
Chapter 2

Unix

UNIX is basically a simple operating system, but you have to be
a genius to understand the simplicity. – Dennis Ritchie

2.1 Unix History

For many people the term “System Administrator” implies operation of Unix

systems, even though the same concepts, tasks and practices apply largely

to the maintenance of hosts running any operating system. In this book, we

strive to describe principles that are universally applicable and not bound by

a specific operating system. We will regularly use Unix as the prime example

and cite its features and specific aspects because of its academic background,

long history of openness, high penetration of the infrastructure marketplace,

and its role as a cornerstone of the Internet.

2.1.1 The Operating System

How the Unix operating system came to be and how that relates to the de-

velopment of the Internet and various related technologies is fascinating; just

28

CHAPTER 2. UNIX 29

about every other Unix-related book already covers this topic in great detail.

In this chapter, we summarize these developments with a focus on the major

milestones along the road from the birth of Unix as a test platform for Ken

Thompson’s “Space Travel” game running on a PDP-7 to the most widely

used server operating system that nowadays also happens to power consumer

desktops and laptops (in the form of Linux and Apple’s OS X), mobile de-

vices (Apple’s iOS is OS X based and thus Unix derived; Google’s Android

is a Linux flavor), TVs, commodity home routers, industry scale networking

equipment, embedded devices on the Internet of Things (IoT), and virtually

all supercomputers

1
. We will pay attention to those aspects that directly re-

late to or influenced technologies covered in subsequent chapters. For much

more thorough and authoritative discussions of the complete history of the

Unix operating system, please see [2], [3] and [5] (to name but a few).

2

Let us briefly go back to the days before the Unix epoch. Unix keeps time

as the number of seconds that have elapsed

3
since midnight UTC of January

1, 1970, also known as “POSIX time”

4
. The date was chosen retroactively,

since “Unics” – the Uniplexed Information and Computing Service, as the op-
erating system was initially called

5
– was created by Ken Thompson, Dennis

Ritchie, Brian Kernighan, Douglas McIlroy and Joe Ossana in 1969. That

is, Unix predates the Unix epoch!
It is interesting and a testament to the clean design to see that the basic

1TOP500[1], a project ranking the 500 most powerful computers in the world, listed
over 89% as running a version of Linux or Unix.

2The “Unix Heritage Society” mailing list[6] is another particularly noteworthy re-
source in this context. It continues to be an incredible source of historical, arcane, and
yet frequently and perhaps surprisingly relevant information and discussions around the
history of the Unix family of operating systems. It is notable for the regular participation
of many of the original developers and researchers from the early days of Unix.

3It is worth adding that this does not include leap seconds, thus making Unix time a
flawed representation of what humans like to refer to as linear time. Leap seconds are
inserted rather unpredictably from time to time, and Unix time has to be adjusted when
that happens. Worse, negative leap seconds are possible, though have never been required.
Just more evidence that Douglas Adams was right: “Time is an illusion, lunch time doubly
so.”[7]

4This is also the reason why, for example, Spam with a “Sent” date set to 00:00:00
may, depending on your timezone o↵set from UTC, show up in your inbox with a date of
December 31, 1969.

5The name was a pun on the “Multics” system, an alternative for which it was initially
developed as.

CHAPTER 2. UNIX 30

functionality and interfaces of an operating system developed over 40 years

ago have not changed all that much. The C programming language was

developed in parallel by Dennis Ritchie[8], for and on Unix. Eventually,

Unix itself was rewritten in C, and the programming language became such

an integral part of the operating system, such a fundamental building block,

that to this day no System Administrator worth their salt can avoid learning

it, even though nowadays most tools running on top of Unix are written in

higher-level, often interpreted languages.

The structure of the Unix file system, which we will revisit in much detail

in Chapter 4, the basic commands available in the shell, the common system

calls, I/O redirection, and many other features remain largely unchanged

from the original design. The concept of the pipe, which defines and rep-

resents so much of the general Unix philosophy, was first implemented in

1973[10], and we still haven’t figured out a better, simpler, or more scalable

way for two unrelated processes to communicate with each other.

Since its parent company AT&T was prohibited from selling the operat-

ing system

6
, Bell Laboratories licensed it together with the complete source

code to academic institutions and commercial entities. This, one might ar-

gue, ultimately led directly to the very notion of “Open Source” when the

Computer Systems Research Group (CSRG) of the University of California,

Berkeley, extended the operating system with their patchsets, which they

called the “Berkeley Software Distribution” or BSD.

Likewise, the licensing of this “add-on” software allowed Berkeley Soft-

ware Design Inc. (BSDI) to develop and sell their operating system BSD/OS.

This lead directly to the famous lawsuit[11] by Unix System Laboratories

(USL), a wholly owned subsidiary of AT&T / Bell Labs, who did not appre-

ciate BSDI selling their operating system via the 1-800-ITS-UNIX number.

It has been argued that this lawsuit eroded some companies’ confidence in the

BSD family of operating systems and caused them to adopt a new Unix clone

called “Linux” despite its more onerous license. Regardless of the “what if”s

involved, this part of the history is rich in lessons ranging from business logic

and legal impact of software licensing to the psychological impact of version

numbering and other aspects of software product release.

7

6Under a ruling stemming from an anti-trust settlement in 1958[5], AT&T was only
able to commercially sell Unix after divesting itself from Bell Labs.

7For the rather interesting details, including the full ruling of the courts as well as many
discussions around its repercussions, please see the references at the end of this chapter –
the legal battle and its impact on the history of computing alone could fill a book.

CHAPTER 2. UNIX 31

The di↵erent direction taken by the CSRG and the commercial entities

which licensed and then sold the Unix operating system and the evolution of

the code as it was merged between these branches ultimately lead to two main

directions: the BSD derived family of systems and the ones tracing back to

(AT&T’s) Unix UNIX V, or SysV. The latter had four major releases, with

System V Release 4, or SVR4, being the most successful and the basis of

many other Unix versions. Multiple vendors entered the operating system

marketplace and tried to distinguish themselves from their competitors via

custom (and proprietary) features, which lead to significant incompatibilities

between the systems (and much frustration amongst System Administrators

in charge of heterogeneous environments).

