�
2

, . . .�Ni (2.1)

Physically, the operator a†
� creates a particle in state � while the operate a� annhilates it.

These definitions are far from innocent and deserve some qualification. Firstly, in order
not to be at conflict with the symmetry of the wavefunction, the operators a� have to
fulfill the commutation relations,h

a�, a
†
µ

i
�⇣

= ��,µ,
h
a�, aµ

i
�⇣

= 0,
h
a†
�, a

†
µ

i
�⇣

= 0 (2.2)

1As before, it will be convenient to represent these operators without a circumflex.
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where [Â, B̂]�⇣ ⌘ ÂB̂�⇣B̂Â is the commutator ⇣ = 1 (anticommutator ⇣ = �1) for bosons
(fermions).2 The most straightforward way to understand this condition is to check that
the definition |�, µi = a†

�a
†
µ|⌦i and property |�, µi = ⇣|µ,�i in fact necessitate Eqs. (2.2).

Yet even if (2.2) is understood, the definitions above remain non-trivial. Actually, quite a
strong statement has been made: for any N , the N -body wavefunction can be generated
by an application of a set of N-independent operators to a unique vacuum state. In order to
check that Eqs. (2.1) and (2.2) actually represent a valid definition, including, for instance,
the right symmetrisation and normalisation properties of N -body wave functions, various
consistency checks have to be made.

Based on Eqs. (2.1) and (2.2), a formal definition of the general many-body or Fock
space can now be given as follows. First define FN to be the linear span of all N -
particle states |�

1

, · · ·�Ni = 1pQ
�

n
�

a†
�

N

· · · a†
�
1

|⌦i. The Fock space F is then defined as

the direct sum �1
N=0

FN (see Fig. 2.2).3 A general state |�i of the Fock space is, therefore,

+ a+a
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Figure 2.2: Visualisation of the generation of the Fock-subspaces FN by repeated action of
creation operators onto the vacuum space F

0

.

a linear combination of states with any number of particles. To turn these rather abstract
definitions into a valuable tool for practical computation we need to put them into relation
with standard operations performed in quantum mechanics. In particular we have to
specify how changes from one single-particle basis {�} to another {�̃} e↵ect the operator
algebra {a�}, and in what way standard operators of (many-body) quantum mechanics
can be represented in terms of the a� s:

.Change of basis: Using the resolution of identity, id =
P1

�=0

|�ih�|, the relations |�̃i =P
� |�ih�|�̃i, |�i ⌘ a†

�|⌦i, and |�̃i ⌘ a†
˜�
|⌦i immediately give rise to the transformation

law

a†
˜�

=
P

�h�|�̃ia
†
�, a

˜� =
P

�h�̃|�ia� (2.3)

In many applications we are not dealing with a set of discrete quantum numbers (spin,
quantised momenta, etc.), but rather with a continuum (a continuous position coordinate,
say). In these cases, the quantum numbers are commonly denoted in a bracket notation
a� ; a(x) =

P
�hx|�ia�, and the summations appearing in the transformation formula

above become integrals.

2As a convention, when unspecified by ⇣, the notation [·, ·] will be used to denote the commutator and
{·, ·} the anticommutator.

3Here, the symbol of the direct sum � is used to show that each “submodule”F
N

is linearly indepen-
dent.
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22 CHAPTER 2. SECOND QUANTISATION

Example: The transformation from the coordinate to the momentum representation
in a finite one-dimensional system of length L would read

ak =

Z L

0

dx hk|xia(x), a(x) =
X
k

hx|kiak,

where hk|xi ⌘ hx|ki⇤ = 1

L1/2

e�ikx, cf. Fourier series expansion.

. Representation of operators (one-body): Single particle or one-body operators
Ô

1

acting in a N -particle Hilbert space, FN , generally take the form Ô
1

=
PN

n=1

ôn,
where ôn is an ordinary single-particle operator acting on the n-th particle. A typical

David Hilbert 1862-1943: His work in
geometry had the greatest influence in
that area after Euclid. A systematic study
of the axioms of Euclidean geometry led
Hilbert to propose 21 such axioms and
he analysed their significance. He con-
tributed to many areas of mathematics.

example is the kinetic energy op-
erator T̂ =

P
n

p̂2
n

2m , where p̂n is
the momentum operator acting on
the n-th particle. Other examples
include the one-particle potential
operator V̂ =

P
n V (x̂n), where

V (x) is a scalar potential, the
total spin-operator

P
n Ŝn, etc.

Since we have seen that, by applying field operators to the vacuum space, we can gener-
ate the Fock space in general and any N -particle Hilbert space in particular, it must be
possible to represent any operator Ô

1

in an a-representation.
Now, although the representation of n-body operators is after all quite straightforward,

the construction can, at first sight, seem daunting. A convenient way of finding such a
representation is to express the operator in terms of a basis in which it is diagonal, and
only later transform to an arbitrary basis. For this purpose it is useful to define the
occupation number operator

n̂� = a†
�a� (2.4)

with the property that, for bosons or fermions (exercise), n̂� (a†
�)

n|⌦i = n (a†
�)

n|⌦i, i.e.
the state (a†

�)
n|⌦i is an eigenstate of the number operator with eigenvalue n. When acting

upon a state |�
1

,�
2

, · · ·�Ni, it is a straightforward exercise to confirm that the number
operator simply counts the number of particles in state �,

n̂�|�1,�2, · · ·�Ni = a†
�a�

1pQ
� n�!

a†
�

N

· · · a†
�
1

|⌦i =
NX
i=1

���
i

|�
1

,�
2

, · · ·�Ni.

Let us now consider a one-body operator, Ô
1

, which is diagonal in the orthonormal
basis |�i, ô =

P
� o�|�ih�|, o� = h�|ô|�i. With this definition, one finds

h�0
1

, · · ·�0N |Ô
1

|�
1

, · · ·�Ni =

 
NX
i=1

o�
i

!
h�0

1

, · · ·�0N |�
1

, · · ·�Ni

= h�0
1

, · · ·�0N |
1X
�=0

o�n̂�|�1, · · ·�Ni.
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Since this equality holds for any set of states, we obtain the operator or second quantised
representation Ô

1

=
P1

�=0

o�n̂� =
P1

�=0

h�|ô|�ia†
�a�. The result is straightforward; a

Wolfgang Pauli 1900-1958:
1945 Nobel Laureate in Physics
for the discovery of the Exclu-
sion Principle, also called the
Pauli Principle.

one-body operator engages a single particle
at a time — the others are just spectators.
In the diagonal representation, one simply
counts the number of particles in a state �
and multiplies by the corresponding eigen-
value of the one-body operator. Finally, by
transforming from the diagonal representa-
tion to a general basis, one obtains the result,

Ô
1

=
X
�µ⌫

hµ|�io�h�|⌫ia†
µa⌫ =

X
µ⌫

hµ|ô|⌫ia†
µa⌫ (2.5)

Formally, the one-body operator, Ô
1

, scatters a particle from a state ⌫ into a state µ with
probability amplitude hµ|ô|⌫i.

