Chapter 2:

Solving Equations and Inequalities

Unit 2: Vocabulary

1)	aquation	
1)	equation	
2)	solution (to an equation)	
_/		
3)	identity	
4)	contradiction	
5)	inequality	
,	1 2	
6)	solution (to an inequality)	
7)	interval	
7)	Interval	
8)	boundary point	
9)	open interval	
10)	closed interval	
10)	closed interval	
11)	half-open interval	
12)	compound inequality	
13)	conjunction	
15)	conjunction	
14)	disjunction	

<u>Warm-Up</u> Solve for the value of the variable.

1) 4y + 2 = 38 2) 87 = 13 - 2x 3) 4 - c = 10

The Solution to an Equation

A solution to an equation is a value or values that make the equation true.

Example Show that 4 is a **solution** to the equation below. Show that 5 is NOT a **solution**.

n + 6 = 10	n + 6 = 10

Why is 4 a solution to the equation n + 6 = 10?

Why is 5 not a **solution**?

<u>Exercise</u> Determine if the given number is a **solution** to the equation.

1. 4n + 1 = 17; n = 42. 2 - 6a = 4; a = 1

Model Problem #1: Distributive Property and Combining Like Terms

Solve and check: 3(a-5) + 2a = 15 Check:

Using the Distributive Property:	Combining Like Terms:

Exercise

Solve and check:

1)	14 - 3c + 7c = 94	Check:
----	-------------------	--------

2)
$$18 = -6x + 4(2x + 3)$$

Check:

Notes:	Model Problem #2A: Distributing a Negative
	5t - 2(t - 5) = 19

Notes:	Model Problem #2B: Distributing the -1
	7r - (6r - 5) = 7

Check for Understanding

Find the solution set: 8b - 4(b - 2) = 24

Lesson Summary

• Use the distributive property to eliminate parentheses.

Watch for double negatives. (-)(-) = (+)

- Combine like terms. Like terms contain the same variables, or no variables at all.
- Use the opposite operation to eliminate a term.

Challenge!

Solve for *x*: $\frac{3}{5}(x+2) = x - 4$

Independent Practice/Homework

Solve and check.

1) 5(x+2) = 20 2) -4x - 6x = -20

3) 30 = 2(10 - y)

4) 5(3c-2) + 8 = 43

5) -2(p-8) = 14 6) 12 = -4(-6x - 3)

6

7) -3(4x + 3) + 4(6x + 1) = 43

8) -5 = 6v + 5 - v

9) y - (1.4 - y) = 83.6

 $10)\,3b - (2b - 8) = 38$

11) 7(9-a) - 3(a-4) = 3

12) 2(b-4) - 4(2b+1) = 0

Warm-Up

What is the **solution** to an equation? How do we know that 4 is a solution to 3x = 12?

To solve an equation with variables on both sides, use inverse operations to "collect" variable terms on one side of the equation (and numbers on the other).

<u>NOTE:</u> Equations are often easier to solve when the variable has a positive coefficient.

Keep this in mind when deciding on which side to "collect" variable terms.

Notes:	Model Problem A
	7x-2 = 5x + 6
Notes:	Model Problem B
	2(2x + 1) = 3x

Check for Understanding

4a - 3 = 2a + 7

Write about it: How do you know which way to move the variable term?

What are the steps in solving multi-step equations?	Model Problem C
1)	Solve $4 - 6a + 4a = -1 - 5(7 - 2a)$.
2)	
3)	

<u>Check for Understanding</u> Solve for x:

-5(1-5x) + 5(-8x-2) = -4x - 8x

Identities and Contradictions

An **identity** is an equation that is true for all values of the variable. An equation that is an identity has infinitely many solutions. *Look for a number equaling itself.*

Example 2x + 6 = 2(x + 3)

A **contradiction** is an equation that is not true for any value of the variable. It has no solutions. Look for a false statement.

<u>Example</u> x = x + 3

<u>Exercise</u> Give the solution set to each equation.

$$5p - 8 = 1 + 5p - 9$$

$$3(2v - 1) = 6v - 4$$

Give an example of each type of equation. Explain your choice.

- a) An equation that is always true
- b) An equation that is never true
- c) An equation is true only when x = 1

Independent Practice/Homework

Solve for the value of the variable.

