CHAPTER 2
THE BASIC OF CONTROL
THEORY



1. Laplace Transform Review.



Laplace Transform Review.

v Laplace Transform is defined as,
L[f({)]=F(s)= E f (t)e dt

Where s = 6+jm 1s a complex variable. By knowing f(?) we can tind the
function F{s) which is called Laplace transform of f{z.

M Inverse Laplace
LFO)= T == [ F(s)e’ds
272] o— jo

The inverse Laplace transform allows us to find £{%) given F(5).



1) The Laplace Transform cont..
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1) The Laplace Transform cont..
=

1 Transform

Item no. Theorem Name
Properties . g
1 CLIWB) = Fs) = L_ e dt Definition
2, LI (0] = kF(s) Linearity theorem
3. ZL(0 + A0] = Fi(s) + Fafs) Linearity theorem
4, Ple~=f(D] = F(s + a) Frequency shift theorem
5, -7 = e THg) Time shift theorem
6. [ f(an)] - :IF(%) Scaling theorem
7. ¥ ‘%} = sF(s) — f(0-) Differentiation theorem
8. ¥ %] = s*F(s) — sf{0—) — f{(0—)  Differentiation theorem
9 @ %] — S"F{s)— > s *A~10—) Differentiation theorem
| k=1
10. ¥ J: i) dr] = @ Integration theorem
11. f(=) = };113']} sF(s} Final value theorem!
12, F(0+) = lim sF(s) Initial value theorem?




Exercise 1: Laplace Transform.

Find the Laplace transform of

f(t) =Ae-atu(t)

Solution:

F(s)=L[f(H)]=] f(t)edt

= [" Ae e tdt = A j T e sy
0— 0

o0

A
—(s+a)t
€ t=0

S+a
A

< . S+a




1) The Laplace Transform cont..
—r

0 Example: Find the Laplace Transform for the following.

3 Unit function:

() =1

. Ramp function:

f(0) =t

i Step function:

f(t) = Ae ™




1) The Laplace Transform cont..

Transform Theorem

Differentiation Theorem

{df (t)} SF(s)— f (0)

d2 f(t)

L{ }=s’F(s) —sf (0) - £{0)

Integration Theorem:

{j f(f)df} F©)
S

0

Initial Value Theorem: f (()) — |imsF(S)

Final Value Theorem: lim f (t) = |ImS|:(S)

t—o0



1) The Laplace Transform cont..

The inverse Laplace Transform can be obtained using:

1 s + St
f(t):T _[F(s)e ds

o—jw

Partial fraction method can be used to find the inverse Laplace Transform

of a complicated function.

We can convert the function to a sum of simpler terms for which we know

the inverse Laplace Transform.

F(s)=F(s)+F,(s)+A +F,(s)
ft) =L RO+ LR 6)]+A + L7[F, ()]
= f, () + f, () +A + (1)



1) The Laplace Transform cont..

1 We will consider three cases and show that F(s) can be expanded
into partial fraction:

. Case 1:
Roots of denominator A(s) are real and distinct.
. Case 2:
Roots of denominator A(s) are real and repeated.

. Case 3:

Roots of denominator A(s) are complex conjugate.
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0 Case 1: Roots of denominator A(s) are real and distinct.

Example 1:
F(s)=—2
(s+1)(s+2)
Solution: F(S)— A n B It is found that:
541 S4? A=2andB=-2
2 B 2
S+1 s+2

f(t)=2e"—2e™




Example 2:
P Y(s) = S+3
(s+1)(s+2)

Problem: Find the Inverse Laplace Transform for the following.

Solution:
Y(s) = S+3
(s+1)(s+2)
Y(s) = A + B
S+1 s+2
sS+3 S+3
A: l :2 B: S+2 §=—2 —
(5+ )(s.+1)(s+2)‘sz‘1 ( )(s+1)(s+2)‘ ?
2 1

T s+l s+2 yt)y=2e"-e™ .
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0 Case 2: Roots of denominator F(s) are real and repeated.

Example 1: 2
F(s)= 5
(s+1(s+2)
Solution:
F (S) _ A n B 4 C It is found that:
s+1 s+2 (s+2)° A=2B=-2andC=-2
2 2 2

N s+1 s+2 (s+2)

f(t)=2e" -2 —2te™




Example 2: Find the Inverse Laplace Transform of

3s+4
X(s)= ;
(s+1(s+2)
Solution:
Step 1: Use the partial fraction expansion of X(s) to write

X(s)= AL B € :
(s+1) (s+2) (s+2)

Solving the A, B and C by the method of residues

(3s+4)  A(s+2)° +B(S+1)(S+2)+

C(s+1)

(s+D(s+2)% (s+1)(s+2)* (s+2)2(s+1)

(s+2)°(s+1)



Cont’d...Example

(Bs+4)=A(s+2)° +B(s+2)(s+1D)+C(s+1

= A(S®* +4s+4)+B(s* +3s+2)+C(s+1)

= (A+B)s° +(4A+3B+C)s+(4A+2B+C)
so,compare coefficient,

A+B=0 ——————— (@h)
4A+3B+C =3————— (2)
4A+2B+C=4——— —— (3)
(3) — (2);
—B=1
B=-1.
From(l)
A+B=0
A=1

SubstituteB and A,into(2)
40 +3(—1D)+C =3
C =2.