Examples: The total spin operator is given by

Ŝ =
X
�↵↵0

a†
�↵S↵↵0a�↵0 , S↵↵0 =

1

2
���↵↵0 (2.6)

where ↵ =", # is the spin quantum number, � denotes the set of additional quantum
numbers (e.g. coordinate), and ��� denotes the vector of Pauli spin matrices

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆
, (2.7)

i.e. Ŝz = 1

2

P
�(n̂�" � n̂�#), and Ŝ+ =

P
� a†

�"a�#.
Second quantised in the position representation, the one-body Hamiltonian is given

as a sum of kinetic and potential energy as (exercise)

Ĥ = T̂ + V̂ =

Z
dx a†(x)


p̂2

2m
+ V (x)

�
a(x)

where p̂ = �i~@x. (Note that the latter is easily proved by expressing the kinetic energy
in the diagonal (i.e. momentum) representation — see problem set.)

Finally, the total occupation number operator is defined as N̂ =
R

dx a†(x)a(x).

. Representation of operators (two-body): Two-body operators Ô
2

are needed to
describe pairwise interactions between particles. Although pair-interaction potentials are
straightforwardly included into classical many-body theories, their embedding into con-
ventional many-body quantum mechanics is made awkward by particle indistinguishabil-
ity. As compared to the conventional description, the formulation of interaction processes
within the language of second quantisation is considerably more straightforward.

Initially, let us consider particles subject to the symmetric two-body potential V (x, x0) ⌘
V (x0, x). Acting on two-particle states, the operator is given by

V̂ (2) =
1

2

Z
dx

Z
dx0 |x, x0iV (x, x0)hx, x0|. (2.8)
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Our aim is to find an operator V̂ in second quantised form whose action on a many-body
state gives

V̂ |x
1

, x
2

, · · · xNi =
NX

n<m

V (xn, xm)|x
1

, x
2

, · · · xNi =
1

2

NX
n 6=m

V (xn, xm)|x
1

, x
2

, · · · xNi.

Comparing this expressions with (2.8) one might immediately guess that

V̂ =
1

2

Z
dx

Z
dx0 a†(x)a†(x0)V (x, x0)a(x0)a(x).

That this is the correct answer can be confirmed by applying the operator to a many-body
state. We first note that

a(x0)a(x)|x
1

, x
2

, · · · xNi = a(x0)
NX

n=1

⇣n�1�(x � xn)|x1

, x
2

, · · · (no xn) · · · xNi

=
NX

n=1

⇣n�1�(x � xn)
NX

m=1,(m 6=n)

⌘mn�(x
0 � xm)|x

1

, x
2

, · · · (no xn, xm) · · · xNi

where

⌘mn =

⇢
⇣m�1 if m < n
⇣m if m > n

.

Then, making use of the identity

a†(x)a†(x0)a(x0)a(x)|x
1

, x
2

, · · · xNi

=
NX

m 6=n

⇣n�1⌘mn�(x � xn)�(x
0 � xm)|x, x0, x

1

, x
2

, · · · (no xn, xm) · · · xNi

=
NX

m 6=n

⇣n�1⌘mn�(x � xn)�(x
0 � xm)|xn, xm, x

1

, x
2

, · · · (no xn, xm) · · · xNi

=
NX

m 6=n

�(x � xn)�(x
0 � xm)|x

1

, x
2

, · · · xNi,

multiplying by V (x, x0)/2, and integrating over x and x0, one confirms the validity of the
expression. It is left as an exercise to confirm that the expression, 1

2

R
dx
R

dx0 V (x, x0)n̂(x)n̂(x0)
although a plausible candidate, does not reproduce the two-body operator.

More generally, turning to a non-diagonal basis, it is easy to confirm that a general
two-body operator can be expressed in the form

Ô
2

=
X

��0µµ0

Oµ,µ0,�,�0a†
µ0a†

µa�a�0 (2.9)

Quantum Condensed Matter Field Theory



2.2. APPLICATIONS OF SECOND QUANTISATION 25

where Oµ,µ0,�,�0 ⌘ hµ, µ0|Ô
2

|�,�0i.
In principle one may proceed in the same manner and represent general n-body in-

teractions in terms of second quantised operators. However, as n > 2 interactions rarely
appear, we refer to the literature for discussion.

This completes our formal introduction to the method of second quantisation. To
make these concepts seem less abstract, the remainder of this section is concerned with
the application of this method to a variety of problems.

2.2 Applications of Second Quantisation

Although the second quantisation is a representation and not a solution, its application
often leads to a considerable simplification of the analysis of many-particle systems. To
emphasize this fact, and to practice the manipulation of second quantised operators, we
turn to several applications. The first example is taken from the physics of correlated
electron systems, and will engage the manipulation of fermionic creation and annihilation
operators. The second example involves the study of quantum magnetism within the
framework of boson creation and annihilation operators. However, before getting to these
applications, let us first go back and reinterpret our analysis of phonon modes in the
quantum chain.

2.2.1 Phonons

Although, at the time, we did not specify in which Hilbert space the field operators ak

act, the answer is that the representation space is again a Fock space; this time a Fock
space of phonons or, more formally, of oscillator states. In contrast to what we’ll find for
the fermion case below, the Fock space in the phonon problem does not have an a priori
interpretation as a unification of physical N -particle spaces. However, outgoing from
a vacuum state, it can be constructively generated by applying the oscillator creation
operators a†

k to a unique vacuum state:

. Info. Define a ground or vacuum state |⌦i by requiring that all operators ak annihilate
it. Next define F

0

to be the space generated by |⌦i. We may then introduce a set of states
|ki ⌘ a†k|⌦i, k = 0, 2⇡/L, . . . by applying oscillator creation operators to the vacuum. Physically,
the state |ki has the significance of a single harmonic oscillator quantum excited in mode k. In
other words, all oscillator states k0 6= k are in their ground state, whilst mode k is in the first
exited state. The vector space generated by linear combinations of states |ki is called F

1

. This
procedure can be iterated in an obvious manner. Simply define the space FN to be generated by
all states a†k

1

. . . a†k
N

|⌦i ⌘ |k
1

, . . . , kN i. The spaces FN can be defined more concisely by saying
that they are the eigenspaces of the occupation number operator with eigenvalue N . Finally,
the Fock space is just the direct sum of all FN , F ⌘ �1

N=0

FN . By construction, the application
of any one a†k or ak to states 2 F does not leave F . A closer analysis actually shows that the
corresponding Fock space F represents a proper representation space for the operators ak. A
particle interpretation of the phonon states can now be naturally introduced by saying that the
Fock space sector FN represents a space of bosonic N -particle states. Application of a†k (ak) to
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a state 2 FN creates (annihilates) a particle (cf. Fig. 2.2).
——————————————–

2.2.2 Interacting Electron Gas

As a second example, we will cast the Hamiltonian of the interacting electron gas in
second quantised form. To emphasize the utility of this approach, in the next section we
will use it to explore the phase diagram of a strongly interacting electron gas. In doing
so, we will uncover the limitations of the “nearly free electron theory” of metals.

