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Chapter 2

Semiconductor Heterostructures

2.1 Introduction

Most interesting semiconductor devices usually have two or more different kinds of semiconductors. In
this handout we will consider four different kinds of commonly encountered heterostructures:

a) pn heterojunction diode

b) nn heterojunctions

¢) pp heterojunctions

d) Quantum wells, quantum wires, and quantum dots

2.2 A pn Heterojunction Diode

Consider a junction of a p-doped semiconductor (semiconductor 1) with an n-doped semiconductor
(semiconductor 2). The two semiconductors are not necessarily the same, e.g. 1 could be AlGaAs and 2
could be GaAs.We assume that 1 has a wider band gap than 2. The band diagrams of 1 and 2 by
themselves are shown below.
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2.2.1 Electron Affinity Rule and Band Alignment:

How does one figure out the relative alignment of the bands at the junction of two different
semiconductors? For example, in the Figure above how do we know whether the conduction band edge of
semiconductor 2 should be above or below the conduction band edge of semiconductor 1? The answer
can be obtained if one measures all band energies with respect to one value. This value is provided by the
vacuum level (shown by the dashed line in the Figure above). The vacuum level is the energy of a free
electron (an electron outside the semiconductor) which is at rest with respect to the semiconductor. The
electron affinity, denoted by ¥ (units: eV), of a semiconductor is the energy required to move an electron

from the conduction band bottom to the vacuum level and is a material constant. The electron affinity rule
for band alignment says that at a heterojunction between different semiconductors the relative alignment
of bands is dictated by their electron affinities, as shown in the Figure above. The electron affinity rule
implies that the conduction band offset at a heterojunction interface is equal to the difference in the
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electron affinities between the two semiconductors. This is shown in the band diagram below. According
to the electron affinity rule the conduction band offset AE, is given as,
= AE; = qlx2 - 11)

The valence band offset is then,
= AE, =(Eq, - Eg, )- AE; = AEy — AE,

Note that,
= AE; +AE, = AE
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Depending upon the difference between y4 and yo we could have type I, type II, or type III
heterojunction interfaces, as shown below.

Type | interface
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The affinity rule does not always work well. The reason is that it attempts to use a bulk property of
semiconductors to predict what happens at the interfaces and there is no good reason it should work in the
first place. Usually, the conduction band offsets AE at interfaces are determined experimentally.

Now we get back to the pn heterojunction and assume that:

1) We have a type I interface
i) The conduction band offset AE, is known.
1ii) The doping in semiconductor 1 is p-type and equal to N, and the doping in semiconductor 2

is n-type and equal to Ny and all dopants are ionized.
The resulting band alignment is shown below:

------------------------------------------------------- Vacuum
level
I ax1
Ec1 AE qx2
4 | £ Ecz
Ep
\
E
En ; AE, v
Ev1
I N
0 X

2.2.2 A pn Heterojunction Diode in Thermal Equilibrium:

Clearly the situation shown above in the Figure is not a correct description at equilibrium; the Fermi level
is not flat and constant throughout the structure. Let us see how this equilibrium gets established when a
junction is formed. There are more electrons in the region x > 0 (wheren = n,, = Ny ) than in the region

2
n.
x<0 (wheren=np, = —’1). Similarly, there are more holes in the region x <0 (where
a
n?
P = Ppo =Ng) than in the region x >0 (where p = pp, = l\%). Consequently, electrons will diffuse
d

from the n-side into the p-side and holes will diffuse from the p-side into the n-side. Electrons on the n-
side are contributed by the ionized donor atoms. When some of the electrons near the interface diffuse
into the p-side, they leave behind positively changed donor atoms. Similarly, when the holes near the
interface diffuse into the n-side, they leave behind negatively changed acceptor atoms. As the electron
and holes diffuse, a net positive charge density appears on the right side of the interface ( x > 0) and a net
negative charge density appears on the left side of the interface (x < 0). This situation is shown below.

The charged regions are called depletion regions because they are depleted of the majority carriers. As a
result of the charge densities on both sides of the interface, an electric field is generated that points in the
negative x-direction (from the donor atoms to the acceptor atoms). The drift components of the electron
and hole currents due to the electric field are in direction opposite to the electron and hole diffusive
currents, respectively. As more electrons and holes diffuse, the strength of the electric field increases until
the drift components of the electron and hole currents are exactly equal and opposite to their respective
diffusive components. When this has happened the junction is in equilibrium.
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1 (p-doped)

+ + + +
+ + + +

2 (n-doped)

X

Recalling that electrostatic potentials need to be added to the energies in band diagrams, the equilibrium
band diagram looks like as shown below. Note that band bending that occurs inside the depletion regions
reflecting the presence of an electric field and a corresponding electrostatic potential. Also note that the
Fermi level in equilibrium is flat and constant throughout the device. The vacuum level also bends in

response to the electric field, as shown.
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Band bending implies an electric field and, therefore, a potential difference across the junction. This
“built-in” potential V}; can be found as follows. If we look at the “raw” band alignment (i.e. before

considering any band bending) qV}; must the difference in the Fermi levels on the two sides of the
junction. This is because the bands need to band by this much so that the Fermi level is constant and flat

throughout the device in equilibrium.