5p - 14 = 8p + 4	p - 1 = 5p + 3p - 8
5n + 34 = -2(1 - 7n)	-18 - 6k = 6(1 + 3k)

2(4x - 3) - 8 = 4 + 2x	3n - 5 = -8(6 + 5n)
-3(4x+3) + 4(6x+1) = 43	-(1+7x) - 6(-7-x) = 36

Give the solution set to each equation.

4n + 6 - 2n = 2(n + 3)	-v + 5 + 6v = 1 + 5v + 3

Solve each equation.

1)
$$-3 + 6a - 3a = -6$$
 2) $-9 = 5x + 4x$

3)
$$-0.1x - 0.9 + 0.7x = 0.66$$

4) $-3r - 5 = 2(-1 - r)$

5)
$$-2x + 2(3x + 1) = -3 + 5x$$

6) $-21 - 4x = -4(x + 6)$

7)
$$-2(5k+5) = -6k - 14$$

8) $-2p - 12 = -5(-6p - 4)$

9) 5x + 26 = -5 + 5(x + 3)10) -5b + b = -4(3 - 2b) + 4(6b + 3)

11) 2(-2a-1) + 3a = -(5a-2) + 2a12) -(2-5n) - 2(n+4) = n+4+3n-4

of showens to

Warm-Up Solve for the value of the variable.

5(r-1) = 2(r-4) - 6

An <u>inequality</u> is any statement that two quantities are not equal.

Examples

x is greater than 5	<i>x</i> > 5
x is less than -4	x < -4
x is greater than or equal to 7	$x \ge 7$
x is less than or equal to -2	$x \leq -2$

<u>Note:</u> If an inequality is inverted, we turn it around so that we can read it with the *variable first*.

5 > 3 is the same as saying 3 < 5. 3 > x is the same as saying x < 3.

A solution to an inequality is any value that makes the inequality true.

Example

1) List 3 solutions and 3 non-solutions to the inequality x < 5.

Solutions: Non-solutions:

2) Graph the solution set of x < 5:

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

- 3) How many solutions are there to the inequality x < 5? How is this shown on the graph?
- 4) Are all of them integers? If not, name a non-integer solution:
- 5) Is 5 a solution to the inequality x < 5? Why or why not? How is this shown on the graph?
- 6) What is the lowest solution in this set? What is the highest? Would your answer change if the inequality were x $\leq 5?$

Interval Notation

Besides with a graph, the solutions to an inequality can also be represented in **interval notation**.

An interval is a space between points, called endpoints. <u>Interval notation</u> represents a set of numbers using the endpoints and indicates whether the endpoints themselves are included in a set.

An open interval does not include the endpoints. An open interval is indicated by parentheses: ()

A closed interval does include the endpoints. A closed interval is indicated by square brackets: []

An interval can also be half-open, including the endpoints on only one side: (] or [)

When there is no endpoint or one or more sides of an interval, we use the symbols ∞ and $-\infty$.

The symbol ∞ means there is no highest number in the interval. The symbol $-\infty$ means there is no lowest number in the interval.

How to Write a Solution Set in Interval Notation (using the graph)

1) Write the lowest and highest value in the solution set (or boundary points) as an ordered pair.

If it has a left arrow (\leftarrow), write $-\infty$. If it has a right arrow (\rightarrow), write ∞ .

2) Write the correct symbol for the boundary.

If the interval is closed on that side (•), use []. If the interval is open on that side (°.) use (, $\pm\infty$) or

Examples

Graph	Interval Notation	Inequality
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7		
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7		
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7		
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7		

Exercise

Write the inequality indicated by each graph. Then write it in interval notation.

Solving Inequalities

Inequalities are solved just like equations, with a few additional rules to remember.

<u>Rule #1:</u> Try to collect variables on the left. If this is not possible, the inequality must be inverted before attempting to read it or graph it.

Example 1. $5(2-r) \ge 3(r-2)$

<u>Rule #2</u>: If you multiply or divide both sides by a negative number, the inequality sign flips. * note: this is not the same as #1

Example 3. Which value of x is in the solution set of the inequality -2(x-5) < 4? 1 0 2 2 3 3 4 5

<u>Rule #3:</u> When cross-multiplying a proportion, keep the variable on the same side it starts on. Only negatives on the bottom count for a switch.