As we have seen, in second quantised notation, the non-interacting Hamiltonian of a
one-dimensional system of electrons subject to a lattice potential is given by

Ĥ(0) =

Z
dx
X
�

c†�(x)


p̂2

2m
+ V (x)

�
c�(x),

where the fermionic electron field operators obey the anticommutation relations [c�(x), c†�0(x0)]
+

=
� (x � x0) ���0 . The field operators act on the ‘big’ many-particle Fock space, F =
�1

N=0

FN . Each N -particle space FN is spanned by states of the form c†�
N

(xN) · · · c†�
1

(x
1

)|⌦i
where the ‘no-particle’ state or vacuum |⌦i is annihilated by all operators c�(x).

Applying a two-body Coulomb interaction potential, 1

2

P
i 6=j

e2

|x
i

�x
j

| , where xi denotes
the position of the i-th electron, the total many-body Hamiltonian takes the second quan-
tised form

Ĥ = Ĥ(0) +
1

2

Z
dx

Z
dx0
X
��0

c†�(x)c†�0(x0)
e2

|x � x0|c�0(x0)c�(x) (2.10)

. Exercise. Setting V (x) = 0 and switching to the Fourier basis, reexpress the Coulomb

interaction. Show that the latter is non-diagonal, and scatters electrons between di↵erent quasi-
momentum states — see Fig. 2.3.

k’,�’

k’+q,�’ k–q,�

k,�
V(q)

Figure 2.3: Feynman diagram-
matic representation of the two-body
Coulomb interaction.

Having introduced both the field operators
themselves and their representation spaces, we are
in a position to point out certain conceptual analo-
gies between the model theories discussed above.
In each case we have described a physical system
in terms of a theory involving a continuum of op-
erators, �̂(x) (phonons) and c�(x) (electrons). Of
course there are also important di↵erences between
these examples. Obviously, in the phonon theory,
we are dealing with bosons whilst the electron gas
is fermionic. However, by far the most important
di↵erence is that the first example has been a free
field theory. That means that the Hamiltonian
contained field operators at quadratic order but no higher. As a rule, free field theo-
ries can be solved (in a sense that will become clear later on) straightforwardly. The
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fermionic model, however, represents a typical example of an interacting field theory.
There are terms of fourth order in the field operators which arose from the Coulomb
interaction term. As compared to free theories, the analysis of interacting theories is
infinitely harder, a fact that will surely become evident later on.

To develop some fluency in the manipulation of second quantised field operators we
will continue by exploring the ‘atomic limit’ of a strongly interacting electron gas. In
doing so, we will derive a model Hamiltonian which has served as a paradigm for the
study of correlated electron systems.

2.2.3 Tight-binding theory and the Mott transition

According to the conventional band picture of non-interacting electrons, a system with
a half-filled band of valence electron states is metallic. However, the strong Coulomb
interaction of electrons can induce a phase transition to a (magnetic) insulating electron
‘solid’ phase (much as interactions can drive the condensation of a classical liquid into a
solid). To explore the nature of this phenomenon, known as the Mott transition after
Sir Neville Mott (formerly of the Cavendish Laboratory), it is convenient to reexpress the
interacting Hamiltonian in a tight-binding approximation.

!
0

!
1

"
0

"
1

V(x)

x

E
s=1

s=0 "
0A

E

"
0B

"
1A

"
1B

(n!1)a

E
!/ a

E

k0

a

x

(n+1)ana

Figure 2.4: Infinitely separated, each lattice site is associated with a set of states, s = 0, 1, · · ·,
bound to the ion core. Bringing together just two atoms, the orbitals weakly overlap and hy-
bridise into bonding and anti-bonding combinations. Bringing together a well-separated lattice
of atoms, each atomic orbital broadens into a delocalised band of Bloch states indexed by a
quasi-momentum k from the Brillouin zone and an orbital or band index s.

To develop an e↵ective Hamiltonian of the strongly interacting electron system we
begin by considering a lattice of very widely spaced (almost isolated) atoms — the atomic
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limit. In the simplest non-interacting picture, the overlap of the outermost electrons
(albeit exponentially weak) leads to a hybridisation of the electronic orbitals and leads
to the ‘delocalisation’ of a narrow band of extended states (see Fig. 2.4). These Bloch

Felix Bloch 1905-1983: 1952 No-
bel Laureate in Physics for the de-
velopment (with Edward M. Purcell)
of new methods for nuclear magnetic
precision measurements and discov-
eries in connection therewith.

states  ks(x) of Ĥ(0), which carry a
quasi-momentum index k and a band
or orbital index s = 0, 1, · · ·, provide a
convenient basis with which to expand
the interaction. We can, in turn, de-
fine a set of local Wannier orbitals

c†ns|⌦iz }| {
| nsi ⌘ 1p

N

B.Z.X
k2[�⇡/a,⇡/a]

eikna

c†ks|⌦iz}|{
| ksi , | ksi ⌘ 1p

N

NX
n=1

e�ikna| nsi

where N denotes the total number of primitive lattice sites (with periodic boundary
conditions). Here the sum on k runs over the N k-points spanning the Brillouin zone, i.e.
k = 2⇡m/aN with integers �N/2 < m  N/2.

!
n0
(x)

(n!1)a

x

(n+1)ana

Figure 2.5: Diagram illustrating the weak over-
lap of Wannier states in the atomic limit.