qVei =Er2 —Efq

Since,

Ny
Ei;» —E.o =KT In
f2 —Ec2 [N J

c2

EV1 —Ef1 =KT In[

Nq

v
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Adding these equations we get,

qQVpi =Ef2 —Ef1 =Eco —Eyq +KT|”(M]
NCZNV1

NN
qVpi = Egq—AE + KT|n£a—dJ
NcaNy1

=Egp +AE, +KT In(MJ.
N02Nv1

2.2.3 The Depletion Approximation:

From the band diagram, one can see that the majority carrier concentrations in the depletion regions on
both sides of the junction are going to be small because the difference between the Fermi level and the
band edges becomes large. The depletion approximation assumes that the majority carrier concentration is
exactly zero in the depletion regions of thicknesses X, and X, on the p-side and n-side of the junction,

respectively. It is a good approximation to calculate the junction electric field and potential. The net

charge density in the depletion regions is then due to the ionized donors and acceptors and is as shown
below. The net charge on both sides of the junction has to be equal and opposite,

gNgXn =aqNaxp

Ax)
+qu
+
-X
P
0
- X X
-qNa
+qNy 0<x<x,
p(x)=1-gN, ~Xp <x<0
0 elsewhere

Knowing the charge density one can calculate the electric field and the potential drops using Gauss’s law,

+M O<x< Xn
&2
N
E(X)= _M _ngx<0
&1
0 elsewhere
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Potential drop on n-side is,
Ngx3
25y
Potential drop on p-side is,
Ngx g
284

q
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This implies,

2 2
Naxp q NaXp

Vi =
bi q 282 26‘1
Using the above equation with gNg X, = gNaX, gives the thicknesses of the depletion regions,
_ A
2 N Vi 2
N (61N, +£2Ng )_
_ A
N Vi 2
Xp = Z6‘16‘ —a bi

2
q Ny (61Ng + 2Ny )
Total thickness of depletion region is,

1

Wesx +x. |2 152 (Na+Nd)2V, 2
TP g (eiNg +eaNg)  NgNg o

Charge (per unit area) on one side of the junction, given by qNg X, =qNyx, = Q. is,
1
Q- |:2q £1€2 NaNd Vb':|2
- |
(64Ng +&2Ng)

2.2.4 Quasi-Neutral Regions:

The n and p regions outside the depletion region are called quasi-neutral regions because they always

remain, to a very good approximation, charge neutral even when the device is biased. This charge-neutral

property is generally true for all good conductors. Significant charge densities cannot be present inside

good conductors because if a charge density were present then it would generate electric fields which

would in turn generate drift currents that would neutralize the charge density. On length scales longer

than the screening length and on time scales longer than the dielectric relaxation time, good conductors

are charge neutral.

2.2.5 A Reverse Biased pn Heterojunction:

Now we attach metal (ohmic) contacts to the n and p sides, and apply a voltage V on the p contact w.r.t.

the n contact, as shown below. We assume that, V' <0 (reverse bias).

- -+ +
1(p-doped) |_. _ [+ + 2 (n-doped)
- -+ +
[
-w - X w
p xp 0 n n X
+ -
(V)
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We will also assume that the applied potential falls completely across the depletion region (i.e. across the
junction) and not across the conductive n or p regions (quasi-neutral regions) or across the metal contacts.
The effect of the applied voltage is taken into account by changing the electrostatic potential across the
depletion region from Vj; to Vj; —V . Therefore, the depletion region width will change (and increase

because V <0) to accommodate the added potential,

1

(2. Ny Wi-V) 2
xnlV)= i w12 Ng (4Ng + 2Ny ) |
_ ( )_1
2 N Vi -V 2
V)i=l2% Na bi
Xp( ) K 172 Ng (61Ng +£2Ny) |

The peak electric field in the junction will also increase and the resulting band diagram will look as
shown in the Figure below.

qxa \\
\
E. N Vacuum
NS . level
Eg1 AEc N At/ N
Es, \ aqx2
N\
En -qV \ E.
Ep
AEy
E,,
[
X, 0 Xn X

Note that now since an external voltage has been applied the device is no longer in equilibrium and the
Fermi levels on the n-side and the p-side are not the same. The splitting of the Fermi levels is exactly
equal to the applied voltage,

qV = Erz — Ef
A current will also flow through the device but we will postpone the discussion of the current till we
discuss the forward biased case below.
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2.2.6 A Forward Biased pn Heterojunction:

Now we consider the case V' >0 (forward bias). We will as before assume that the applied potential falls
completely across the depletion region (i.e. across the junction) and not across the conductive n or p
regions (quasi-neutral regions) or across the metal contacts. The effect of the applied voltage is taken into
account by changing the electrostatic potential across the depletion region from Vp; to V,; —V.