(§)=
(s+1) (s+2) (s+2)

Step 2: Construct the Inverse Laplace transtorm trom the above partial-fraction
term above.

A=1,B=-1and C=2

- The pole of the 1% term is at s = -1, so e_tu(t) PEELTEEN 1
(s+1)
- The pole of the 2 term is at s = -2, so _ 1
P e u(t) «——
(s+2)
“The double pole of the 3™ term is at s = -1, so
_ 1
2teu(t) «——o>———
(s+2)

Step 3: Combining the terms.

X(t) =etu(t) —eu(t) + 2teu(t).
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Case 3: Roots of denominator F(s) are complex conjugate.

Example: 3
F(s) =
) (s +2s+5)
Solution:
F(S):A+ Bs+C It is found that:
S S°+25+5 A=3/5B=-3/5
35 3( s+2 and ©=-6/5
:?_5(52+25+5j
_3/5_3|(s+)+/2)(2)
s 5| (s+1)?+2°

3 3 1 .
f(ty==—=e"(cos2t +=sin2t
(t) - T ( 5 )




Exercise 2: Laplace Transform Function ~ Differential
Equation.

2 i d )
M+9ﬂ+2y=6e-4t y(07) =2 d—i’(o )=—4
Solution:
[s2Y () — 25+ 4]+ 9[sY (5) - 2]+ 2Y () = %
S+

_ 6 . 25+14
(s+4)(s*+9s+2) s*+9s+2

Y (S)
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2) Block Diagram
N

1 A block diagram of a system is a practical representation of the functions
performed by each component and of the flow of signals.

Input Transfer Function > Output
G(s)
1 Cascaded sub-systems:
Xo(s) = Xi(s) = C(s) =
R(s) G(s)R(s) Go(s)G(s)R(s) Ga(8)Go(s) G (s)R(s)
—> Gi(s) > Gy(5) > Gs(s) o

(@)

R(s) C(s)
—* GGG () [

(®)



2) Block Diagram cont..
L T ————————
O ee ac onfro ys’rem

Input
transducer Controller Plant
R C
ROl Gyis) i) =] Gy ©,
Input Outpu
Hzf.i‘]l' -t H|{.i‘} -
Feedback Chatput
transducer
(a)
Plant and
controller
R +
(5 + Gs) Cls)_
Input = Output
+
H(s) [=
Feedback
(B)
R(s) Gls) Cls)
_— | /=

Input | 12 G()His) | Output
(e}




2) Block Diagram cont..

Feedback Control System

5]
fs)

Therefore,

o Y5}

The negative feedback of

the control system is given
by:

E.(s) =R(s) - H(s)Y(s)
Y(s) = G(s)E(s)

a

Y(8) =G(s)[R(s) —H(s)Y (s)]

Y(s) _

G(s)

R(s) 1+G(s)H(s)




2) Block Diagram cont..
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1 Reduction Rules

Cascaded blocks
¥—| G > H |—»Y XK—»| GH —= Y
Moving a summer behind a block

+
Y

G

K—w




2) Block Diagram cont..
N

71 Reduction Rules
Moving a pickoff ahead of a block

¥ ol o .Y X - G —=Y
Y -———— Y -—]| G |
Moving a pickoff behind a block
A—| G — Y ¥—» G -
X -—
¥ — 1/G =

Eliminating a feedback loop

+
X G
+ X —=|GI(1FGH)—= Y

\)
=<




2) Block Diagram cont..
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1 Problem 1:

D
U(s).':Q.,E—f(E—' G, J?_—{G; > Gy > Y(s)




2) Block Diagram cont..

1 Problem 1:

U(s)

Hy/ G, e
—t@—» G3 > (34 >=Y(S)
A +
H]
U(s) ., > Y(s)




2) Block Diagram cont..

1 Problem 1:

Us)

U(s)

G,G.G,




2) Block Diagram cont..
N

1 Problem 1:

G,G,G,G,
U(s) ., Y(s)
1- (GZG3G4)(21 _H. H361]
2 4
U(s) G,G,G,G, Y(s)

1- (GsG4 H, -G,G;H, -G,G,G,G,H 3)




2) Block Diagram cont..