If the lattice is very widely spaced, the
Wannier state  ns will di↵er little from the
s-th bound state of an isolated atom at
x = na (see Fig. 2.5). Restricting attention
to the lowest band s = 0, and restoring the
spin degrees of freedom �, the field opera-
tors associated with the Wannier functions
are defined by

c†n�|⌦iz}|{
| ni =

Z L=Na

0

dx

c†�(x)|⌦iz}|{
|xi hx| ni,

i.e.

c†n� ⌘
Z L

0

dx  n(x)c†�(x), c†�(x) =
NX

n=1

 ⇤
n(x)c†n�. (2.11)

Physically, c†n� can be interpreted as an operator creating an electron with spin � at site
n in the lowest band. Since the transformation (2.11) is unitary, it is straightforward
to confirm that the operators cn�, and c†n� obey fermionic anticommutation relations
[cn�, c

†
m�0 ]

+

= ���0�nm.
In the presence of a two-body Coulomb interaction, a substitution of the field operators

in Eq. (2.10) by Wannier operators generates the generalised tight-binding Hamiltonian
(exercise)

Ĥ = �
X
mn

X
�

tmnc
†
m�cn� +

X
mnrs

X
��0

Umnrs c†m�c
†
n�0cr�0cs�0
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where the “hopping” matrix elements are given by

tmn = �h m|Ĥ(0)| ni = � 1

N

X
k

ei(n�m)ka✏k = t⇤nm,

and the interaction parameters are set by (exercise)

Umnrs =
1

2

Z L

0

dx

Z L

0

dx0  ⇤
m(x) ⇤

n(x
0)

e2

|x � x0| r(x
0) s(x).

Physically tmn represents the probability amplitude for an electron to transfer (hop) from
a site m to a site n.

. Exercise. Show that, in the Fourier basis, ck� = 1p
N

P
n e

�inkacn�, the non-interacting

Hamiltonian takes the diagonal form Ĥ(0) =
P

B.Z.
k ✏kc

†
k�ck�.

Expressed in the Wannier basis, the representation above is exact (at least for states
contained entirely within the lowest band). However, for a widely spaced lattice, most of
the matrix elements of the general tight-binding model are small and can be neglected.
Focusing on the most relevant:

. The direct terms Umnnm ⌘ Vmn involve integrals over square moduli of Wannier
functions and couple density fluctuations at di↵erent sites,X

m 6=n

Vmnn̂mn̂n,

where n̂m =
P

� c†m�cm�. Such terms have the capacity to induce charge density
instabilities. Here we will focus on transitions to a magnetic phase where such
contributions are inconsequential and can be safely neglected.

. A second important contribution derives from the exchange coupling which in-
duces magnetic spin correlations. Setting JF

mn ⌘ Umnmn, and making use of the
identity �↵� · ��� = 2�↵���� � �↵����, one obtains (exercise)

X
m 6=n

X
��0

Umnmnc
†
m�c

†
n�0cm�0cn� = �2

X
m 6=n

JF
mn

✓
Ŝm · Ŝn +

1

4
n̂mn̂n

◆
.

Such contributions tend to induce weak ferromagnetic coupling of neighbouring
spins (i.e. JF > 0). Physically, the origin of the coupling is easily understood as
deriving from a competition between kinetic and potential energies. By aligning
with each other and forming a symmetric spin state, two electrons can reduce their
potential energy arising from their mutual Coulomb repulsion. To enforce the anti-
symmetry of the two-electron state, the orbital wavefunction would have to vanish
at x = x0 where the Coulomb potential is largest. This mechanism is familiar from
atomic physics where it is manifest as Hund’s rule.
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. However, in the atomic limit where the atoms are well-separated and the overlap
between neighbouring orbitals is weak, the matrix elements tij and JF

ij are expo-
nentially small in the interatomic separation. By contrast the ‘on-site’ Coulomb or
Hubbard interactionX

m

X
�

Ummmmc†m�c
†
m�0cm�0cm� = U

X
m

n̂m"n̂m#,

where U ⌘ 2Ummmm, increases as the atomic wavefunctions become more localised.

Therefore, dropping the constant energy o↵-set ✏
0

= tnn, in the atomic limit, a strongly
interacting many-body system of electrons can be described e↵ectively by the (single-
band) Hubbard Hamiltonian

Ĥ = �t
X
hmni

X
�

c†m�cn� + U
X
m

n̂m"n̂m# (2.12)

where we have introduced the notation hmni to indicate a sum over neighbouring lattice
sites, and t = tmn (assumed real and usually positive). In hindsight, a model of this struc-
ture could have been guessed on phenomenological grounds from the outset. Electrons
tunnel between atomic orbitals localised on individual lattice sites and experience a local
Coulomb interaction with other electrons.

Deceptive in its simplicity, the Hubbard model is acknowledged as a paradigm of strong
electron correlation in condensed matter. Yet, after forty years of intense investigation,
the properties of this seemingly simple model system — the character of the ground state
and nature of the quasi-particle excitations — is still the subject of heated controversey
(at least in dimensions higher than one — see below). Nevertheless, given the importance
attached to this system, we will close this section with a brief discussion of the remarkable
phenomenology that is believed to characterise the Hubbard system.

As well as dimensionality, the phase behaviour of the Hubbard Hamiltonian is char-
acterised by three dimensionless parameters; the ratio of the Coulomb interaction scale
to the bandwidth U/t, the particle density or filling fraction n (i.e. the average number
of electrons per site), and the (dimensionless) temperature, T/t. The symmetry of the
Hamiltonian under particle–hole interchange allows one to limit consideration to densities
in the range 0  n  1 while densities 1 < n  2 can be inferred by ‘reflection’.

Focussing first on the low temperature system, in the dilute limit n ⌧ 1, the typical
electron wavelength is greatly in excess of the particle separation and the dynamics is free.
Here the local interaction presents only a weak perturbation and one can expect the prop-
erties of the Hubbard system to mirror those of the weakly interacting nearly free electron
system. While the interaction remains weak one expects a metallic behaviour to persist.
By contrast, let us consider the half–filled system where the average site occupancy is
unity. Here, if the interaction is weak U/t ⌧ 1, one may again expect properties remi-
niscent of the weakly interacting electron system.4 If, on the other hand, the interaction
is very strong U/t � 1, site double occupancy is inhibited and electrons in the half–filled

4In fact, one has to exercise some caution since the commensurability of the Fermi wavelength with
the lattice can initiate a transition to an insulating spin density wave state characterised by a small
quasi-particle energy gap — the Slater Instability
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Figure 2.6: Conductivity of Cr–doped
V

2

O
3

as a function of decreasing pres-
sure and temperature. At tempera-
tures below the Mott–Hubbard transi-
tion point (Pc = 3738bar, Tc = 457.5K)
the conductivity reveals hysteretic be-
haviour characteristic of a first order
transition. Reproduced from Limelette
et al., Universality and critical behavior
at the Mott transition, Science 302, 89
(2003).