Therefore, the depletion region width will change (and decrease because V >0) to accommodate the
added potential,
1

(2 Ny Wi-Vv) |2
%)= q 172 Ng (4Ng +&2Ng )

I - 12
Xp(V)Z 38182&—(\/[), V)

g7 Ny (61Ng +62Ng)
The peak electric field in the junction will also decrease and the resulting band diagram will look as
shown in the Figure below.
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Note again that since an external voltage has been applied the device is no longer in equilibrium and the
Fermi levels on the n-side and the p-side are not the same. The splitting of the Fermi levels is exactly
equal to the applied voltage,

qV = Efrz - Ef

2.2.7 Minority Carrier Injection and Current Flow:

Calculating current flow in pn hetero junction diodes is complicated. The model presented here, called the
drift-diffusion model, is valid only if the band offsets AE, and AE, are small (compared to KT ). The
essential assumption in the drift-diffusion is that carrier drift and diffusion in the n-doped and p-doped
regions (not including the depletion regions) are the main bottleneck for electron transport and transport
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through the depletion regions or at the heterointerface are not the main bottlenecks. These assumptions do
not always hold. Nevertheless, drift-diffusion model provides some useful insights.

The current flow in a forward biased pn device can be understood as follows. In equilibrium, the drift
components of both the electron and hole currents balanced the respective diffusive components. When a
forward bias is applied, the electric field in the junction is reduced and therefore the drift components of
the electron and hole currents also decrease. The diffusion components of the electron and hole currents
are then larger than the drift components and, therefore, a net current will flow through the device and this
current will be diffusive in nature. Below we calculate this current.

The assumption here is that the main bottleneck to electron and hole transport in the device comes from
the quasi-neutral regions and electron and hole transport through the depletion region (whether due to
drift or diffusion) is not the bottleneck. Consequently, one may assume that the electrons in the depletion
region are in equilibrium with the electrons in the n-doped side (and share the same Fermi level) and
holes in the depletion region are in equilibrium with the holes on the p-doped side (and share the same
Fermi level). This is the reason why the Fermi levels Efq and Efo, as drawn in the band diagram under

forward bias, are extended into the depletion regions. We can therefore write,

n=xp) = Ne: o Er2(Xp ) EcCxp) KT _ - (Eroxp)-Ecl-xp) KT (Eral-xp)-Ern(-xp)) KT

n2
=i gaVIKT _py ) gdVIKT
Na

p(—Xp) — Nv1 e(Ev(_Xp)—Eﬂ(_Xp))/KT =N

a
And,
n(x,)=Ngp e(EfZ(Xn)—EC(Xn))/KT N,

(X)) = N,y e EvCn-EnCm)VKT _ N o o(Ev(xn)-Er2(xn)) KT g (Era(xn)-Eri(xa)) KT

— ﬁ edV/KT _
Ng

When a voltage is applied across the junction, the electric field in the depletion region is reduced, and the
diffusion currents exceed the drift currents. Electrons diffuse from the n-side through the depletion region
into the p-side and holes diffuse from the p-side through the depletion region into the n-side. What
happens to the electrons once they make it to the p-side? They keep diffusing but they suddenly find a
great number of holes with which to recombine. The generation-recombination rate of these “injected”
electrons (which are minority carriers) on the p-side is given by,

Re(x)_Ge(x)= ”(Xi%

By assumption, there is no potential drop across the quasi-neutral p-doped region, therefore the electric
field in this region is (almost) zero and the electron current is entirely due to diffusion,

Pro qu/KT

on
Je(x)qum OE(X)'
Since,
on 10
E—E&Je(x)—Ge(x)—Re(x)
And,
on

Tl =0 (no time dependence in steady state)
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We get,
2 —
= Degq ¢ ngX) = n(X) o
15).4 Teq

- 82n(x) n(x)- Npo

2 2
15).4 L o

Leq =+/De1 7e1 = Minority carrier diffusionlenght
Similarly, for the holes injected into the n-side the corresponding equation is,

a2p(x) _ p(x)_pno

2 2
15)4 L ho

Lpp =+/Dpa th2

To solve the above two equations we need appropriate boundary conditions. Consider first the electrons
on the p-side. One boundary condition is,

V/KT
n(—Xxp)="np, €7 /
The second boundary condition is usually obtained by assuming that at the left most metal contact the

recombination time is extremely fast so that the electron density must equal the equilibrium density,
n(—Wp )=n po

The solution for the electron density is then,

] Wy +x
sinh 1 qV

e eﬁ—1 —WPSXS—XP
Sn‘]h(vvp_xpj

n(x)=npe +npe

el
Similarly, for the holes on the n-side one obtains,

sinh(W” - XJ qv
Lpo Pes

P(X) =Pno t Pno
Sn‘]h(VVn_XnJ
h2

These solutions are sketched in the Figure below.

p(x)

n(x)

- Wp - xp 0 X n Wn X

The electron current density Jg(x) (due to diffusion) can now be found on the p-side,



Semiconductor Optoelectronics (Farhan Rana, Cornell University)

on(x)
Jaox)=qgD
e( ) q et Ox
Wp + X
cosh v
n? D Le 7
_ N_”Lm o KT _1 W, < x<-xp,
-X
a -et sinh[p pJ
el