It only contributes to the overall confusion that “Version 7 Unix”, the

last version of the original “Research Unix” made available by Bell Labs’

Computing Science Research Center, was released prior to and became the

basis of “System III”, from whence “System V” would ultimately derive.

8

(Linux, not being a genetic Unix – that is, it does not inherit nor share any

code directly with the original version from Bell Labs – can be seen as a

third main flavor, as it borrows semantics and features from either or both

heritages. This can at times be both a source of great choice and flexibility

as well as of frustration and confusion.)

Software Versioning is Largely Arbitrary
As a wonderful illustration of the absurdity of software version

numbers, consider Solaris. Internally termed “SunOS 5”, it was

released as “Solaris 2” and attempted to correlate SunOS kernel

versions to Solaris releases: Solaris 2.4, for example, incorporated

SunOS 5.4. As other competing operating systems had higher

version numbers, it appears that Sun decided to leapfrog to the

“front” by dropping the major version number altogether. The release

following Solaris 2.6 became Solaris 7 (incorporating SunOS 5.7).

Similarly, 4.1BSD would have been called 5BSD, but AT&T feared that

would lead to confusion with its own “UNIX System V”. As a result, the

BSD line started using point releases, ending with 4.4BSD.

8You can download or browse the source code and manual pages of many historical
Unix versions on the website of the Unix Heritage Society[29].

CHAPTER 2. UNIX 32

I have observed similar “back matching” of OS release versions in more

than one large internet company: o�cially supported (major) OS ver-

sion numbers grow point releases that do not exist upstream, reflecting

a merging of internal versions such that third-party software does not

break.

Fragile as this approach is, it reflects a SysAdmin’s ability to meet con-

flicting needs (track OS versions without incrementing the release num-

bers) in a practical manner.

Throughout the eighties, a number of di↵erent versions of Unix came into

existence, most notably Hewlett-Packard’s HP-UX (SysV derived; originally

released in 1984), IBM’s AIX (SysV derived, but with BSD extensions; orig-

inally released in 1986), Microsoft’s Xenix (derived from “Version 7 Unix”;

originally released in 1980; ownership of Xenix was later on transferred to

Santa Cruz Operation (SCO), where it was ultimately succeeded by “SCO

UNIX”), SGI’s IRIX (SysV derived, but with BSD extensions; originally

released in 1988) and Sun Microsystems’s SunOS (BSD derived; originally

released in 1982 and later on superseded by their own SysV derived Solaris).

Even though these systems were commercial, innovations from one easily

flowed to the others. For example, a number of important and now ubiquitous

features such as the Virtual File System (VFS) and the Network File System

(NFS) were developed at Sun, which was co-founded by Bill Joy, who had

been a graduate student in the CSRG at Berkeley, where he worked on various

BSD releases and created a number of important tools, including the vi(1)
editor and the csh(1) command-line interpreter.

Not surprisingly, the code released under the permissive BSD-License[13]

was equally quickly adapted and integrated into the commercial versions.

This included the Berkeley Fast File System (FFS) (also known as the Unix

File System (UFS)), the BSD Sockets library and Application Program-

ming Interface (API), and of course the DARPA sponsored integration of

the TCP/IP suite (initially developed by BBN Technologies, one of the com-

panies contracted to implement the protocols). The BSD-derived TCP/IP

code finally found its way into virtually every major operating system, in-

cluding Microsoft Windows.

Linux, one of the most widely used Unix versions today – technically

CHAPTER 2. UNIX 33

a “Unix-like” operating system, as it inherits from neither the SysV nor

the BSD lineages – has its own unique history, invariably tied to that of

the GNU Project. Developed on and inspired by MINIX, it was created in

1991 by Linus Torvalds as a “(free) operating system [...] for 386(486) AT

clones”[12]. Since a kernel all by itself does not an operating system make,

Linux was soon bundled with the freely available software provided by the

GNU Project and, like that software, licensed under the GNU General Public

License.

The GNU Project in turn was started by Richard Stallman in 1983

9
to

provide a Unix-like operating system, and by 1991 it provided a large num-

ber of essential programs and tools (starting with the ubiquitous emacs(1)
editor) and of course including the GNU Compiler Chain gcc(1), the GNU

C Library (glibc), as well as the GNU Core Utilities; however, it was still in

need of a kernel. When Linux was released, it filled this void and GNU/Linux

was born. It is interesting to note that despite the unique license this oper-

ating system was released under – in a nutshell: you get the source and are

free to use and modify it, but any modifications need to be released under

this same license – it has found widespread adoption by commercial entities

and countless products are based on it.

Di↵erent organizations, both commercial and volunteer-based, have sprung

up to provide di↵erent versions of the GNU/Linux OS. Inherently similar on

a fundamental level, they tend to di↵er in their package manager (see Chap-

ter 5.5 for a detailed discussion of these components), administrative tools,

development process, and user interface choices. Some companies trade rapid

adoption of new features available in the open source kernel for a reputation

of stability and o↵er commercial support for their particular Linux flavor.

Even though nowadays hundreds of these Linux distributions exist, the

two dominant variations in the server market tend to be those based on

“Red Hat Enterprise Linux” as well as derivatives of Debian GNU/Linux.

The former, a commercial product licensed to users by Red Hat, Inc., gave

birth to the “Fedora” and CentOS community projects, while in 2012 Canon-

ical Ltd.’s “Ubuntu” OS became the most widely used Debian derivative.

Changes to the core components continue to be merged across all distribu-

tions, but the specific bundling of custom tools lead to di↵erent Linux flavors

drifting further apart.

