CHAPTER 2
THE BASIC OF CONTROL
THEORY

1. Laplace Transform Review.

Laplace Transform Review.

\square Laplace Transform is defined as,

$$
\mathrm{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t
$$

Where $\mathrm{s}=\sigma+\mathrm{j} \omega$ is a complex variable. By knowing $f(t)$ we can find the function $F(s)$ which is called Laplace transform of $f(t)$.

V Inverse Laplace

$$
\mathrm{L}^{-1}[F(s)]=f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{s t} d s
$$

The inverse Laplace transform allows us to find $f(t)$ given $F(s)$.

1) The Laplace Transform cont..

Transform table:

	$f(t)$	$F(s)$			
1.	$\delta(t)$	1		Impulse function	
2.	$u(t)$	$\frac{1}{s}$		Step function	
3.	$t u(t)$	$\frac{1}{s^{2}}$		Ramp function	
4.	$t^{n} u(t)$	$\frac{n!}{s^{n+1}}$		$f(t)$	$F(s)$
5.	$e^{-a t} u(t)$	$\frac{1}{s+a}$	8.	$A e^{-a t} \cos \omega t u(t)$	$\frac{A(s+a)}{(s+a)^{2}+\omega^{2}}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^{2}+\omega^{2}}$	9.	$B e^{-a t} \sin \omega t u(t)$	$\frac{B \omega}{(s+a)^{2}+\omega^{2}}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^{2}+\omega^{2}}$			

1) The Laplace Transform cont..

Transform

Properties

Item no.	Theorem	Name
1.	$\mathscr{L}[f(t)]=F(s)=\int_{0-}^{\infty} f(t) e^{-s t} d t$	Definition
2.	$\mathscr{L}[h f(t)] \quad=k F(s)$	Linearity theorem
3.	$\mathscr{L}\left[f_{1}(t)+f_{2}(t)\right]=F_{1}(s)+F_{2}(s)$	Linearity theorem
4.	$\mathscr{L}\left[e^{-a t} f(t)\right]=F(s+a)$	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]=e^{-s T} F(s)$	Time shift theorem
6.	$\mathscr{L}[f(a t)] \quad=\frac{1}{a} F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{d f}{d t}\right] \quad=s F(s)-f(0-)$	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^{2} f}{d L^{2}}\right] \quad=s^{2} F(s)-s f(0-)-\dot{f}(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^{n} f}{d t^{n}}\right] \quad=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau) d \tau\right]=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty) \quad=\lim _{s \rightarrow 0} s F(s)$	Final value theorem ${ }^{1}$
12.	$f(0+) \quad=\lim _{s \rightarrow \infty} s F(s)$	Initial value theorem ${ }^{2}$

Exercise 1: Laplace Transform.

Find the Laplace transform of

$$
f(t)=A e^{-a t} u(t)
$$

Solution:

$$
\begin{aligned}
F(s)=\mathrm{L}[f(t)] & =\int_{0-}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0-}^{\infty} A e^{-a t} e^{-s t} d t=A \int_{0}^{\infty} e^{-(s+a) t} d t \\
& =-\left.\frac{A}{s+a} e^{-(s+a) t}\right|_{t=0} ^{\infty} \\
& =\frac{A}{s+a}
\end{aligned}
$$

1) The Laplace Transform cont..

\square Example: Find the Laplace Transform for the following.
i. Unit function:

$$
f(t)=1
$$

ii. Ramp function:

$$
f(t)=t
$$

iii. Step function:

$$
f(t)=A e^{-a t}
$$

1) The Laplace Transform cont..

\square Transform Theorem
Differentiation Theorem

$$
\begin{aligned}
& L\left\{\frac{d f(t)}{d t}\right\}=s F(s)-f(0) \\
& L\left\{\frac{d^{2} f(t)}{d t^{2}}\right\}=s^{2} F(s)-s f(0)-f(0)
\end{aligned}
$$

ii. Integration Theorem:

$$
L\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s}
$$

iii.