The hole current density on the n-side is,

0
Jp(x)=-qDpp, %

w.,, —
2 cosh[ h XJ qv
_gq Nia Dpo Lp2 oKT _1
Ny L -
d Ln2 sinh[W” XnJ
n2

The total current density is the sum of the electron and the hole density,

Jr =Je(x)+Jn(x)
The total current density must be independent of position in the steady state. We can find J if we know
both Jg (X) and Jy, (X ) at any one location. If one ignores recombination and generation processes inside

the depletion region then the electron and hole current density must be constant throughout the depletion
region,

Je(_Xp):Je(Xn)zJe(X) {-xp <x<xp}
Jh(—xp):Jh(xn):Jh(x) {—xp <X<Xxp}

X, < x<W,

But,

2 qv
na D W, —x -
Je(—xp)zq—’1 e coth( P pJ eKT —1
el

d Ln2
2 2 qv
W, - x n; - -
= Jr =q{-1 Des Coth( P pj i2 Dh2 coth(W ”J eKT 1
a Le Lo Ng Lpo Lpo

The current in the external circuit is,
av
I =AJr =1, eKT -1

where,

2 2

no. D W, —x n; _

lo = qA 1 =€l coth( P pJ+ i2 Dh2 coth(W” X”J
Ng Le Le h2



Semiconductor Optoelectronics (Farhan Rana, Cornell University)

2.2.8 Majority Carrier Dynamics and Quasi-Neutrality:
We know n(x) for — Wp <X <—Xp. Since n(x) in this range is greater than the equilibrium electron

density (n po) the presence of these injected electrons can create charge imbalances, resulting in net

negative charge density on the p-side and cause large electric fields. But this never actually happens
because the majority carriers (i.e. the holes) move to quickly screen these injected carriers and maintain
charge neutrality (“quasi neutrality” as it is called). Therefore, in steady state,

Ap(x)= p(x)- N =An(x)=n(x)-np, -W, <x<-x,
and similarly on the n-side,

An(x)=n(x)=Ng = Ap(x) = p(x)=Pro  Xp <X < W,
The excess majority carrier concentration therefore equals the excess minority carrier concentration to
maintain charge neutrality. On the p-side the hole currents is,

oplx
I (x) = ol lngE(x) g Dy )
=Jr —Je (X )

We know Jg(x) on the p-side and we know J7 and therefore we can calculate Jp,(x). On the n-side,

the electron current is,
an(x)
ox

Je(x)= q”(x)fueZE(X)+ qDe>

=Jr = Jn(x)
Again, we know Jj,(x) on the n-side and we can calculate Jp,(x). All the current so obtained densities
are plotted in the Figure below.

Je(X
J h(X )

- Wp - Xp 0 X n Wn X

We can now sketch the electron and hole Fermi levels through the entire device in forward bias. These are
shown in the Figure below. As the injected minority carries reach equilibrate with the majority carriers,
the minority carrier Fermi level approaches the majority carrier Fermi level.
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2.2.9 Cuurent Flow in Reverse Biased pn Heterojunction:

We now go back to the case of the reverse biased pn heterojunction and study the current flow. Note that
all formulas derived for the forward bias case are also applicable to the reverse bias case. The band
diagram in reverse bias is then as shown below.
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The expression for the total current is therefore also valid for the reverse bias case,

qv
I =1, eKT —1
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When the reverse bias voltage is large the current approaches —/,. Why is there a small negative current
—1,? This is due to electron and hole generation in the n and p quasi-neutral regions. When V >0 in

forward bias, the electron (hole) density on the p-side (n-side) increases above its equilibrium value as a
results of minority carrier injection via increased diffusion. When V <0 in reverse bias, the electron
(hole) density on the p-side (n-side) is pulled below its equilibrium value. This happens because in
reverse bias the electric field in the depletion region increases and the drift components of the electron
and hole currents exceed the corresponding diffusion components. The large electric field in the depletion
region in reverse bias sucks the minority carriers and transfers them across the depletion region.
Consequently, minority carrier generation rate exceeds the recombination rate in the quasi-neutral
regions, and this generation of minority carriers on both sides of the depletion region and the subsequent
transfer of these generated carriers across the depletion region is responsible for the current in a reverse
biased diode. An important rule of thumb to remember is that when the conduction electron Fermi level is
larger than the valence electron Fermi level (or the hole Fermi level) then the recombination rate exceeds
the generation rate (as in a forward biased device) and when the conduction electron Fermi level is
smaller than the valence electron Fermi level (or the hole Fermi level) then the generation rate exceeds
the recombination rate (as in a reverse biased device).