9Note that this makes the GNU project 8 years older than Linux!

CHAPTER 2. UNIX 34

Figure 2.1: A partial Unix genealogy tree.

With all this back and forth between the various versions, trying to keep

track of the entire genealogy of the Unix family of operating systems is no

easy task. Figure 2.1 provides an incomplete and simplified visualization of

the main directions; a much more complete graph of the Unix history can be

seen on the “Unix Timeline”[14] – printed on letter-sized paper, the graph

is over 25 feet long! Many System Administrators have covered their o�ce

walls with this reminder of the complex history of their favorite operating

system.

Parallel to the development of the various Unix flavors evolved a set of

standards that helped define how exactly the operating system should be-

have, what interfaces it should provide and what kinds of assumptions third-

party software could make about the environment. These standards became

to be known as the “Single UNIX Specification” (SUS, commonly referred by

version, such as SUSv3) and eventually as “POSIX” (for “Portable Operating

System Interface for uniX”). The SUS was used to qualify operating systems

for the name “UNIX” – this certification was obtained only by a relatively

small number of systems, since it was costly and required re-certification of

CHAPTER 2. UNIX 35

the system after any significant change (i.e., major OS release), something

that Open Source projects, such as the BSDs certainly could not a↵ord.

Eventually, SUSv3 and POSIX:2001 (formally known as IEEE 1003.1-

2001) became more or less interchangable; we will commonly refer to sys-

tems or interfaces as being “POSIX-compliant” (or not, as the case may be).

At the time of this writing, the latest version is POSIX:2008[15], which is

divided into a Base Definition, the System Interfaces and Headers, and the

Commands and Utilities. It should be mentioned, though, that not only is

“the nice thing about standards that you have so many to choose from”[16],

as an old phrase coined by Andrew S. Tanenbaum goes, but also that a rec-

ommendation or requirement does not necessarily have to make sense or be

realistic to be included in a standard. We will occasionally notice discrepan-

cies between what POSIX demands and what di↵erent OS vendors chose to

implement. As two entertaining examples, please refer to the section of the

fcntl(2) manual page on e.g. a NetBSD system[17] that elaborates on the

locking semantics or the fact that POSIX could be interpreted to require a

cd(1) executable10.

2.1.2 Networking

No review of the history and basic features of the Unix operating system

would be complete without a mention of the parallel evolution of the In-

ternet. As we noted in Section 2.1.1, the development of the Unix system

and that of the predecessors of what ultimately became the Internet were

not only related, but became inseparably merged. The ARPANET imple-

mented the concept of packet switching, allowing payload to be broken into

small datagrams and routed along di↵erent paths; its adoption of TCP/IP[20]

as its protocol suite e↵ectively marked the beginning of the modern Inter-

net. Even though some companies developed their own TCP/IP stack, the

code included in the Berkeley Software Distribution quickly became the most

widely used implemention and ultimately replaced other network protocols

11
.

In the early days of the Internet, the various di↵erent networks – ARPANET,

10If the problem of a cd(1) executable isn’t immediately obvious to you... well, see
Problem 4!

11Microsoft, for example, did not include TCP/IP in their operating systems until Win-
dows 95, allowing other companies to sell their implementations as add-on software. The
move from their native NetBIOS protocol to the BSD derived TCP/IP stack helped make
the latter the de-facto Internet standard protocol suite.

CHAPTER 2. UNIX 36

CSNET, MILNET, NSFNET, NSI, etc. – were connected via specific gateway

hosts, and email exchanges as well as communications on the early BBSes

and Usenet were performed via UUCP, the Unix-to-Unix Copy tools

12
. Once

hosts were more frequently directly connected to the Internet, SMTP and

NNTP became more widely used, leading to Unix servers running various so-

called dæmons to provide network services as part of their normal operations.

But even before the advent of the Internet, Unix included networking

capabilities. Through its layers of abstraction it was possible to implement

support for di↵erent networking technologies and allow applications to be

network protocol agnostic. In fact, some applications, such as email were

available and in use prior to any traditional networking capabilities. The na-

ture of Unix as a multiuser system lead to the development of tools, amongst

them the mail(1) program, to allow these users to communicate e�ciently

with one another and across systems. We will frequently review how the

nature of a scalable tool allows it to function equally well regardless of where

input data comes from or what transport mechanism is used; a simple, well

defined program can deliver mail on a single system while relying on a sep-

arate transport service (i.e., UUCP or SMTP) to handle connections with

other systems.

Furthermore, the software implementing such services was developed on

and then included in the Unix operating system. As a result, the Internet

and its infrastructure were growing in parallel to the capabilities of Unix, one

enabling the other to become more powerful and ubiquitous. And so today,

the overwhelming majority of the systems powering the core infrastructure

components of the Internet, such as, for example, the DNS root servers or

most web- and mail servers, are running on a Unix variant

13
: the by far most

popular implementation of the DNS specification is, not surprisingly, the

Berkeley Internet Name Domain (BIND) server[21]; sendmail, exim, and
postfix push the majority of the world’s email[22]; the apache web server

still handles more than 45% of all HTTP tra�c on active sites than any other

web server[23].

12Every now and then you may encounter a scru↵y oldtimer who insists on pointing out
that their email address is something along the lines of “...!orgserver!deptserv!mybox!user”.
You can trivially impress them by calling it their “bang path” and agreeing that @-based
email addresses are newfangled humbug.

13As noted in the introduction, we continue to count Linux as a “Unix variant” to avoid
constant repition of the phrase “Unix or Linux”.

CHAPTER 2. UNIX 37

2.1.3 Open Source

Unix is an inherently open system. Developed at a renowned research insti-

tution, it was released and licensed together with the source code long before

the formal idea of “Open Source” had manifested itself. As we have seen

in Section 2.1, the availability of the source code made it possible for other

various commercial versions to be developed by di↵erent companies, but it

also allowed the development of the Berkeley Software Distribution (BSD)

with its distinctly permissive licensing terms.