Initial Value Theorem: $\quad f(0)=\lim _{t \rightarrow \infty} s F(s)$
iv. Final Value Theorem: $\quad \lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)$

1) The Laplace Transform cont..

\square The inverse Laplace Transform can be obtained using:

$$
f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \omega}^{\sigma+j \omega} F(s) e^{+s t} d s
$$

\square Partial fraction method can be used to find the inverse Laplace Transform of a complicated function.
\square We can convert the function to a sum of simpler terms for which we know the inverse Laplace Transform.

$$
\begin{aligned}
F(s) & =F_{1}(s)+F_{2}(s)+\Lambda+F_{n}(s) \\
f(t) & =L^{-1}\left[F_{1}(s)\right]+L^{-1}\left[F_{2}(s)\right]+\Lambda+L^{-1}\left[F_{n}(s)\right] \\
& =f_{1}(t)+f_{2}(t)+\Lambda+f_{n}(t)
\end{aligned}
$$

1) The Laplace Transform cont..

\square We will consider three cases and show that $F(s)$ can be expanded into partial fraction:
i. Case 1:

Roots of denominator $A(s)$ are real and distinct.
ii. Case 2:

Roots of denominator A(s) are real and repeated.
iii. Case 3:

Roots of denominator $\mathrm{A}(\mathrm{s})$ are complex conjugate.

1) The Laplace Transform cont..

\square Case 1: Roots of denominator A(s) are real and distinct. Example 1:

$$
F(s)=\frac{2}{(s+1)(s+2)}
$$

Solution:

$$
\begin{array}{rlr}
F(s) & =\frac{A}{s+1}+\frac{B}{s+2} \quad \begin{array}{l}
\text { It is found that: } \\
\mathrm{A}=2 \text { and } \mathrm{B}=-2
\end{array} \\
& =\frac{2}{s+1}-\frac{2}{s+2} &
\end{array}
$$

$$
f(t)=2 e^{-t}-2 e^{-2 t}
$$

Example 2:

$$
Y(s)=\frac{s+3}{(s+1)(s+2)}
$$

Problem: Find the Inverse Laplace Transform for the following. Solution:

$$
\begin{aligned}
& Y(s)=\frac{s+3}{(s+1)(s+2)} \\
& Y(s)=\frac{A}{s+1}+\frac{B}{s+2} \\
& A=\left.(s+1) \frac{s+3}{(s+1)(s+2)}\right|_{s=-1}=2 \quad B=\left.(s+2) \frac{s+3}{(s+1)(s+2)}\right|_{s=-2}=-1 \\
& =\frac{2}{s+1}-\frac{1}{s+2} y(t)=2 e^{-t}-e^{-2 t}
\end{aligned}
$$

1) The Laplace Transform cont..

\square Case 2: Roots of denominator $\mathrm{F}(\mathrm{s})$ are real and repeated. Example 1:

$$
F(s)=\frac{2}{(s+1)(s+2)^{2}}
$$

Solution:

$$
\begin{aligned}
F(s) & =\frac{A}{s+1}+\frac{B}{s+2}+\frac{C}{(s+2)^{2}} \quad \begin{array}{l}
\text { It is found that: } \\
\mathrm{A}=2, \mathrm{~B}=-2 \text { and } \mathrm{C}=-2
\end{array} \\
& =\frac{2}{s+1}-\frac{2}{s+2}-\frac{2}{(s+2)^{2}} \\
f(t) & =2 e^{-t}-2 e^{-2 t}-2 t e^{-2 t}
\end{aligned}
$$