2.2.10 Generation and Recombination in the Depletion Region:
Generation and recombination in the depletion region also contributes to the total diode current in both
forward and reverse bias. Consider the electron current inside the depletion region. The continuity
equation in steady state gives,
10
_EG_XJG(X): Ge (X)-Re(x)
Integrating over the depletion region gives,

Xp
Jo(xp )_ Je (_ Xp): q I[Re(x)_ Ge(x)]dx
_Xp
Similarly, we get for the hole current,

Xn,
Jh(_ Xp)_Jh(Xn): q I[Rh(x)_Gh(X)]dX
—-X
p
In the derivation for the total diode current, we added the electron and hole currents at one edge of the
depletion region. The same procedure now yields,

nZ Dy Wy -x,) n% Dy, W, —x Pes Xn
Jr =q{—*+—%Lcoth + - coth —2—=" |1 eKT —1|+q [[Re(x)-Ge(x)]dx
T [ N L L e e
el d th2 h2 —Xp

The current in the external circuit is,
qiv Xn
I=AJr =1, eKT —1]+9A [[Re(x)-Gg(x)]dx
~Xp
The second term on the right hand side also generally has an exponential dependence on the applied
voltage. For example, in the case of trap-assisted recombination-generation (the dominant mechanism in
silicon pn diodes),

Ge(X)-Reg(x) o (np - nlz)
Inside the depletion region,

np = nl_ze(Efc—th)/KT
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and therefore,
qv
G, (x)— Ry (x) o | KT —1

2.3 A nn Heterojunction

2.3.1 A nn Heterjunction in Thermal Equilibrium:
Consider the following nn heterojunction.
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The band diagram in equilibrium looks like as shown below. There is a small depletion region formed on
the right side of the junction and a small accumulation region formed on the left side of the junction.

The built-in voltage of the junction is,
qVpi = Ef2 —Epq
which can also be written as,

Ngo> N
qVp; =Efy —Epq = AEg + Krln(ﬂ—”j
Ng1 Ne2
One can go further and calculate the electric field and potential on both sides of the junction. Let the
potential drop in semiconductor 1 be ¢ and let it be @ in semiconductor 2.

= ¢y + P2 =Vp;
The potential drop in the depletion region can be related to the thickness of the depletion region,
2
N 2X
#p =q—22="
282
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Vacuum
level

E.

In region — o < x <0, assume that the potential is zero at — oo . Then we can write,

Ef —Eg(x)

n(x)=Nge KT

Ef ~Ec1(-=)+q¢(x)
KT
Ef-E¢ (_"O)
KT
q4(x)
n(x) = Nd1 e KT
Poisson equation gives,
02 4(x
— &1 # = q[Ngy —n(x)]
oX
2
e ) oy {1 e q¢(x)}

x2 KT

=Ng1e

q4(x)
o KT

n(x) = NC1 e

2 q4(x)
L 2[00 oM k|0
ox \ ox &4 ox
Integrate from — oo to 0 using the boundary conditions,

s )
to get,

qé
_2Ng1 KT ||kt _4|_9%

&9 KT

x=0

%2
15).4
qé
_ 2Ng1 KT || w7 el
= EWheo =T ¢ R

The electric fields on both sides of the junction are related by Gauss’s law,
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ng(Xlx:O*' = &1 E(X)X:O_ = —quzxn

at 1)
— J2eiN(KT || eKT —1 —% = gNg2X,,
also,
GNg1X5
g + BTy Vi (2
&1

Equations (1) and (2) can be solved for x,, ¢, and ¢,

2.3.2 Current Flow by Thermionic Emission and Quantum Mechanical Tunneling:
Suppose now a voltage is applied from an external source such that the potential on the right side
is increased by V. The band diagram looks as shown in the Figure.
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Computing current flow across the junction depends on prior knowledge or assumption of the
main bottleneck to current flow in the device. The bottleneck can be either transport across the
heterojunction interface via thermionic emission or quantum mechanical tunneling or the
bottleneck can be the subsequent transport of the electrons via drift-diffusion. Current flow
across the heterojunction interface is by two mechanisms:

1) Thermionic emission over the heterojunction barrier

i1) Quantum mechanical tunneling through the heterojunction barrier
Both these mechanisms are depicted in the band diagram above. Generally transport across the
interface rather than drift-diffusion in the quasi-neutral regions is the main bottleneck to current
flow. Suppose the electron energy band dispersion in both semiconductor 1 is,

(2 2 2
E(k)=E +%(kx +ky + kz)
The electron velocity in the x-direction is given by,
10E(k) hk
Vx (k X ) =— ( ) =—
/] 8kX meq
Let the quantum mechanical transmission probability of electrons for getting through the barrier

(either through it or over it) be t(R ) Electron flux going from left to right is:
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Fion =250 5 ‘Z"Z’; vl ) (E) - B - ()1 )

Similarly, the ﬂux from right to Ieft 18,
5 dk 0 =
Frot =21 50 T 92 T 9%, o ) Er2 - rE)-E 1)

The total electron flux is the dlfference between the right moving and left moving fluxes,

F=F_r+FrsL
odk, © dk, -
= 2] T TE T () k) E®K) - Ept) - EK)-Er2)]

w 27 _y 27 27r

And the current is then,

ookyoodk

| = —gAF = -2in - J v (k) R [FE(K) - Eg) - FE(K) - Erz )]

The negative sign comes in because current is in direction opposite to the electron flux.

—00

2.4 Quantum Wells, Energy Subbands, and Reduced Density of States
in Two Dimensions

Consider a thin layer of a semiconductor with a smaller bandgap sandwiched between two wider bandgap
semiconductors, as shown below.