Having access to the source code of the operating system and all the

tools in use is a foreign concept in the world of proprietary software, where

the source code is guarded as a trade secret, the pillar upon which a tradi-

tional company builds its entire profit model. Within the academic world

in which Unix was developed, however, access to the source code was only

natural. Peer review and openness were fundamental parts of this world

and the system was targeted towards engineers, hackers, advanced users who

would naturally like to make changes to tools, who would want to extend the

capabilities and add new features.

This wish to share one’s work with others, to allow others to take full

advantage of it, and to make their own modifications took two distinct di-

rections early on, embodied in the two open source license models that have

remained dominant to this day. On the one hand, the distinctly academic

BSD-License (see Listing 2.3) allowed for any use of the software whatsoever

(including modification and commercial re-selling of the products) so long as

credit was given where credit was due. On the other hand, the GNU General

Public License (GPL), written by Richard Stallman intended to very specifi-

cally not only grant, but to enforce certain freedoms using a moral argument.

This license, somewhat ironically, imposes a number of restrictions on what

you can do with the source code you have received, most notably the require-

ment to make public under the same license any changes you distribute.

People have argued about the benefits of one license over the other for

decades by now, and we will not attempt to resolve the dispute in this book.

They represent di↵erent approaches to one’s software, perhaps a personal

choice of how one wishes that it be used in the future. Su�ce it to say that

there is incredible software licensed using both approaches, and both mod-

els thrive to this day. A similar discussion involves the concept of cost and

freedom with regards to software (“Free as in beer versus free as in speech”).

Open Source software, like all software, comes at a price: a relatively small

CHAPTER 2. UNIX 38

component of the total cost of ownership is the actual purchase price, and

access to the source code (which in some cases may well come under specific

terms of the license with commercial and/or closed source software) is some-

what independent thereof. What’s more important – within the context of

this book, anyway – is that the very concept of Open Source is embedded

in the Unix philosophy and culture, and as a result System Administrators

frequently expect to be able to analyze the source code to the applications

and operating systems they run.

But not only are we able to inspect how a piece of software works, we

need to. All too frequently do we encounter problems or try to analyze a

system’s behaviour where the question of what on earth might be going on

is answered with this advice: “Use the source, Luke!” – Unix has let us do

precisely that since the beginning.

14

2.2 Basic Unix Concepts and Features

The Unix operating system consists, somewhat simplified, of three major

components: a kernel, which controls the hardware, schedules tasks, and in-

terfaces with the various devices; a set of libraries, which provide an interface

to the kernel (in the form of system calls that run in privileged kernel space

as well as unprivileged library functions running in user space); and a set

of tools and applications (often referred to as the “userland”) using these

libraries to provide functionality to the end user.

Most Unix flavors use a monolithic kernel, but allow for dynamically

loaded kernel modules.

15
This approach allows for a reduction of the kernel

footprint and increased flexibility, as device driver support can be added

or removed at runtime without requiring a reboot. The kernel, managing

the system’s resources, is running in supervisor mode and exposes facilities

via system calls. It is desirable to keep the number of these entry points

into kernel space limited and let higher-level library functions provide added

14It should be mentioned that the various commercial Unix versions represent closed
source systems. But not only are Open Source Unix versions nowadays much more widely
in use, virtually all of the core software running on top of the (commercial, closed, open,
or any other) OS traditionally comes with its source code.

15A discussion of microkernels, unikernels, and the various containers that became pop-
ular in more recent years is, unfortunately, well beyond the scope of this chapter. The
broad subject matter of System Administration again forces us to focus on the general
principles first.

CHAPTER 2. UNIX 39

$ cmd >output # redirection of stdout to a file
$ cmd >/dev/null # suppression of output
$ cmd >/dev/null 2>&1 # suppression of all output
$ cmd <input # accepting input from a file
$ cmd1 | cmd2 # feeding output from cmd1 into cmd2

Of course these redirections can be combined ...
$ cmd1 2>/dev/null | cmd2 | cmd3 2>&1 | cmd4 >file 2>output

Listing 2.1: Simple I/O redirection in the shell

functionality executed in unprivileged mode. Therefore, most Unix versions

have only a comparatively small number of system calls: as of January 2017,

NetBSD, for example, had only around 482 such calls[18], with only minimal

expected growth

16
.

Utilizing these system calls and library functions, the higher level tools

and applications are able to interface with the kernel and execute on the user’s

behalf. These binaries then can be divided into a number of categories, such

as executables essential for the basic operation of the system, tools primarily

intended for use by the system administrator, and general purpose utilities.

We will revisit this topic in more detail in Chapter 5.

2.2.1 The shell

The Unix shell, while in many ways nothing but a regular executable, takes

a special place in the list of utilities and commands available on the system.

The shell provides the primary user interface, allowing for the invocation

and execution of the other tools. AT&T’s Version 7 Unix included the so-

called “Bourne shell” (named after Steven Bourne) installed as /bin/sh. In
addition to the ability to invoke other commands, the shell was designed as

a command interpreter both for interactive use as well as for non-interactive
use. That is, it included a scripting language, allowing for complex series of

commands to be executed; for example, by system startup scripts at boot

time.

17

16Revisiting an earlier draft of this chapter from January 2012 listed 472 system calls.
That is, over the course of five years, only ten new system calls were added.

17It is worth noting that the early Bourne shell also included support for pipelines
(invented by Douglas McIlroy and added to Unix by Ken Thompson in 1973).