Sir Neville Mott 1905–1996: 1977
Nobel Laureate in Physics (with
Philip W. Anderson and John H. van
Vleck) for their fundamental theoret-
ical investigations of the electronic
structure of magnetic and disordered
systems.

system become ‘jammed’: migration
of an electron to a neighbouring lattice
site necessitates site double occupancy
incurring an energy cost U . In this
strongly correlated phase, the mutual
Coulomb interaction between the elec-
trons drives the system from a metal
to an insulator.

. Info. Despite the ubiquity of the experimental phenomenon (first predicted in a cele-
brated work by Mott) the nature of the Mott–Hubbard transtion from the metallic to the
insulating phase in the half–filled system has been the subject of considerable debate. In the
original formulation, following a suggestion of Rudolf Peierls, Mott conceived of an insulator
characterised by two ‘Hubbard bands’ with a bandwidth ⇠ t separated by a charge gap U .5

States of the upper band engage site double occupancy while those states that make up the
lower band do not. The transition between the metallic and insulating phase was predicted to
occur when the interaction was su�ciently strong that a charge gap develops between the bands.
Later, starting from the weakly interacting Fermi–liquid, Brinkman and Rice6 proposed that the
transition was associated with the localisation of quasi–particles created by an interaction-driven
renormalisation of the e↵ective mass. Finally, a third school considers the transition to the Mott
insulating phase as inexorably linked to the development of magnetic correlations in the weak
coupling system — the Slater instability.

——————————————–
To summarise, we have shown how the method of second quantisation provides a

useful and e�cient way of formulating and investigating interacting electron systems. In
the next section we will employ methods of second quantisation involving bosonic degrees
of freedom to explore the collective excitations of quantum magnets.

5N. F. Mott, Proc. Roy. Soc. A 62, 416 (1949) — for a review see, e.g. N. F. Mott, Metal–Insulator
transition, Rev. Mod. Phys. 40, 677 (1968) or N. F. Mott, Metal–Insulator Transitions, 2nd ed. (Taylor
and Francis, London, 1990).

6W. Brinkman and T. M. Rice, Application of Gutzwiller’s variational method to the metal–insulator
transition, Phys. Rev. B 2, 4302 (1970).
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2.2.4 Quantum Spin Chains

In the previous section, emphasis was placed on charging e↵ects generated by Coulomb
interaction. However, as we have seen, Coulomb interaction may also lead to the indirect
generation of magnetic interactions of both ferromagnetic and antiferromagnetic charac-
ter. To address the phenomena brought about by quantum magnetic correlations, it is
instructive to begin by considering systems where the charge degrees of freedom are frozen
and only spin excitations remain. Such systems are realized, for example, in Mott insu-
lators where magnetic interactions between the local moments of localised electrons are
mediated by virtual exchange processes between neighbouring electrons. Here, one can
describe the magnetic correlations through models of localised quantum spins embedded
on lattices. We begin our discussion with the ferromagnetic spin chain.

Quantum Ferromagnet

The quantum ferromagnetic chain is specified by the Heisenberg Hamiltonian

Ĥ = �J
X
m

Ŝm · Ŝm+1

(2.13)

where J > 0, and Ŝm represents the quantum mechanical spin operator at lattice site m.

Werner Heisenberg 1901–
1976: 1932 Nobel Laureate in
Physics “for the creation of
quantum mechanics, the appli-
cation of which has, inter alia,
led to the discovery of the al-
lotropic forms of hydrogen”.

In section 2.1 (cf. Eq. (2.6)) the quantum
mechanical spin was represented through
an electron basis. However, one can con-
ceive of situations where the spin sitting at
site m is carried by a di↵erent object (e.g.
an atom with non–vanishing magnetic mo-
ment). At any rate, for the purposes of our
present discussion, we need not specify the
microscopic origin of the spin. All we need to know is (i) that the lattice operators Ŝi

m

obey the SU(2) commutator algebra (for clarity, we have set ~ = 1 in this section)

[Ŝi
m, Ŝj

n] = i�mn✏
ijkŜk

n (2.14)

characteristic of quantum mechanical spins, and (ii) that the total spin at each lattice site
is S.7

Now, due to the positivity of the coupling constant J , the Hamiltonian favours con-
figurations where the spins at neighbouring sites are aligned in the same direction (cf.
Fig. 2.7). A ground state of the system is given by |⌦i ⌘ ⌦m|Smi, where |Smi represents
a state with maximal spin–z component: Ŝz

m|Smi = S|Smi. We have written ‘a’ ground
state instead of ‘the’ ground state because the system is highly degenerate: A simulta-
neous change of the orientation of all spins does not change the ground state energy, i.e.
the system posesses a global spin rotation symmetry.

7Remember that the finite–dimensional representations of the spin operator are of dimension 2S + 1
where S may be integer or half integer. While a single electron has spin S = 1/2, the total magnetic
moment of electrons bound to an atom may be much larger.
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Figure 2.7: Schematic showing the spin con-
figuration of an elementary spin-wave excita-
tion from the spin polarized ground state.

. Exercise. Compute the energy expectation value of the state |⌦i. Defining global

spin operator as Ŝ ⌘
P

m Ŝm, consider the state |↵↵↵i ⌘ exp(i(⇡/2)↵↵↵ · Ŝ)|⌦i. Making use of

the Baker-Hausdor↵ identity, ei�
ˆOÂe�i� ˆO = Â + i�[Ô, Â] + (i�)2

2!

[Ô, [Ô, Â]] + · · · or otherwise,
verify that the state |↵↵↵i is degenerate with |⌦i. Explicitly compute the state |(1, 0, 0)i. Con-
vince yourself that for general ↵↵↵, |↵↵↵i can be interpreted as a state with rotated quantisation axis.

As with our previous examples, we expect that a global continuous symmetry will
involve the presence of energetically low–lying exciations. Indeed, it is obvious that in
the limit of long wavelength �, a weak distortion of a ground state configuration (cf.
Fig. 2.7) will cost vanishingly small energy. To quantitatively explore the physics of these
spin–waves, we adopt a ‘semi–classical’ picture, where the spin S � 1 is assumed to
be large. In this limit, the rotation of the spins around the ground state configuration
becomes similar to the rotation of a classical magnetic moment.

. Info. To better understand the mechanism behind the semi–classical approximation,
consider the Heisenberg uncertainty relation, �Si�Sj  |h[Ŝi, Ŝj ]i| = ✏ijk|hŜki|, where �Si is
the root mean square of the quantum uncertainty of spin component i. Using the fact that

|hŜki|  S, we obtain for the relative uncertainty, �Si/S, �Si

S
�Sj

S  S
S2

S�1�! 0, i.e. for S � 1,
quantum fluctuations of the spin become less important.