E Quantum
cl Well
Er-2
<>
L
Ev2
Ev1 ~
I 7
0 z

If the length L of the smaller bandgap material is smaller than the electron decoherence length then the
electron energies in the smaller band gap material are quantized. The electrons in the smaller bandgap
material are confined in the potential well formed by the conduction band discontinuities but are free in
the plane of the quantum well (the x-y plane). Semiconductor 2 is called the quantum well and
semiconductor 1 is called the barrier. We will solve this problem using the effective mass theorem.

2.4.1 Effective Mass Theorem:
The effective mass theorem is very useful in the context of semiconductor heterostructures. Consider a
semiconductor with conduction band energy dispersion given by,

E.(k)-E, +%(k Ko)-mg' (k-K.)



Semiconductor Optoelectronics (Farhan Rana, Cornell University)

According to the effective mass theorem the wavefunction I//(F ) of an electron in the semiconductor in
the vicinity of wavevector K ¢ 1s most generally written (even in the presence of an added potential V(F ))

as a product of the Bloch function y cK (F ) and a slowly varying envelope function ¢(F ) ,
NG
o7)= 8D, . F)
where ¢(F ) satisfies the effective mass Schrodinger equation,

[Eo (=) +V(F)]g(r)= EgF)

The above equation can be used to find the energy of the electron.

For the quantum well problem, we assume parabolic-isotropic conduction and valence bands for both the
semiconductors. Consider first the conduction band states. The conduction band energy dispersions are,

hz
E . k)=E
c1() c1+2m

@§+k§+k§)

el
k) n2 (2 2,2
Eolk)=E o + —(k +ky, +k )
c2 c2 2 Mo X y z
In semiconductor 1, the barrier, the effective mass equation is,

202
ey +ECJ¢G)=E¢G)

Meq

In semiconductor 2, the quantum well, we have,

~n?v? B, .
+ Ecz}ﬁ(f) =E¢(r)
e2
The solutions are of the form,
~ oikxx eikyy
#r)y=Asin(k,z)——
Ly ,/Ly
or Lot
. 2 2
~ olkxx e’kyy
#(r)=B cos(k,z)
JLy ,/Ly
ikyx ikyy
#F)=CcezL2)e T & T (L,
JLx Ly 2
ikyx _ikyy
#F) = Del2+L/2) € € —wSZ<—%

i

The solution form corresponds to the electron confined in the potential well formed by the conduction
band discontinuities but free in the plane of the quantum well (the x-y plane). We have also assumed that
the area of the quantum well in the x-y plane is L, L, . The effective mass equation in the well gives,
W (2 .2 2
E=E +—(k +ky +k )
c2 2Megs z X y
and in the barrier the effective mass equation gives,
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2

h 2,2 .2
E=E1+—(-a“ +ky +k
c1 2me1 ( X y)
2,2 9 2 2
:>“Z:AEC+E—[1 ——lﬂ@§+k§%h" (1)
2mg) 2 (Mg Mg 2Mmegq

2.4.2 Envelope Function Boundary Conditions:

Solving Schrodinger equation requires boundary conditions. In textbook quantum mechanics these
boundary conditions are the continuity of the wavefunction and that of its derivative at all boundaries.
The second boundary condition comes from the continuity of the probability current at a boundary. The
effective mass equation satisfies more complicated boundary conditions. For the simple case where the
energy band disperions are parabolic and isotropic the boundary conditions are simple and are given
below:

1) The envelope function must be continuous at a boundary
i) The derivative of the envelope function weighted by the inverse effective mass is continuous
at a boundary

These boundary conditions at the Z = L/2 boundary give,

#(r) |Z:(L/2)— = ¢(F) |z:(L/2)+
1 04(F) 1 04(F)

Mgy 02 z=(L)2) Mmeyq 0z

z=(L/2)"

Similar boundary conditions apply at Z=—L/2 . These boundary conditions give,

k,L m
tan| 22= | = % Te2 {for the cosine solutions 2)
2 kz Meq
or
k,L -
cot| “2= |= ¢ Me2 {for the sine solutions 3)
2 kz Me

Equations (2) and (3) together with Equation (1) yield discrete values of k, (denote them by k, (n)) for
every value of k”2 =K ,2( + k; (and n =12.3,...). An easy way to graphically solve Equations (2) and (3)
is to substitute for a using Equation (1) and then plot the right hand and left hand sides as a function of
k, and observe where they intersect. This is demonstrated in the Figure below where the right hand sides
are plotted for different values of the conduction band discontinuity AE. or the depth of the potential
well. Note that the number of solution depend on the value of AE . Suppose these discrete values k,(n)
have been found, Let,
1G)

for n=1,2,3,....
2m92

n
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Different red curves for Increasing AE. values
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Note that these discrete k,(n) values depend on k”2 =k )2( + k}% and so we should write E,(k|) to be

more explicit. However, if mgo = mgq then this dependence is weak (see Equation (1)) and may be
ignored. The total energy of an electron confined in the quantum well can finally be written as,
2,2
Elnky)=Egp +E 2k
Rl c2 n om

e2
In the limit AE; — o the values of E, are given by simple textbook infinite potential well result,
2
k(=" o g, - [~ n=123...
L 2mgo \ L
The electron energies in the quantum well given by,
2,2
E(nky)=Egp +E Ik
Rl c2 nToy Mo

are plotted as a function of the in-plane wavevector k” in the Figure below.