CHAPTER 2. UNIX 40

Various other shells have been created since then, mostly following either

the general Bourne shell syntax or that of Bill Joy’s C csh(1) Shell. The

most notable shells today include: the Almquist shell ash(1), a BSD-licensed
replacement for the Bourne shell, frequently installed as /bin/sh on these

systems; the GNU Project’s Bourne-again shell bash(1), which is the default

shell on most Linux systems and known for a large number of added features;

the Korn shell ksh(1), named after David Korn and which became the basis

for the POSIX shell standard; the TENEX C shell tcsh(1), a C shell variant

developed at Carnegie Mellon University; and perhaps the Z shell zsh(1)
another very feature rich Bourne shell variant.

As a scripting language and due to its availability on virtually every Unix

flavor, /bin/sh is assumed to be the lowest common denominator: a Bourne-

or Bourne-compatible shell. On Linux, bash(1) is typically installed as both

/bin/bash and /bin/sh, and it behaves (somewhat) accordingly based on

how it was invoked. Unfortunately, though, its ubiquity on Linux systems

has led to a shell scripts masquerading as /bin/sh compatible scripts that

are, in fact, making use of bash(1) extensions or rely on bash(1) compat-

ibility and syntax. This becomes frustrating to debug when trying to run

such scripts on a platform with a POSIX compliant /bin/sh.

All Unix shells include the ability to perform I/O redirection. Each pro-

gram has a set of input and output channels that allow it to communicate

with other programs. Like the concept of the pipe, these streams have been

part of Unix’s design from early on and contribute significantly to the consis-

tent user interface provided by all standard tools: a program accepts input

from standard input (or stdin) and generates output on standard output (or
stdout); error messages are printed to a separate stream, standard error (or
stderr).

The shell allows the user to change what these streams are connected to;

the most trivial redirections are the collection of output in a file, the suppres-

sion of output, acceptance of input from a file, and of course the connection

of one program’s output stream to another program’s input stream via a pipe

(see Listing 2.1 for Bourne-shell compatible examples).

The concept of these simple data streams being provided by the operat-

ing system was inherent in the Unix philosophy: it provided abstraction of

interfaces, reduced overall complexity of all tools using these interfaces, and

dictated a simple text stream as the preferred means of communication. We

will have more to say on the Unix philosophy in Section 2.2.4.

CHAPTER 2. UNIX 41

Figure 2.2: Standard streams in a simple pipeline

Finally, the unix shell provides for job control, a necessity for a multitask-

ing operating system. When a user logs into the system, their login shell is
started, serving as the primary interface between the user and the OS. After

entering a command or a pipeline, the shell will create (“fork”) a new process

and then execute the given programs. The standard streams are connected

as illustrated in Figure 2.2. While the program or pipeline is running, the

user cannot do anything else – she has to wait until the command completes

and control is returned to the shell. In the mean time, all she can do is

twiddle her thumbs; so much for multitasking!

To avoid this scenario, the C shell implemented a feature that was quickly

incorporated in the Bourne shell, which allows users to start and control

multiple concurrent processes by placing them into the background (by adding
the & symbol at the end of the command or via the shell builtins), bringing
them to the foreground (via builtins), suspending and continuing them (by

sending possibly keyboard generated signals to the relevant process group),

etc. Listing 2.2 illustrates the basic job control functionality.

CHAPTER 2. UNIX 42

$ cmd1 & # send cmd1 to the background
[1] 5836 # report job number and process ID
$ cmd2 | cmd3 & # send a process group to the background
[2] 5912
$ jobs # report on running jobs
[1] Running cmd1
[2] Running cmd2 | cmd3
$ fg %1 # bring job 1 to the foreground
cmd1
^Z # suspend via Control+Z
[1]+ Stopped cmd1
$ bg # send it back to the background
[1]+ cmd1
$ # hit return again ...
[1]+ Done cmd1
$ # cmd1 has completed

Listing 2.2: Simple job control in the shell

2.2.2 Manual pages and documentation

Another important feature of the Unix operating system was that it included

what came to be known as the “online manual pages”

18
, reference documen-

tation readily available on the running system and that went beyond just

attesting to the existence of a command or feature, but instead provided ac-

tually useful information, including the correct invocation, possible options,

a description of the tool’s functionality as well as any known bugs. Divided

into several sections by topic, system calls are documented in section two, li-

brary functions in section three, while commands and executables are usually

documented in section one for general purpose tools and section eight (on

BSD, section 1M on SysV derived systems) for system administration related

commands and dæmons.

The standard for this documentation has always been high, reflecting the

academic culture behind the operating system. Rather than treat the user

as a naive consumer, Unix documentation acknowledges the fact that the

target audience consists of skilled engineers who appreciate and require an

accurate description of the tools at their disposal in order to make the most

of them. It may not surprise you to know that the adoption of Unix within

18In Unix’s historic context, “online” initially meant that the documentation is available
on the running system, not “on the Internet”.

CHAPTER 2. UNIX 43

the Bell Labs patent o�ce, which secured funding for further development,

was largely thanks to the system’s abilities to typeset beautiful documents

using the ro↵ text formatting program

19
. The same tools are still used to

format the manual pages.

Unix provided manual pages and documentation not just of the executa-

bles and configuration files provided by the system, but also for so-called

“supplementary” documents. These comprise a number of papers that, as

in the case of the Interprocess Communication (IPC) tutorials, for example,

served as the de-facto reference documentation and continue to be used in

countless Computer Science classes today to teach students the fundamentals

of Unix IPC. Other highlights include an introduction to the GNU debugger

gdb, the make tool, a vi(1) reference manual, an overview of the file system,

and various dæmons. Since these documents are licensed under the permis-

sive BSD License, they can be – and thankfully are! – included in modern

Unix versions (such as e.g. NetBSD) and made available on the Internet[19].

Understanding the Shell
A System Administrator spends a significant amount of time in

the shell, both her own login shell as well as various others. Not

only does she need to run countless commands to remotely ad-

ministrate various hosts, she also routinely writes small, large,

complex, simple, elegant or convoluted scripts to accomplish any

thinkable task. It is therefore imperative to understand how the

Unix shell works on a detailed level. It is surprising how frequently the

many intricacies of I/O redirection, of job control and pipelines, of aliases

and builtins taking precedence over commands, as well as other seem-

ingly obscure problems manifest themselves.