——————————————–
In the limit of large spin S, and at low excitation energies, it is natural to describe the

ordered phase in terms of small fluctuations of the spins around their expectation values
(cf. the description of the ordered phase of a crystal in terms of small fluctuations of the
atoms around the ordered lattice sites). These fluctuations are conveniently represented
in terms of spin raising and lowering operators: with Ŝ±

m ⌘ Sx
m± iSy

m, it is straightforward
to verify that

[Ŝz
m, Ŝ±

n ] = ±�mnŜ
±
m, [Ŝ+

m, Ŝ�
n ] = 2�mnŜ

z
m. (2.15)

Application of Ŝ�(+)

m lowers (raises) the z–component of the spin at site m by one. To
actually make use of the fact that deviations around |⌦i are small, a representation
known as the Holstein–Primako↵ transformation8 was introduced in which the spin
operators Ŝ±, Ŝ are specified in terms of bosonic creation and annihilation operators a†

and a:

Ŝ�
m = a†

m(2S � a†
mam)1/2, Ŝ+

m = (2S � a†
mam)1/2am, Ŝz

m = S � a†
mam

8T. Holstein and H. Primako↵, Field dependence of the intrinsic domain magnetisation of a ferromag-
net, Phys. Rev. 58, 1098 (1940).
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Figure 2.8: Measurements of
the spin-wave dispersion re-
lations for the ferromagnet
La

0.7Sr0.3MnO
3

.

The utility of this representation is clear: When the spin is large S � 1, an expansion
in powers of 1/S gives Ŝz

m = S�a†
mam, Ŝ�

m = (2S)1/2a†
m+O(S�1/2), and Ŝ+

m = (2S)1/2am+
O(S�1/2). In this approximation, the one-dimensional Hamiltonian takes the form

Ĥ = �J
X
m

⇢
Ŝz
mŜz

m+1

+
1

2

⇣
Ŝ+

mŜ�
m+1

+ Ŝ�
mŜ+

m+1

⌘�
= �JNS2 + JS

X
m

n
a†
mam + a†

m+1

am+1

�
�
a†
mam+1

+ h.c.
�o

+ O(S0)

= �JNS2 + S
X
m

(a†
m+1

� a†
m)(am+1

� am) + O(S0).

Bilinear in Bose operators, the approximate Hamiltonian can be diagonalised by Fourier
transformation. With periodic boundary conditions, Ŝm+N = Ŝm, am+N = am, defining

ak =
1p
N

NX
m=1

eikmam, am =
1p
N

B.Z.X
k

e�ikmak, [ak, a
†
k0 ] = �kk0 ,

the Hamiltonian for the one dimensional lattice system takes the form (exercise)

Ĥ = �JNS2 +
B.Z.X
k

!ka
†
kak + O(S0) (2.16)

where !k = 2JS(1 � cos k) = 4JS sin2(k/2) represents the dispersion relation of the spin
excitations. In particular, in the limit k ! 0, the energy of the elementary excitations
vanishes, !k ! JSk2 (cf. Fig. 2.8). These massless low–energy excitations, known as
magnons, describe the elementary spin–wave excitations of the ferromagnet. Taking
into account terms at higher order in the parameter 1/S, one finds interactions between
the magnons.
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Quantum Antiferromagnet

Having explored the low-energy excitation spectrum of the ferromagnet, we turn now to
the spin S Heisenberg antiferromagnetic chain,

Ĥ = J
X
m

Ŝm · Ŝm+1

where J > 0. Such local moment antiferromagnetic phases frequently occur in the arena
of strongly correlated electron systems. Although the Hamiltonian di↵ers from its fer-
romagnetic relative ‘only’ by a change of sign, the di↵erences in the physics are dras-
tic. Firstly, the phenomenology displayed by the antiferromagnetic Hamiltonian Ĥ de-
pend sensitively on the geometry of the underlying lattice: For a bipartite lattice, i.e.
one in which the neighbours of one sublattice A belong to the other sublattice B (cf.
Fig. 2.9a), the ground states of the Heisenberg antiferromagnet are close9 to a staggered

Louis Néel 1904–2000: 1970 Nobel
Laureate in physics for fundamental
work and discoveries concerning anti-
ferromagnetism and ferrimagnetism
which have led to important appli-
cations in solid state physics

spin configuration, known as a Néel
state, where all neighbouring spins
are antiparallel. Again the ground
state is degenerate, i.e. a global ro-
tation of all spins by the same amount
does not change the energy. By con-
trast, on non–bipartite lattices such
as the triangular lattice shown in
Fig. 2.9b, no spin arrangement can be found wherein which each and every bond can
recover the full exchange energy J . Spin models of this kind are said to be frustrated.

: A

: B

a) b)

Figure 2.9: (a) Example of a two–dimensional bipartite lattice and (b) a non–bipartite lattice.
Notice that, with the latter, no antiferromagnetic arrangement of the spins can be made that
recovers the maximum exchange energy from each and every bond.

. Exercise. Using only symmetry arguments, specify one of the possible ground states
of a classical three site triangular lattice antiferromagnet. (Note that the invariance of the
Hamiltonian under a global rotation of the spins means that the there is manifold of continuous

9It is straightforward to verify that the classical ground state — the Néel state — is now not an
exact eigenstate of the quantum Hamiltonian. The true ground state exhibits zero–point fluctuations
reminiscent of the quantum harmonic oscillator or atomic chain. However, when S � 1, it serves as a
useful reference state from which fluctuations can be examined.
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degeneracy in the ground state.) Using this result, construct one of the classical ground states
of the infinite triangular lattice.

Returning to the one–dimensional system, we first note that a chain is trivially bi-
partite. As before, our strategy will be to expand the Hamiltonian in terms of bosonic
operators. However, before doing so, it is convenient to apply a canonical transformation
to the Hamiltonian in which the spins on one sublattice, say B, are rotated through 180o

about the x–axis, i.e. Ŝx
B 7! Sx

B, Sy
B 7! �Sy

B, and Sz
B 7! �Sz

B, i.e. when represented
in terms of the new operators, the Néel ground state looks like a ferromagnetic state,
with all spins aligned. We expect that a gradual distortion of this state will produce the
antiferromagnetic analogue of the spin–waves discussed in the previous section.

Represented in terms of the transformed operators, the Hamiltonian takes the form

Ĥ = �J
X
m


Ŝz
mŜz

m+1

� 1

2

⇣
Ŝ+

mŜ+

m+1

+ Ŝ�
mŜ�

m+1

⌘�
.

Once again, applying an expansion of the Holstein–Primako↵ representation, S�
m ' (2S)1/2a†

m,
etc., one obtains the Hamiltonian

Ĥ = �NJS2 + JS
X
m

h
a†
mam + a†

m+1

am+1

+ amam+1

+ a†
ma†

m+1

i
+ O(S0) .