A

E

111
linnmn

\|r||

i

2.4.3 Discussion — 2-Dimensional Electron Gas and Energy Subbands:

The electron motion is confined in the z-direction. Therefore its energy due to motion in the z-direction
can only take discrete values. However, in the x- and y-directions (in the plane of the quantum well) the
electron is free and its energy due to motion in these directions has the standard free electron form.
Electrons so confined in a quantum well are said to constitute a 2 dimensional electron gas since the
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effective degrees of freedom for motion are only 2 (as opposed to 3). As a result of this quantum
confinement the conduction band energy dispersion gets modified. The 3D conduction band splits into
several 2D conduction subbands, as shown in the Figure above. The electron wavefunctions (the envelope
functions) are depicted for the first two confined energy levels (n =12) in the Figure below.

2.4.4 2-Dimensional Density of States:
Suppose we know the Fermi level Ef, the question then is what is the electron density (per cm?) in the

quantum well. The question can be answered if one first recalls from basic solid state physics that the

number of allowed states per unit area in k-space in 2 dimensions equal 2A/ (27[)2 . So in an area d2E||

— 2
in k-space the number of allowed states is 2A d 2k“ / (2z) .

The total number of electrons in all the confined levels in the quantum well is,

N=32xAf &Ky f(E. (/. ky )- Ef )
J (27[)2 vl
d?k
=>2x ) -
=n=2 1(2”)2 FE (i, ky )~ Er)

As a standard practice, we want to be able to write the above expression as a one dimensional integral
over energy in the form,

(e o]
n= [dE gow (E)f(E -Ef)
—©
where gquw (E ) is the conduction band density of states (number of states per unit area of the quantum
well per unit energy) for the quantum well. Using the energy relation,
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n2kp
Eln,ky)=Eo +Ep + T
one can proceed as follows,
n=%x2x| ”h f(Ec iuky)- Ev)
i (e
s [dE o2 | f(E - ;)
J E02+Ej T h

_ [dE Z[m:;}H(E—Ecz—Ej)f(E—Ef)
—0o0 J\T

= OIOdE gaw (E)f(E-Er)

where,

m

The density of states function is plotted in the Figure below.

19qw (E)

1 1
Ec2 Eco+Ey Ecp+Ep Egp +E5
The 3D conduction band density of states in a bulk semiconductor with energy dependence proportional

to \/E —E;o gets modified into the staircase structure shown above as a result of quantum confinement.

Each confined energy level contributes to the density of states an amount equal to mgp / 7 h?.

2.4.5 Valence Band Energy Subbands:
Suppose the valence band energy dispersions are,
2

h ( 2,2, .2 )
E (k)= E,q S ky +ky + k3

Eyo(k)=E —i(k2 K2+ k2)
v2()— v2 oMy, x TKy TKz

In semiconductor 1, the barrier, the effective mass equation for the valence band electrons is,

2w 2
[‘h v —Ev1J¢<F)=—E¢(F>

2mh1

In semiconductor 2, the quantum well, we have,
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—h2v?
2mh2

—Ec2 J¢(F) =—Eg(r)

The solutions are again of the form,

HF) = A sin(k Z)ekax "
- z
N
L L
or -5 <7<
#(F) =B cos(k z)eikxx e
- V4
JLe L,
ikyx . ikyy
¢(r)—C9_a(Z_L/2) e e £<z§oo
Joe L, (2
ikyx tkyy

The solution form corresponds to the electron in the valence band confined in the potential well formed
by the valence band discontinuities but free in the plane of the quantum well (the x-y plane). We have
also assumed that the area of the quantum well in the x-y plane is L, L, . The effective mass equation in

the well gives,

2
_ h ( 2,2 2)
E—EV2 —M kZ +kX +ky
and in the barrier the effective mass equation gives,
2
E=E, - —a? + k2 + k2
v 2mp; ( X y )
2,2 5 2 2
SN2y Sl B R e S ) I 1)
2mey 2 \(Mpy Mp 2mp4
Using the effective mass boundary conditions give,
k,L m
tan| 22— | = & Th2. {for the cosine solutions 2)
2 ) kz mp
or
cot Kel ) —a Mho {for the sine solutions 3)
2 kz Mp

The rest of the discussion proceeds exactly as in the case of the conduction band energy levels. The total
energy of a valence band electron confined in the quantum well can finally be written as,
2,2
E(nkj)=E,, -E ki
| v2 n 2mh2

In the limit AE,, — o the values of E, are given by simple textbook infinite potential well result,

2
k()-S5 = E,,=2h (”T”j n=123..
Mp2
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The electron energies in the quantum well given by,
2k
- 2mh2

Eln,ky)=Ey2 -Ep,

are plotted as a function of the in-plane wavevector k|| in the Figure below.

E

The wavefunctions (the envelope functions) for the first two confined energy levels are shown in the

Figure below.