Example 2: Find the Inverse Laplace Transform of

$$
X(s)=\frac{3 s+4}{(s+1)(s+2)^{2}}
$$

Solution:
Step 1: Use the partial fraction expansion of $X(s)$ to write

$$
X(s)=\frac{A}{(s+1)}+\frac{B}{(s+2)}+\frac{C}{(s+2)^{2}}
$$

Solving the A, B and C by the method of residues

$$
\frac{(3 s+4)}{(s+1)(s+2)^{2}}=\frac{A(s+2)^{2}}{(s+1)(s+2)^{2}}+\frac{B(s+1)(s+2)}{(s+2)^{2}(s+1)}+\frac{C(s+1)}{(s+2)^{2}(s+1)}
$$

Cont'd...Example

$$
\begin{aligned}
(3 s+4) & =A(s+2)^{2}+B(s+2)(s+1)+C(s+1) \\
& =A\left(s^{2}+4 s+4\right)+B\left(s^{2}+3 s+2\right)+C(s+1) \\
= & (A+B) s^{2}+(4 A+3 B+C) s+(4 A+2 B+C)
\end{aligned}
$$

so, compare coefficient,

$$
\begin{align*}
& A+B=0 \quad-------(1) \tag{1}\\
& 4 A+3 B+C=3-----(2) \\
& 4 A+2 B+C=4-----(3)
\end{align*}
$$

(3) $-(2)$;

$$
\begin{aligned}
& -B=1 \\
& B=-1 .
\end{aligned}
$$

From(1)

$$
\begin{aligned}
& A+B=0 \\
& A=1
\end{aligned}
$$

SubstituteB and A, int $o(2)$

$$
\begin{gathered}
4(1)+3(-1)+C=3 \\
C=2 .
\end{gathered}
$$

$\mathrm{A}=1, \mathrm{~B}=-1$ and $\mathrm{C}=2$

$$
X(s)=\frac{1}{(s+1)}-\frac{1}{(s+2)}+\frac{2}{(s+2)^{2}}
$$

Step 2: Construct the Inverse Laplace transform from the above partial-fraction term above.

- The pole of the $1^{\text {st }}$ term is at $s=-1$, so
- The pole of the $2^{\text {nd }}$ term is at $s=-2$, so

$$
e^{-t} u(t) \stackrel{L_{u}}{\longleftrightarrow} \frac{1}{(s+1)}
$$

$$
e^{-2 t} u(t) \stackrel{L_{u}}{\longleftrightarrow} \frac{1}{(s+2)}
$$

-The double pole of the $3^{\text {rd }}$ term is at $s=-1$, so

$$
2 t e^{-t} u(t) \stackrel{L_{u}}{\longleftrightarrow} \frac{1}{(s+2)^{2}}
$$

Step 3: Combining the terms.
区. $x(t)=e^{-t} u(t)-e^{-2 t} u(t)+2 t e^{-2 t} u(t)$.

1) The Laplace Transform cont..

Case 3: Roots of denominator $\mathrm{F}(\mathrm{s})$ are complex conjugate.
\square Example:

$$
F(s)=\frac{3}{s\left(s^{2}+2 s+5\right)}
$$

Solution:

$$
\begin{aligned}
F(s) & =\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5} \\
& =\frac{3 / 5}{s}-\frac{3}{5}\left(\frac{s+2}{s^{2}+2 s+5}\right) \\
& =\frac{3 / 5}{s}-\frac{3}{5}\left[\frac{(s+1)+(1 / 2)(2)}{(s+1)^{2}+2^{2}}\right] \\
f(t) & =\frac{3}{5}-\frac{3}{5} e^{-t}\left(\cos 2 t+\frac{1}{2} \sin 2 t\right)
\end{aligned}
$$

It is found that:
$A=3 / 5, B=-3 / 5$
and $C=-6 / 5$

Exercise 2: Laplace Transform Function ~ Differential Equation.

$$
\frac{d^{2} y}{d t^{2}}+9 \frac{d y}{d t}+2 y=6 e^{-4 t} \quad y\left(0^{-}\right)=2 \quad \frac{d y}{d t}\left(0^{-}\right)=-4
$$

Solution:

$$
\begin{aligned}
& {\left[s^{2} Y(s)-2 s+4\right]+9[s Y(s)-2]+2 Y(s)=\frac{6}{s+4}} \\
& Y(s)=\frac{6}{(s+4)\left(s^{2}+9 s+2\right)}+\frac{2 s+14}{s^{2}+9 s+2}
\end{aligned}
$$

2. Block Diagram

2) Block Diagram

\square A block diagram of a system is a practical representation of the functions performed by each component and of the flow of signals.

