
CHAPTER 2

THE BASIC OF CONTROL 

THEORY



1. Laplace Transform Review.



Laplace Transform Review. 

 Laplace Transform is defined as,

Where s = s+jw is a complex variable. By knowing f(t) we can find the 
function F(s) which is called Laplace transform of  f(t).

 Inverse Laplace

The inverse Laplace transform allows us to find f(t) given F(s).
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1) The Laplace Transform cont..

 Transform table:
f(t) F(s)

1. δ(t) 1

2. u(t)

3. t u(t)

4. tn u(t)

5. e-at u(t)

6. sin wt u(t)

7. cos wt u(t)
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Impulse function

Step function

Ramp function

8. Ae-atcos wt u(t)

9. Be-atsin wt u(t)

f(t) F(s)
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1) The Laplace Transform cont..

 Transform

Properties



Exercise 1: Laplace Transform.

Find the Laplace transform of  

Solution:

 .







0

)()]([)( dtetftfsF stL

f(t) =Ae-atu(t)









 
0

)(

0
dteAdteAe tasstat

as

A

e
as

A
t

tas





 





0

)(



1) The Laplace Transform cont..

 Example: Find the Laplace Transform for the following.

i. Unit function:

ii. Ramp function:

iii. Step function:
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1) The Laplace Transform cont..

 Transform Theorem

i. Differentiation Theorem

ii. Integration Theorem:

iii. Initial Value Theorem:

iv. Final Value Theorem:
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1) The Laplace Transform cont..

 The inverse Laplace Transform can be obtained using:

 Partial fraction method can be used to find the inverse Laplace Transform 

of a complicated function.

 We can convert the function to a sum of simpler terms for which we know 

the inverse Laplace Transform.
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1) The Laplace Transform cont..

 We will consider three cases and show that F(s) can be expanded 

into partial fraction:

i. Case 1:

Roots of denominator A(s) are real and distinct.

ii. Case 2:

Roots of denominator A(s) are real and repeated.

iii. Case 3:

Roots of denominator A(s) are complex conjugate.



1) The Laplace Transform cont..

 Case 1: Roots of denominator A(s) are real and distinct.

Example 1:

Solution:
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A = 2 and B = -2
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Example 2:

Problem: Find the Inverse Laplace Transform for the following.

Solution:
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1) The Laplace Transform cont..

 Case 2: Roots of denominator F(s) are real and repeated.

Example 1:

Solution:
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Example 2: Find the Inverse Laplace Transform of

Solution:

Step 1: Use the partial fraction expansion of X(s) to write

Solving the A, B and C by the method of residues

 
2)2)(1(

43






ss

s
sX

 
2)2()2()1( 








s

C

s

B

s

A
sX

)1()2(

)1(

)1()2(

)2)(1(

)2)(1(

)2(

)2)(1(

)43(
222

2

2 


















ss

sC

ss

ssB

ss

sA

ss

s



15
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A=1, B=-1 and C=2

Step 2: Construct the Inverse Laplace transform from the above partial-fraction 
term above.

- The pole of  the 1st term is at s = -1, so

- The pole of  the 2nd term is at s = -2, so

-The double pole of  the 3rd term is at s = -1, so

Step 3: Combining the terms.
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1) The Laplace Transform cont..

 Case 3: Roots of denominator F(s) are complex conjugate.

 Example:

Solution:
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Exercise 2:  Laplace Transform Function ~ Differential 

Equation.

Solution:
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2. Block Diagram



2) Block Diagram

 A block diagram of a system is a practical representation of the functions 

performed by each component and of the flow of signals.

 Cascaded sub-systems:

Transfer Function 

G(s)
OutputInput



2) Block Diagram cont..

 Feedback Control System



2) Block Diagram cont..

 Feedback Control System

Therefore,

The negative feedback of 

the control system is given 

by:

Ea(s) = R(s) – H(s)Y(s)

Y(s) = G(s)Ea(s)
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2) Block Diagram cont..

 Reduction Rules



2) Block Diagram cont..

 Reduction Rules



2) Block Diagram cont..

 Problem 1:



2) Block Diagram cont..

 Problem 1:

G2 G3 G4
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2) Block Diagram cont..

 Problem 1:

+
+

G2G3G4

H1/ G2- H2/ G4- H3 G1

U(s) G1
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2) Block Diagram cont..

 Problem 1:

U(s) Y(s)
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2) Block Diagram cont..

 Problem 2:



2) Block Diagram cont..

 Problem 3: 

Reduce the system to a single transfer function



3. Signal-flow graph



3) Signal Flow Graph

 A signal flow graph is a graphical representation of the 

relationships between the variables of a set of linear algebraic 

equations.

 The basic element of a signal flow graph is a unidirectional path 

segments called branch.

 The input and output points or junctions are called nodes.

 A path is a branch or continuous sequence or branches that can be 

traversed from one signal node to another signal node.

 A loop is a closed path that originates and terminates on the same 

node, and along the path no node is met twice.

 Two loops are said to be non-touching if they do not have a same 

common node.



3) Signal Flow Graph  cont..

 Signal flow graph of control systems



3) Signal Flow Graph  cont..

 Signal flow graph of control systems



3) Signal Flow Graph  cont..

 Mason’s Gain Formula for Signal Flow Graph
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3) Signal Flow Graph  cont..

 Example 1: Transfer function of interacting system



3) Signal Flow Graph  cont..

 Example 1: Transfer function of interacting system

a) The paths connecting input R(s) to output Y(s) are:

P1 = G1G2G3G4

P2 = G5G6G7G8

b) There are four individual loops:

L1 = G2H2

L2 = G3H3

L3 = G6H6

L4 = G7H7



3) Signal Flow Graph  cont..

 Example 1: Transfer function of interacting system

c) Loops L1 and L2 does not touch loops L3 and L4. Therefore, the 

determinant is:

d) The cofactor of the determinant along path 1 is evaluated by 

removing the loops that touch path 1 from ∆. Therefore have:

and,

Similarly, the cofactor for path 2 is:
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3) Signal Flow Graph  cont..

 Example 1: Transfer function of interacting system

e) Therefore, the transfer function of the system is:
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3) Signal Flow Graph  cont..

 Problem 1: 

Obtain the closed-loop transfer function by use of Mason’s Gain 

Formula



3) Signal Flow Graph  cont..

 Problem 2: 

Obtain the closed-loop transfer function by use of Mason’s Gain 

Formula



4. Review state space variable



Introduction

 The basic questions that will be addressed in state-space approach 

include:

i. What are state-space models?

ii. Why should we use them?

iii. How are they related to the transfer function used in classical 

control system?

iv. How do we develop a space-state model?



4) State-Space Model

A representation of the dynamics of Nth-order 

system as a first-order equation in an N-vector, 

which is called the state.

Convert the Nth-order differential equation that 

governs the dynamics of the system into N first-

order differential equation.



4) State-Space Model

 The state of a system is described by a set of first-order 

differential equations written in terms of the state variable.



4) State-Space Model

 In a matrix form, we have:

 State vector:



4) State Space Model

Input equation

Output equation