Example 4. $4 \leq \frac{k-5}{-2}$

Solution Set:	Interval Notation:	
Solution Set:		

Choose a number in the solution set: _____ and test it below:

Graph:

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Independent Practice/Homework Solve for the value of the variable. Express in each notation shown. Graph.

Warm-Up

State the largest negative integer in the solution of this inequality: -2 < 7x - 2(x - 4)

Identities and Contradictions

WORDS	ALGEBRA
Identity	
When solving an inequality, if you get a statement that	1 + x < 7 + x
is always true, the original inequality is an identity, and all real numbers are solutions.	$\frac{-x}{1 < 7 \checkmark}$
Contradiction	
When solving an inequality, if you get a false statement,	x + 7 < x
the original inequality is a contradiction, and it has no solutions.	$\frac{-x}{7} < \frac{-x}{0x}$

<u>Model Problems</u> Solve for x. Tell the solution set.

$x + 5 \ge x + 3$	$2x + 6 \le 5 + 2x$

Exercise

Warm-Up

Two students solved the same inequality. Which solution is incorrect? Explain.

A <u>compound inequality</u> is a statement that combines two simple inequalities using AND or OR.

A statement that combines two inequalities using AND is called a <u>conjunction</u>.

A statement that combines two inequalities using OR is called a disjunction.

Conjunctions "AND"

In this diagram, oval *A* represents some integer solutions of x < 10 and oval *B* represents some integer solutions of x > 0. The overlapping region represents numbers that belong in **both** ovals. Those numbers are solutions of *both* x < 10 *and* x > 0.

We can <u>say</u> this solution set in two ways:	We can <i>write</i> this solution set in three ways:
1)	1)
	2)
2)	3)

You can graph the solutions of a compound inequality involving AND by using the idea of an overlapping region. The overlapping region is called the **intersection** and shows the numbers that are solutions of both inequalities.

We can also write the solution set in interval notation:

- 6) How many solutions are there to the inequality? Explain.
- 7) What are the largest and smallest possible values for x? Explain.
- 8) If the inequality is changed to $0 \le x \le 3$, what are the largest and smallest possible values for x?
- 9) Solve and graph the compound inequality:

Check for Understanding

1) Write a conjunction that is illustrated by the graph below in three ways:

2) Rewrite as a compound sentence and graph the sentence on a number line.

4) When a poll gives a **margin of error**, it states how far an actual measurement may be from an estimated one. For example, if a poll states that 35% of people would vote for a candidate with a margin of error of $\pm 3\%$, it means that the true measure can be between 32% and 38%.

If a poll said that 56% of students in a class like chocolate ice cream with a $\pm 2\%$ margin of error, write an inequality describing what percent of students in that class could like chocolate ice cream.

Disjunctions

In this diagram, circle *A* represents some integer solutions of x < 0, and circle *B* represents some integer solutions of x > 10. The combined shaded regions represent numbers that are solutions of *either* x < 0 or x > 10.

You can graph the solutions of a compound inequality involving OR by using the idea of combining regions. The combine regions are called the **union** and show the numbers that are solutions of either inequality.

Exercise

1) Name a way the graph of a **conjunction** differs from the graph of a **disjunction**.

2) Do the graphs share any numbers in common? Explain.

3) Write the compound inequality shown by the graph below:

<u>Homework</u> 2-7

p. 206-208 #16-28 (evens only), 30-35, 46

1) Explain why 4 is a solution to the equation $3x + 4 = 16$.	
5((1+2)) = 1+2(1-2)	$(\cdot, 2, -5(-1), -2(-2))$
2) Solve for t: $5 - (t+3) = -1 + 2(t-3)$	3) Solve for x: $6+3x = 5(x-1)-3(x-2)$
4) Solve for b :	5) Solve for t :
$-40 \ge 8b$	$12 > \frac{t}{-6}$
Give one value for b that is:	How many values are in the solution set?
a) an integer	
b) not an integer	
6) Solve for <i>x</i>. Express the solution set in interval notation and graph it.	7) Given the following inequality:
2(5-x) < 3x	$12 - 3(x+1) \ge \frac{1}{2}(3-5)$
Interval notation:	
Graph: $(-7 - 6 - 5 - 4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$	a) State the maximum value in the solution set.b) State the largest integer in the solution set.