\square Cascaded sub-systems:

2) Block Diagram cont..

Feedback Control System

2) Block Diagram cont..

\square Feedback Control System

The negative feedback of the control system is given by:

$$
\begin{aligned}
& E_{a}(s)=R(s)-H(s) Y(s) \\
& Y(s)=G(s) E_{a}(s)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& Y(s)=G(s)[R(s)-H(s) Y(s)] \\
& \frac{Y(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}
\end{aligned}
$$

2) Block Diagram cont..

Reduction Rules

Cascaded blocks

$$
\mathrm{X} \longrightarrow \mathrm{GH} \longrightarrow \mathrm{Y}
$$

Moving a summer behind a block

Moving a summer ahead of a block

2) Block Diagram cont..

Reduction Rules

Moving a pickoff ahead of a block

Moving a pickoff behind a block

Eliminating a feedback loop

2) Block Diagram cont..

- Problem 1:

2) Block Diagram cont..

- Problem 1:

2) Block Diagram cont..

- Problem 1:

2) Block Diagram cont..

\square Problem 1:

2) Block Diagram cont..

\square Problem 2:

2) Block Diagram cont..

\square Problem 3:
Reduce the system to a single transfer function

3. Signal-flow graph

3) Signal Flow Graph

\square A signal flow graph is a graphical representation of the relationships between the variables of a set of linear algebraic equations.
\square The basic element of a signal flow graph is a unidirectional path segments called branch.
\square The input and output points or junctions are called nodes.
\square A path is a branch or continuous sequence or branches that can be traversed from one signal node to another signal node.
\square A loop is a closed path that originates and terminates on the same node, and along the path no node is met twice.
\square Two loops are said to be non-touching if they do not have a same common node.

3) Signal Flow Graph cont..

\square Signal flow graph of control systems

3) Signal Flow Graph cont..

\square Signal flow graph of control systems

3) Signal Flow Graph cont..

\square Mason's Gain Formula for Signal Flow Graph

$$
T_{i j}=\frac{\sum_{k} P_{i j k} \Delta_{i j k}}{\Delta}
$$

Where,

$P_{i j k}$: $k^{\text {th }}$ path from variable x_{i} to x_{j}
Δ	: Determinant of the graph
Δ_{ijk}	: Cofactor of the path $\mathrm{P}_{\mathrm{ijk}}$

```
\Delta=1-(sum of all different loop gains)
    +(sum of the gain products of all combinations of 2 nontouching loops)
    -(sum of the gain products of all combinations of 3 nontouching loops)
    +...
```


3) Signal Flow Graph cont..

Example 1: Transfer function of interacting system

3) Signal Flow Graph cont..

\square Example 1: Transfer function of interacting system
a) The paths connecting input $R(s)$ to output $Y(s)$ are:

$$
\begin{aligned}
& P_{1}=G_{1} G_{2} G_{3} G_{4} \\
& P_{2}=G_{5} G_{6} G_{7} G_{8}
\end{aligned}
$$

b) There are four individual loops:

$$
\begin{aligned}
& L_{1}=G_{2} H_{2} \\
& L_{2}=G_{3} H_{3} \\
& L_{3}=G_{6} H_{6} \\
& L_{4}=G_{7} H_{7}
\end{aligned}
$$

3) Signal Flow Graph cont..