At first sight the structure of this Hamiltonian, albeit bilinear in the Bose operators, looks
akward. However, after Fourier transformation, am = N�1/2

P
k e�ikmak, it assumes the

more accessible form (exercise)

Ĥ = �NJS(S + 1) + JS
X
k

( a†
k a�k )

✓
1 �k
�k 1

◆✓
ak

a†
�k

◆
+ O(S0),

where �k = cos k.
Quadratic in the bosonic operators, the Hamiltonian can be again diagonalised by

N. N. Bogoliubov 1909-1992: Theoretical
physcists aclaimed for his works in nonlinear
mechanics, statistical physics, theory of super-
fluidity and superconductivity, quantum field
theory, renormalization group theory, proof of
dispersion relations, and elementary particle
theory.

canonical transformation, i.e.
a transformation of the field
operators that preserves the
commutation relations. In
the present case, this is
achieved by a Bogoliubov
transformation . ✓

↵k

↵†
�k

◆
=

✓
cosh ✓k � sinh ✓k

� sinh ✓k cosh ✓k

◆✓
ak

a†
�k

◆
. (2.17)

. Exercise. Construct the inverse transformation. Considering the commutation relations
of the operators a↵, where a1 = a and a

2

= a†, explain why the Bogoliubov transformation is of
the form of a Lorentz transformation. If operators a obeyed fermionic commutation relations,
what form would the transformation take?
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Figure 2.10: Experimentally obtained
spin–wave dispersion of the high–Tc par-
ent compound LaCuO

4

— a prominent
spin 1/2 antiferromagnet. Figure repro-
duced from R. Coldea et al., Phys. Rev.
Lett. 86, 5377 (2001).

Applying the Bogoliubov transformation, and setting tanh 2✓k = ��k, the Hamiltonian
assumes the diagonal form (exercise)

Ĥ = �NJS2 + 2JS
X
k

| sin k|↵†
k↵k (2.18)

Thus, in contrast to the ferromagnet, the spin–wave excitations of the antiferromagnet
exhibit a linear dispersion in the limit k ! 0. Surprisingly, although developed in the
limit of large spin, experiment shows that even for S = 1/2 spin chains, the integrity of
the linear dispersion is maintained (see Fig. 2.10).

2.2.5 Bogoliubov theory of the weakly interacting Bose gas

Ealier, we explored the influence of interactions on the electron gas. When interactions
are weak, it was noted that the elementary collective excitations are reminiscent of the
excitations of the free electron gas — the Fermi-liquid phase. When the interactions are
strong, we discussed a scenario in which the electron liquid can condense into a solid
insulating phase — the Mott transition. In the following section, we will discuss the
properties of a quantum liquid comprised of Bose particles — the weakly interacting
dilute Bose gas.

Let us consider a system of N Bose particles confined to a volume Ld and subject to
the Hamiltonian

Ĥ =
X
k

✏
k

a†
k

a
k

+
1

2

Z
ddx ddx0 a†(x)a†(x0)V (x � x0)a(x0)a(x)

where ✏(0)
k

= ~2k2

2m , and V (x) denotes a weak repulsive pairwise interaction. In the case
of a Bose gas, this assumption is connected with the fact that, even for infinitesimal
attractive forces, a Bose gas cannot stay dilute at low temperatures. In Fourier space, the
corresponding two-body interaction can be expressed as (exercise)

ĤI =
1

2Ld

X
k,k0,q

V
q

a†
k+q

a†
k

0a
k

a
k

0
+q

,

Quantum Condensed Matter Field Theory



38 CHAPTER 2. SECOND QUANTISATION

where a
k

= 1

Ld/2

R
ddx eik·xa(x), and V

q

=
R

ddx e�iq·xV (x). In the following, we will be
interested in the ground state and low-lying excitations of the dilute system. In this case,
we may distill the relevant components of the interaction and considerably simplify the
model.

In the ground state, the particles of an ideal (i.e. non-interacting) Bose gas condense
into the lowest energy level. In a dilute gas, because of the weakness of the interactions,
the ground state will di↵er only slightly from the ground state of the ideal gas, i.e. the
number of particles N

0

in the condensate will still greatly exceed the number of particles
in other levels, so that N � N

0

⌧ N . Since the number of particles in the condensate is
specified by the number operator N̂

0

= a†
k=0

ak=0

= O(N) � 1, matrix elements of the
Bose operators scale as a

0

⇠ O(
p

N
0

).10 This means that, from the whole sum in the
interaction, it is su�cient to retain only those terms which involve interaction with the
condensate itself. Taking V

q

= V constant, one obtains (exercise)

ĤI =
V

2Ld
N̂2

0

+
V

Ld
N̂

0

X
k 6=0


a†
k

a
k

+ a†
�k

a�k

+
1

2

⇣
a�k

a
k

+ a†
k

a†
�k

⌘�
+ O(N0

0

).

Terms involving the excited states of the ideal gas have the following physical inter-
pretation:

. V a†
k

a
k

represents the ‘Hartree-Fock energy’ of excited particles interacting with the
condensate;11

. V (a�k

a
k

+ a†
k

a†
�k

) represents creation or annihilation of excited particles from the
condensate. Note that, in the present approximation, the total number of particles
is not conserved.

Now, using the identity N = N̂
0

+
P

k 6=0

a†
k

a
k

to trade for N̂
0

, the total Hamiltonian
takes the form

Ĥ =
V nN

2
+
X
k 6=0

⇣
✏(0)
k

+ V n
⌘⇣

a†
k

a
k

+ a†
�k

a�k

⌘
+

V n

2

⇣
a�k

a
k

+ a†
k

a†
�k

⌘�
,

where n = N/Ld represents the total number density. This result may be compared
with that obtained for the Hamiltonian of the quantum antiferromagnet in the spin
wave approximation. Applying the Bogoluibov transformation (2.17): a

k

= cosh ✓
k

↵
k

�
sinh ✓

k

↵†
�k

, etc., with (exercise)

sinh2 ✓
k

=
1

2

 
✏(0)
k

+ V n

✏
k

� 1

!
,

where ✏
k

= [(✏(0)
k

+ V n)2 � (V n)2]1/2, one obtains

Ĥ =
V nN

2
� 1

2

X
k 6=0

(✏(0)
k

+ nV � ✏
k

) +
X
k 6=0

✏
k

↵†
k

↵
k

.

10Note that the commutator [a0, a
†
0] = 1 is small as compared to a0 and a†0 allowing the field operators

to be replaced by the ordinary c-number
p
N0.