If you have a background in C programming, consider writing a general

purpose Unix shell from scratch – it will teach you invaluable lessons

about how the system works on a very fundamental level. (If you do not

have a background in C programming... develop one!)

19Consider that W. Richard Stevens used to typeset his famous books “Advanced Pro-
gramming in the UNIX Environment” and the “TCP/IP Illustrated” series by himself
using groff(1).

CHAPTER 2. UNIX 44

2.2.3 A portable, multitasking, multiuser system

The Unix operating system was, from the very beginning, designed as a

portable, multitasking, multiuser system. These inherent features are largely

responsible for the incredible success of this over 40 year old system and each

has wide-reaching consequences. Initially developed on a PDP-7 and then a

PDP-11 machine, Unix was rewritten in the C programming language, which

allowed it to be ported with comparatively little e↵ort to various other ma-

chines and hardware architectures. Figure 2.3 shows a few di↵erent hardware

platforms, each running a version of Unix. Prior to this, operating systems

were written in assembly, and that was that – only a fool would attempt

otherwise! But as a result of this bold move to stray from convention and

instead to apply a fundamental design choice of abstraction of complexity,

the system became inherently portable: software for Unix – any Unix, really

– can usually be adapted to other Unix flavors with few modifications.

Now, to state that Unix is portable does not mean that one can triv-

ially recompile the software without any changes – far from it! Any System

Administrator can relate stories of having spent hours wrangling Makefiles,

autoconf/automake frameworks, and hunting down header files and libraries.

But in the end, it remains relatively easy to get the software to work, since

all Unix systems follow (to some degree, anyway) certain standards and con-

ventions. Consider the e↵ort of adapting a complex piece of software from

running on Linux to, say, IRIX to that from running on Windows 95 to

Mac OS 9! Unix having been rewritten in the higher level C programming

language, the standardization of C, as well as the POSIX guidelines really

allowed a world of portable, flexible software to flourish.

The multitasking nature of the Unix operating system was a given, as

it was intended to be a time-sharing system, allowing multiple processes to

use the given resources seemingly simultaneously by means of a scheduler

which initiates context switches to grant each process time on the Central

Processing Unit (CPU). Allowing for multiple (simultaneous) users was just

a logical consequence. Nowadays it may not seem worth mentioning, but it is

worth noting that this system, conceived to allow multiple users simultaneous

access was designed over 40 years ago. In comparison, Windows NT, first

released in 1993, was the first of Microsoft’s family of operating systems to

eventually introduce multiuser capabilities, around 20 years later; Apple’s

Mac OS gained multiuser capabilities only with OS X in 2001.

The nature of a multiuser system has a number of significant implications:

CHAPTER 2. UNIX 45

Figure 2.3: Di↵erent systems and architectures running Unix. A VAX-11

by DEC (VAX), an O2 by SGI (MIPS), a Mac Mini by Apple (PowerPC),

PowerEdge servers by Dell (x86).

A system that allows multiple users to simultaneously utilize the given re-

sources is in need of a security model that allows for a distinction of access

levels or privileges. The system needs to be able to distinguish between file

access or resource utilization amongst users, thus requiring the concept of ac-

cess permissions, process and file ownership, process priorities and the like.

Controlling access to shared resources by individual users also required, ef-

fectively, a single omnipotent user to control and administer these privileges,

thus necessitating the superuser or root account (with plenty of security

implications and concerns of its own).

In order to meet these requirements, the Unix system uses a set of file

permissions to restrict three di↵erent types of access – read, write and exe-

cute (or rwx, respectively) – to the file owner or user, members of a specific

user group, or everybody else (i.e., others) on the system (ugo, respectively).

CHAPTER 2. UNIX 46

These permissions can be used to implement e�ciently various security mod-

els, but at the same time they are simple and flexible enough to allow users

to make their own choices.

20

Unix has a long tradition of following the principle of least privilege:
system services are usually run using a dedicated user account, allowing the

System Administrator to separate file access and resource usage such that

even if the service was compromised, harm would be minimized. This practice

translates to routine tasks in system administration and standard operating

procedures alike. We will revisit this concept in more detail in Chapter 11.

Processes, like files, are associated with individual users, though privilege

escalation can be accomplished by means of changing the e↵ective user ID.
Processes also may have specific resource limitations, which the superuser

can set system-wide or on a per-user or per-group basis. We will revisit

the associated system calls and commands like getrlimit(2), sysctl(8),
ulimit(1), and login classes (see login.conf(5), where available) in Chap-

ter 14 and elsewhere.

2.2.4 The Unix Philosophy

The design of the Unix operating system was based on principles that not

only have been proven time and again to lead to stable, scalable and robust

solutions, but that have formed the basis of a specific Unix culture, a way of

doing things that speaks to advanced users such as System Administrators in

particular. You can find a thorough explanation of this culture in classic texts

such as Kernighan and Pike’s “The UNIX Programming Environment”[4],

Eric S. Raymond’s “The Art of Unix Programming”[5], or simply by search-

ing the Internet for the term “Unix philosophy”, but it warrants summarizing

due to the profound impact it has.

At its core, the Unix philosophy stipulates that tools should be kept

simple and adhere to specific simple guidelines and implement an equally

simple interface (namely text streams). Virtually every one of the great

minds involved in the initial invention and continued development of the

Unix operating system – from Douglas McIlroy to Rob Pike, from Dennis

20Di↵erent Unix versions have since developed support for extended file attributes in-
cluding e.g. a per-file Access Control List (ACL), allowing the user to wield more fine-
grained control. This is implemented on di↵erent operating systems and in di↵erent file
systems, and the details and semantics di↵er. In the interest of simplification and focusing
on the fundamental principles, we are not covering ACLs.