L
E1I Ev2
"E““—'-% """ === AE,
2
I >
0 Z

2.4.6 2-Dimensional Density of States:
Suppose we know the Fermi level E, the question then is what is the hole density (per cm™) in the

quantum well. The total number of holes in all the confined levels in the quantum well is,

P = §2><Aj é”l;g [1—f(Ev(j’k||)_Ef)]
=p= §2><j:27:;g [1—f(Ev(f=k||)_Ef)]

As a standard practice, we want to be able to write the above expression as a one dimensional integral
over energy in the form,

p= JdE gow (E)1-f(E - E¢)

—00
where gquw (E ) is the valence band density of states (number of states per unit area of the quantum well

per unit energy) for the quantum well.
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Using the energy relation,

hzkﬁ

2mh2

Eln,ky)=Ey2 —Ep -

one can proceed as follows,

p= %2” @k [1- (e, k)~ £¢ )]

(27)
-y JdE [m—th [1-f(E-Ef)]
J Eyo-E; \ 7 h

- [dE z[m—hzzJ 0E-E,o +E;)[1-f(E-Ef)]

—00 j7l'h

_ [dE gqu E)[1-FE-E/)]

where,
m
9w (E)- z[—} ey +E))
j\7h
The valence band density of states function is plotted in the Figure below.
gow (E),
m
_— 3 ]
7 h?
m
________ 2 ]
7 he
Mpy
""""""""""" }E‘ﬁ'ﬁ.""""““""'

v
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The 3D valence band density of states in a bulk semiconductor with energy dependence proportional to

JE,2 —E gets modified into the staircase structure shown above as a result of quantum confinement.

Each confined energy level contributes to the density of states an amount equal to myo / 7 h? .

2.5 Heterostructures: Issues Related to Growth, Lattice Mismatch, and
Strain

Compound semiconductor layers are usually grown by two methods:

1) MBE (Molecular Beam Epitaxy)
ii) MOCVD or MOVPE: (Metal-Organic Chemical Vapor Deposition) or (Metal-Organic Vapor
Phase Epitaxy)

In both case are starts with a single crystal substrate (e.g. GaAs or InP) and grows epitaxial Layers one
by one on the substrate. The epitaxial layers are also doped (n-type or p-type) as they are grown. For
example, to make a n-GaAs/p - AlGaAs hetero junction, one can start with a n-doped GaAs substrate

and grow epitaxially a layer of p - AlGaAs on top.

n-GaAs Substrate

2.5.1 Lattice Constant Matching:

The interface is usually very sharp of abrupt (on atomic scale). Very good quality crystal material can be
obtained by epitaxy provided the lattice constant a of the grown layer is identical to (or close to) the
lattice constant ag,, of the substrate. This means that on a given substrate (of lattice constant ag,, ) one
may only grow additional layers that all have lattice constants close to ag,, . If the lattice constant of the
grown layer is not exactly identical to the lattice constant ag,, of the substrate, then the grown layer
stretches (if a < agyp ) or compresses (& > agp ) so that its lattice constant is identical to the substrate

lattice constant. Such coherently strained layers are called pseudomorphic. However, if the thickness h of
the coherently strained layer exceeds a certain critical thickness h. the coherent strain relaxes and this

process generates crystal dislocations (crystal defects).

One way to understand the generation of dislocations is as follows. An elastically strained layer contains
elastic energy (just like a stretched or compressed spring). A crystal dislocation line also contains energy.
As the thickness of the coherently strained layer increases, its energy also increases and at some point its
energy will become large enough that will be energetically favorable for the strain in the layer to decrease
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slightly (relax) and give off the energy to a crystal dislocation line. Strain relaxation means that the layer
is now no longer perfectly lattice matched to the substrate. Not surprising, the critical thickness h,
depends on the degree of lattice mismatch between the grown layer and the substrate. In almost all optical
device applications one does not want strain relaxation (since the accompanying defects have a harmful
effect on the device performance). So it is important that thickness of strained layers be kept below the
critical thickness A, . The value of the critical thickness is given by the Mathews-Blakeslee formula,

b [1-vcos? @ h.
he = In| —
4zf | (1+v)cos A b

where, for diamond and zinc blende lattices b is related to the lattice constant, b = a/ ﬁ , vis the

Poisson ratio (a material constant related to the elasticity of the material), f is the strain in the layer and
given by,

8sub — 8
Asub
and the values of both the angles, 8 and A, are 60-degress for diamond and zinc blende lattices.

f:

2.5.2 Strain Compensation:
What if one has many different strained layers in a stack with strains f4,fp,f3,... and thickness

hq,ho,hs,---, respectively. Mathews -Blakeslee relation can still be used to calculate the critical
thickness of the stack provided it is understood that h, is the critical thickness of the stack and f is the
average strain defined as f = (f1h1 +fohy +f3h3 +---)/ (h1 +hy +hg +) This is particularly useful

since in many cases the limitations imposed by the critical thickness are difficult to meet. In such cases, a
technique called strain compensation is used. Alternate layers are chosen with opposite signs of the strain
(i.e tensile — compressive — tensile — compressive -.......... ) so that the average strain remains close to
zero. With this technique many layers with large strain (but zero average strain) can be grown on a
substrate.