R
1 Problem 2: 0 e | G5} |
Hy(s) =
Hgf.i‘) =
I13(5)
(a)
IO PPN I G3($)Gafs) ),
Hils) — Hyls) + Ha(s)
(h)
Ris) Gals)Ga ()G y(x) Cls)
Lt P

1+ G3(s) Gy(s) [H (s) — Hy(s) + Hy(s)]




2) Block Diagram cont..

1 Problem 3:

Reduce the system to a single transfer function

Ris) + @ "(5)

(ry(5)

Gals)

Gryls)

C(s)
>

Vels)

Hy(s)

H(s)

Hs(s)




3. Signal-flow graph



3) Signal Flow Graph

A signal flow graph is a graphical representation of the
relationships between the variables of a set of linear algebraic
equations.

The basic element of a signal flow graph is a unidirectional path
segments called branch.

The input and output points or junctions are called nodes.

A path is a branch or continuous sequence or branches that can be
traversed from one signal node to another signal node.

A loop is a closed path that originates and terminates on the same
node, and along the path no node is met twice.

Two loops are said to be non-touching if they do not have a same
common node.



3) Signal Flow Graph cont..
0 Signal flow graph of control systems

Ri=) Cls) Cilx)
Ris) C1s)
R b [ i) I s

— L)
| Rix) Elx) )




O

3) Signal Flow Graph cont..

ignal flow graph of control systems

Mz}

R

Ris) Eis) L) i {el5} !
% Hj} [ » [ ™
TIM CREy
‘ i3}
'm.ll
i
Gy
BT

Loy sin)
lr*m
k]




3) Signal Flow Graph cont..

Mason’s Gain Formula for Signal Flow Graph

Z PijkAijk
_ _k

Where,
Pi : k" path from variable x; to x;
A : Determinant of the graph
Ay : Cofactor of the path Py,

A =1-(sum of all differentloopgains)
+ (sum of the gain products of all combinations of 2 nontouching loops)
- (sum of the gain products of all combinations of 3 nontouching loops)
+...




3) Signal Flow Graph cont..
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0 Example 1: Transfer function of interacting system




3) Signal Flow Graph cont..
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0 Example 1: Transfer function of interacting system
a) The paths connecting input R(s) to output Y(s) are:
P; = G;G,G56G,
Py, = Gs5G4G,Gy

b) There are four individual loops:

L, = G,yH,
L, = GsH;
Ly = G4H,

L, = G,H,



3) Signal Flow Graph cont..

Example 1: Transfer function of interacting system

c) Loops L; and L, does not touch loops L, and L. Therefore, the
determinant is:

A=1-(L+L +L,+L)+(LL,+LL,+L,L,+L,L,)

d) The cofactor of the determinant along path 1 is evaluated by
removing the loops that touch path 1 from A. Therefore have:

L=L,=0
and,

A, =1-(L, +L,)

Similarly, the cofactor for path 2 is:

A, =1-(L +L,)



3) Signal Flow Graph cont..
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0 Example 1: Transter function of interacting system

e) Therefore, the transfer function of the system is:
Y(s) T(s) = PA, +PBA,
R(s) A
_ G,G,G,G, (1- L, — L,)+ GGG, Gy 1-L-L)

1-L-L-L-L+LL+LL +LL+L,L,



3) Signal Flow Graph cont..
—

1 Problem 1:

Obtain the closed-loop transfer function by use of Mason’s Gain

Formula
R + s .
&) L0 e G (s) Gils) 4,
Hl{:ﬂ} H}{S} g —————
Vels)

H|{S]I oot




3) Signal Flow Graph cont..
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1 Problem 2:

Obtain the closed-loop transfer function by use of Mason’s Gain
Formula




4. Review state space variable



Introduction

The basic questions that will be addressed in state-space approach
include:

What are state-space models?
Why should we use them?

How are they related to the transfer function used in classical
control system?

How do we develop a space-state model?



4) State-Space Model

A representation of the dynamics of N-order
system as a first-order equation in an N-vector,
which is called the state.

Convert the Nth-order differential equation that
governs the dynamics of the system into N first-
order differential equation.




4) State-Space Model

01 The state of a system is described by a set of first-order
differential equations written in terms of the state variable.

X, =apX; TapXs + ... FaXx, +byu + ...+ by
X, = ayX; TanX; +... tayX, +byu + ... +byuy

X, =ayX; +apXy T ... T auXy T byuy + ...+ by,

where x = dx/dt.




4) State-Space Model

o In a matrix form, we have:

X ( N
a W.xl\ b11 blm (3L

(XN o

11

1 State vector:




4) State Space Model

X =Ax+Bu| <= Inputequation
y=Cx+Du| <7 Outputequation

X = state vector

y = output vector

u = mput or control vector
A = system matrix

B = mnput matrix

C = output matrix

D = feedforward matrix