CHAPTER 2. UNIX 47

Ritchie to Ken Thompson – can be quoted to underline this point; they must

have been on to something.

The most well-known expression of what makes Unix Unix is probably

Douglas McIlroy’s summary[24], partially cited in the previous chapter:

Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because
that is a universal interface.

This is frequently succinctly described as the KISS (“Keep it simple,

stupid”) principle and correlated with Richard P. Gabriel’s “Worse is Bet-

ter”[25] design philosophy, according to which simplicity is to be preferred

over all other attributes of software, at times even including correctness.

While I do not tire of repeating precisely this advice, I believe that the ex-

isting literature tends to overlook, one major factor that helped arrive at the

mantra of simplicity: deference to the user.

One of the smartest insights a program or system developer can have

is that even though they are the person writing the software, they cannot

foresee all possible uses of the software. They cannot know what the user

will want to accomplish or in what ways she may wish to use the tool. And

therein lies the crux: if I wish to enable the user to utilize the tool in any

way they wish, how can I possibly keep it simple? Wouldn’t it have to end

up being a general purpose tool, with countless inherent complexities as I

attempt to anticipate every interface of the future? Remember, a “general

purpose product is harder to design well than a special-purpose one.”[26]

This is where the Unix philosophy comes in: by imposing restrictions, it

counterintuitively opens up the most flexible, the widest use. Simple tools

that perform a single task and operate on a well-defined interface are less

complex than software that attempts to keep state in deeply nested data

structures (or, worse yet: binary objects stored in files). Our users gain the

ability to use the tools for purposes we did not initially anticipate. Unix

grants the user flexibility. For better or worse, Unix trusts its users to know

what they’re doing and will happily let you shoot yourself in the foot.

UNIX was not designed to stop its users from doing stupid things,
as that would also stop them from doing clever things. – Doug

Gwyn

CHAPTER 2. UNIX 48

The awareness that your software might be used in ways you cannot

imagine, that the user of the software might actually know better what they

may wish to accomplish than the designer or implementer is what makes

Unix so fascinating. Interestingly, this philosophy, this trust into the user

and his or her capabilities and knowledge stands in stark contrast to that of

the late Steve Jobs, who famously quipped that “people don’t know what

they want until you show it to them”[27]. Apple’s products are known for

their elegance and ease of use, but advanced users know that should you

attempt to do something with them that the designers did not anticipate,

it’s either impossible or painfully cumbersome.

The primary user interface on the Unix systems remains the command-

line. This is not for a lack of other options, but a manifestation of the Unix

philosophy. While it may appear more “user-friendly” to a novice to use a

pointing device to select pre-determined options from a menu using a Graph-

ical User Interface (GUI), it is anathema to e�cient System Administration.

System Administrators need to be able to perform tasks remotely, quickly,

and reliably unattended; execution of programs needs to be automated and

scheduled, configuration be done outside of the application, and data be

transformed with the myriad of available filters. As you can tell, these re-

quirements go back to the Unix way of writing simple tools that work well

together by communicating via text streams. Thanks to the consistency with

which these principles are implemented across the platform, the learning

curve for advanced users, while perhaps steeper than on some other systems,

only needs to be climbed once. At the same time, it gets you to a higher

level of e�ciency quickly.

The ability to combine individual tools to build larger, more complex

ones; to remotely access hundreds or thousands of systems in the same man-

ner as one would a single system; to allow rapid development of simple proto-

types constructed of growing pipelines; to be able to control access to shared

resources following a simple yet flexible security model; to extend and tune

the operating system itself; to be able to do all the things that the designers

of the system could not have envisioned you doing – this power is what Unix

confers upon the advanced user. It is why System Administrators not only

prefer Unix, but actually enjoy working on this platform.

CHAPTER 2. UNIX 49

Copyright (c) <year >, <copyright holder >
All rights reserved.

Redistribution and use in source and binary forms , with or
without modification , are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
copyright notice , this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the
above copyright notice , this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES , INCLUDING , BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT ,
INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES
(INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE , DATA , OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and
documentation are those of the authors and should not be
interpreted as representing official policies , either
expressed or implied , of <the project >.

Listing 2.3: The simplified, or 2-clause, BSD license. Nice and terse, huh?

In contrast, the GNU’s Not Unix (GNU) GPL clocks in at 11 full text pages.

Problems and Exercises

Problems

1. Research the history of the Unix operating system in more detail.

Branch out into the “USL vs. BSDi” lawsuit. Follow the BSD ge-

nealogy into the Mac OS X system. Analyze the future direction of the

commercial Unix versions.

2. Review the Linux, NetBSD and Solaris versioning numbers. Try to

correlate specific features to specific releases across these systems (note

the di↵erent Linux distributions numbers as well).

3. Review the intro(1) manual pages on your system (they may exist for

di↵erent sections and, depending on the Unix flavor, in varying detail).

From there, move on to the following manual pages, considering the

multiuser implications: chmod(1)/chown(1), login(1), passwd(5),
su(1), sudo(8)

4. Does the POSIX standard really require a cd(1) executable? If it did,

what might be a problem with that? Consider the environment of a

process and how a shell executes commands.

5. Play around in the Unix environment of your choice. Look at the exe-

cutables found in the system’s path (/bin, /usr/bin, /sbin, /usr/sbin)
– do you know what all these tools do?

6. Review your understanding of the Unix philosophy of simple tools act-

ing as filters. Does this reflect your usage of the tools you most fre-

quently execute? Which tools do not work (well) as a filter? Why?

50

CHAPTER 2. UNIX 51

7. Research the design decisions underlying other popular operating sys-

tems. In how far do they di↵er from those presented here? Do they

influence or reflect the primary user base (i.e., what is cause and what

is e↵ect)? How do they a↵ect or relate to System Administration, es-

pecially on a large scale?