\square Example 1: Transfer function of interacting system
c) Loops L_{1} and L_{2} does not touch loops L_{3} and L_{4}. Therefore, the determinant is:

$$
\Delta=1-\left(L_{1}+L_{2}+L_{3}+L_{4}\right)+\left(L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}\right)
$$

d) The cofactor of the determinant along path 1 is evaluated by removing the loops that touch path 1 from Δ. Therefore have:

$$
L_{1}=L_{2}=0
$$

and,

$$
\Delta_{1}=1-\left(L_{3}+L_{4}\right)
$$

Similarly, the cofactor for path 2 is:

$$
\Delta_{2}=1-\left(L_{1}+L_{2}\right)
$$

3) Signal Flow Graph cont..

Example 1: Transfer function of interacting system
e) Therefore, the transfer function of the system is:

$$
\begin{aligned}
\frac{Y(s)}{R(s)} & =T(s)=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} \\
& =\frac{G_{1} G_{2} G_{3} G_{4}\left(1-L_{3}-L_{4}\right)+G_{5} G_{6} G_{7} G_{8}\left(1-L_{1}-L_{2}\right)}{1-L_{1}-L_{2}-L_{3}-L_{4}+L_{1} L_{3}+L_{1} L_{4}+L_{2} L_{3}+L_{2} L_{4}}
\end{aligned}
$$

3) Signal Flow Graph cont..

\square Problem 1:
Obtain the closed-loop transfer function by use of Mason's Gain Formula

3) Signal Flow Graph cont..

\square Problem 2:
Obtain the closed-loop transfer function by use of Mason's Gain Formula

4. Review state space variable

Introduction

\square The basic questions that will be addressed in state-space approach include:
i. What are state-space models?
ii. Why should we use them?
iii. How are they related to the transfer function used in classical control system?
iv. How do we develop a space-state model?

4) State-Space Model

A representation of the dynamics of $\mathrm{N}^{\text {th }}$-order system as a first-order equation in an N -vector, which is called the state.

Convert the Nth-order differential equation that governs the dynamics of the system into N firstorder differential equation.

4) State-Space Model

\square The state of a system is described by a set of first-order differential equations written in terms of the state variable.

$$
\begin{aligned}
& \dot{x}_{1}=a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+b_{11} u_{1}+\ldots+b_{1 \mathrm{~m}} u_{\mathrm{m}} \\
& \dot{\mathrm{x}}_{2}=\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \mathrm{x}_{\mathrm{n}}+\mathrm{b}_{21} \mathrm{u}_{1}+\ldots+\mathrm{b}_{2 \mathrm{~m}} \mathrm{u}_{\mathrm{m}} \\
& : \\
& \dot{\mathrm{x}}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{n} 2} \mathrm{x}_{2}+\ldots+\mathrm{a}_{\mathrm{nn}} \mathrm{x}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n} 1} \mathrm{u}_{1}+\ldots+\mathrm{b}_{\mathrm{nm}} \mathrm{u}_{\mathrm{m}} \\
& \text { where } \dot{\mathrm{x}}=\mathrm{dx} / \mathrm{dt} .
\end{aligned}
$$

4) State-Space Model

\square In a matrix form, we have:

$$
\frac{d}{d t}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n m}
\end{array}\right) \cdot\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right)
$$

\square State vector:

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right)
$$

4) State Space Model

$$
\begin{array}{lll}
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} & \measuredangle & \text { Input equation } \\
\mathbf{y}=\mathbf{C} \mathbf{x}+\mathbf{D u} & \measuredangle & \text { Output equation }
\end{array}
$$

$\mathbf{x}=$ state vector
$\mathbf{y}=$ output vector
$\mathbf{u}=$ input or control vector
$\mathbf{A}=$ system matrix
$\mathbf{B}=$ input matrix
$\mathbf{C}=$ output matrix
$\mathbf{D}=$ feedforward matrix