11Note that the contact nature of the interaction disguises the presence of the direct and exchange
contributions.
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From this result, we find that the spectrum of low energy excitations scales linearly as
✏
k

' ~c|k| where the velocity is given by c = (V n/m)1/2 while, at high energies (when
k ⇠ k

0

= mc/~), the spectrum becomes free particle-like.12

. Info. Since the number operator ↵†
k

↵
k

can assume only positive values, one can infer
the ground state wavefunction from the condition ↵

k

|g.s.i = 0. Noting that the Bogoliubov

transformation can be written as ↵
k

= Ua
k

U�1, with U = exp[
P

k 6=0

✓k
2

(a†
k

a†�k

� a
k

a�k

)]

(exercise), one can obtain the ground state as |g.s.i = U |�i, where |�i = (a†
k=0

)N |⌦i denotes
the ground state of the ideal Bose gas and |⌦i the vacuum. The proof follows as

0 = a
k 6=0

|�i = U�1

↵
kz }| {

Ua
k

U�1 U |�i.

For the contact interaction, the corresponding ground state energy diverges and must be ‘regu-

larised’.13 In doing so, one obtains E
0

= V nN
2

� 1

2

P
k 6=0

(✏(0)
k

+ nV � ✏
k

� (nV )

2

2✏(0)k

) which, when

summed over k, translates to the energy density

E
0

Ld
=

n2V

2


1 +

128

15
p
⇡
(na3)1/2

�
,

where a ' (m/4⇡~2)V denotes the scattering length of the interaction.
Finally, one may estimate the depletion of the condensate due to interaction.

N � N
0

N
=

1

N

X
k 6=0

hg.s.|a†
k

a
k

|g.s.i = 1

N

X
k 6=0

sinh2 ✓
k

=
1

n

Z
d3k

(2⇡)3
sinh2 ✓

k

=
1

3⇡2n
k3
0

,

i.e. ca. one particle per “coherence length” ⇠ ⇠ 1/k
0

. Recast using the scattering length, one
obtains

N � N
0

N
=

8

3
p
⇡
(na3)1/2.

——————————————–
How do these prediction compare with experiment?14 When cooled to temperatures

below 4K, 4He condenses from a gas into a liquid. The 4He atoms obey Bose statistics
and, on cooling still further, the liquid undergoes a transition to a superfluid phase in
which a fraction of the Helium atoms undergo Bose-Einstein condensation. Within this
phase, neutron scattering can be used to probe the elementary excitations of the system.
Fig. 2.11 shows the excitation spectrum below the transition temperature. As predicted
by the Bogoluibov theory, the spectrum of low-energy excitations is linear. The data also
show the limitations of the weakly interacting theory. In Helium, the steric interactions
are strong. At higher energy scales an important second branch of excitations known as
rotons appear. The latter lie outside the simple hydrodynamic scheme described above.

12Physically, the e↵ect of the interaction is to displace particles from the condensate even at T = 0.
13For details see, e.g., Ref. [1].
14For a review of the history of Bose-Einstein condensation see, e.g. Gri�n, cond-mat/9901123
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Figure 2.11: The dispersion curve for
4He for the elementary excitations at
1.1K (from Cowley and Woods 1971).

While studies of 4He allow only for the indirect manifestations of Bose-Einstein con-
densation (viz. superfluidity and elementary excitations of the condensate), recent investi-
gations of dilute atomic gases allow momentum distributions to be explored directly. Fol-
lowing a remarkable sequence of technological breakthroughs in the 90s, dilute vapours of
alkali atoms, confined in magnetic traps, were cooled down to extremely low temperatures,
of the order of fractions of microkelvins! Here the atoms in the vapour behave as quantum

Steven Chu 1948-, Claude
Cohen-Tannoudji 1933-
and William D. Phillips
1948-: 1997 Nobel Laureates
in Physics for development
of methods to cool and trap
atoms with laser light.

particles obeying Bose or
Fermi statistics depend-
ing on the atomic num-
ber. By abruptly re-
moving the trap, time-of-
flight measurements al-
low the momentum dis-
tribution to be inferred
directly (see Fig. 2.12a). Below a certain critical temperature, these measurements re-
vealed the development of a sharp peak at low momenta in Bose gases providing a clear
signature of Bose-Einstein condensation.

In the condensed phase, one may measure the sound wave velocity by e↵ecting a
density fluctuation using the optical dipole force created by a focused, blue-detuned laser
beam. By measuring the speed of propagation of the density fluctuation, the sound wave
velocity can be inferred. The latter, shown in Fig. 2.12b, shows a good agreement with
the theoretical prediction of the Bogoliubov theory.

2.3 Summary

This concludes our discussion of the second quantisation and its applications to problems
in many-body quantum mechanics. Beyond qualitative discussions, the list of applications
encountered in this chapter involved problems that were either non–interacting from the
outset, or could be reduced to a quadratic operator structure by a number of suitable
manipulations. However, we carefully avoided dealing with interacting problems where
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Figure 2.12: Images of the velocity distribution of rubidium atoms by Anderson et al. (1995),
taken by means of the expansion method. The left frame corresponds to a gas at a temperature
just above condensation; the center frame, just after the appearance of the condensate; the right
frame, after further evaporation leaves a sample of nearly pure condensate. The field of view is
200µm⇥ 200µm, and corresponds to the distance the atoms have moved in about 1/20s. Speed
of sound, c vs. condensate peak density N

0

for waves propagating along the axial direction in the

condensate. Data taken from Kurn et al. (1997) compared to theoretical prediction c ⇠ N1/2
0

.

no such reductions are possible. Yet it should be clear already at this stage of our dis-
cussion that completely or nearly solvable systems represent only a small minority of the
systems encountered in condensed matter physics. What can be done in situations where
interactions, i.e. operator contributions of fourth or higher order, are present?

Generically, interacting problems of many-body physics are either fundamentally inac-
cessible to perturbation theory, or they necessitate perturbative analyses of infinite order
in the interaction contribution. Situations where a satisfactory result can be obtained by
first or second order perturbation theory are exceptional. Within second quantisation,
large order perturbative expansions in interaction operators leads to complex polynomials
of creation and annihilation operators. Quantum expectation values taken over such struc-
tures can be computed by a reductive algorithm, known as Wick’s theorem. However,
from a modern perspective, the formulation of perturbation theory in this way is not very
e�cient. More importantly, problems that are principally non-perturbative have emerged
as a focus of interest. To understand the language of modern quantum condensed matter,
we thus need to develop another layer of theory, known as field integration. However,
before discussing quantum field theory, we should understand how the concept works in
principle, i.e. on the level of point particle quantum mechanics. This will be the subject
of the next chapter.
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