Exercises

1. Using the programming language of your choice, write a simple inter-

active shell capable of executing programs on the user’s behalf. Try to

use it as your shell. Were you aware of the limitations before you did

this? Were you aware of the complexity of even basic features?

(a) Compare your shell to some of the existing implementations. What

features are missing from your shell? How di�cult do you think

would it be to implement them?

(b) Add additional features to your shell, such as support for in-

put/output redirection, pipelines, expansion of environment vari-

ables or job control. (Note: this is a significant project, but you
will learn a great deal about the Unix operating system in the

process.)

(c) Research and review the concept of a restricted shell. Would writ-

ing such a shell be more or less e↵ort to do?

BIBLIOGRAPHY 52

Bibliography

[1] TOP500; on the Internet at https://www.top500.org/statistics/
list/ (visited January 16, 2017)

[2] The Creation of the UNIX Operating System, on the Internet at http:
//www.bell-labs.com/history/unix/ (visited January 7, 2012)

[3] Dennis M. Ritchie, ’The Evolution of the Unix Time-sharing Sys-

tem’, published in AT&T Bell Laboratories Technical Journal, “Com-

puting Science and Systems: The UNIX System,” 63 No. 6

Part 2, October 1984; also available via the Internet Archive

at e.g. https://web.archive.org/web/20150408054606/http://cm.
bell-labs.com/cm/cs/who/dmr/hist.html (visited January 17, 2017)

[4] Brian W. Kernighan, Rob Pike, The UNIX Programming Environment,
Prentice Hall, 1984

[5] Eric Steven Raymond, The Art of Unix Programming, Addison-Wesley

Professional, September 2003; also available on the Internet at http:
//catb.org/~esr/writings/taoup/ (visited January 7, 2012)

[6] The Unix Heritage Society Mailing List, http://minnie.tuhs.org/
mailman/listinfo/tuhs

[7] Douglas Adams, The Hitchhiker’s Guide to the Galaxy, Pan Books, 1979

[8] Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language,
Prentice Hall, 1988

[9] Dennis M. Ritchie, ’Advice from Doug Mcilroy’; now only found on the

Internet Archive at https://web.archive.org/web/20150205024833/
http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.html

[10] Douglas McIlroy, A Research UNIX Reader: Annotated Excerpts from
the Programmer’s Manual, 1971-1986; on the Internet at http://www.
cs.dartmouth.edu/~doug/reader.pdf

[11] ’USL vs. BSDI documents’, only available on the Internet Archive

via e.g. https://web.archive.org/web/20150205025251/http://cm.
bell-labs.com/cm/cs/who/dmr/bsdi/bsdisuit.html (visited Jan-

uary 18, 2017)

BIBLIOGRAPHY 53

[12] ’What would you like to see most in minix?’, Linus Torvalds,

posting to the comp.os.minix newsgroup on Usenet, on the In-

ternet at https://groups.google.com/group/comp.os.minix/msg/
b813d52cbc5a044b (visited January 16, 2012)

[13] BSD Licenses onWikipedia at https://en.wikipedia.org/wiki/BSD_
licenses (visited January 18, 2017)

[14]

´

Eric Lévénez, Unix History, on the Internet at http://www.levenez.
com/unix/ (visited January 5, 2012)

[15] The IEEE and The Open Group, “The Open Group Base Specifi-

cations Issue 7, IEEE Std 1003.1, 2016 Edition” on the Internet at

http://pubs.opengroup.org/onlinepubs/9699919799/ (visited Jan-

uary 17, 2017)

[16] Andrew S. Tanenbaum, in ’Computer Networks’, Prentice Hall, 2004

[17] fcntl(2), NetBSD System Calls Manual, on the Internet at http://
netbsd.gw.com/cgi-bin/man-cgi?fcntl++NetBSD-current (visited

January 18, 2017)

[18] NetBSD system call name/number “master” file, on the In-

ternet at http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/kern/
syscalls.master?rev=HEAD (visited January 18, 2017)

[19] 4.4 Berkeley Software Distribution Documentation, on the Internet at

http://www.netbsd.org/docs/bsd/lite2/ (visited January 28, 2012)

[20] Vinton G. Cerf, Robert E. Kahn, “A Protocol for Packet Network

Intercommunication”, IEEE Transactions on Communications 22 (5);

also available on the Internet at http://ece.ut.ac.ir/Classpages/
F84/PrincipleofNetworkDesign/Papers/CK74.pdf (visited January

28, 2012)

[21] DNS server survey, 2004; on the Internet at http://mydns.bboy.net/
survey/ (visited February 4, 2012)

[22] Mail (MX) Server Survey, August 1st, 2007, showed over 60% of SMTP

tra�c to originate from a Sendmail, Exim, or Postfix installation;

on the Internet at http://www.securityspace.com/s_survey/data/
man.200707/mxsurvey.html (visited February 4, 2012)

BIBLIOGRAPHY 54

[23] January 2017 Web Server Survey, on the Internet at https:
//news.netcraft.com/archives/2017/01/12/january-2017-web-
server-survey.html (visited January 18, 2017)

[24] M. D. McIlroy, E. N. Pinson, and B. A. Tague Unix Time-Sharing Sys-
tem Forward, The Bell System Technical Journal. Bell Laboratories,

1978

[25] Richard P. Gabriel, “Worse is Better”, on the Internet at http://
dreamsongs.com/RiseOfWorseIsBetter.html.html (visited February

5, 2012)

[26] Frederick P. Brooks, Jr., The Design of Design, Addison-Wesley Profes-

sional, 2010

[27] Steven P. Jobs, as quoted in BusinessWeek (25 May 1998)

[28] Peter H. Salus, A Quarter Century of UNIX, Addison-Wesley Profes-

sional, 1994

[29] The Unix Heritage Society, The Unix Archive, on the Internet at http:
//www.tuhs.org/Archive/README (visited April 11, 2012)

