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Imagine two particles on a collision course
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Imagine two particles on a collision course
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If 2 particles were bowling balls we’d have no
trouble identifying path of each ball before, after,
and during collision.

Would be obvious if balls were different colors, or
different masses. But even if balls were identical in
every way we could still track their separate
trajectories as long as we can know position and
velocity simultaneously.

But what if this was a collision between 2 electrons?

Electrons are perfectly identical.
Uncertainty principle says we cannot track their exact trajectories.

We could never know which electron enters detector after collision.

Finite extent of each e− wave functions leads to overlapping wave functions around collision region
and we can’t know which wave function belongs to which e−.

P. J. Grandinetti Chapter 20: Identical Particles in Quantum Mechanics



When particles are indistinguishable
QM treatment of 2 e− system must account for indistinguishability.
Writing Hamiltonian for 2 electrons requires us to use labels,

̂(1, 2) =
⃗̂p2

1
2me

+
⃗̂p2

2
2me

+ V̂(r⃗1, r⃗2)

To preserve indistinguishability Hamiltonian must be invariant to particle exchange,

̂(1, 2) = ̂(2, 1)

If this wasn’t true then we would expect measurable differences and that puts us in violation of
uncertainty principle.
We must get the same energy with particle exchange:

̂(1, 2)Ψ(x⃗1, x⃗2) = EΨ(x⃗1, x⃗2), and ̂(2, 1)Ψ(x⃗2, x⃗1) = EΨ(x⃗2, x⃗1)

Define x⃗ = (r, 𝜃, 𝜙, 𝜔) with 𝜔 defined as spin coordinate which can only have values of 𝛼 or 𝛽,
that is, ms = + 1

2 or ms = − 1
2 , respectively.
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When particles are indistinguishable
̂(1, 2) = ̂(2, 1) doesn’t imply that Ψ(x⃗1, x⃗2) is equal to Ψ(x⃗2, x⃗1).|Ψ(x⃗1, x⃗2)|2 is probability density for particle 1 to be at x⃗1 when particle 2 is at x⃗2.|Ψ(x⃗2, x⃗1)|2 is probability density for particle 1 to be at x⃗2 when particle 2 is at x⃗1.

These two probabilities are not necessarily the same.
But we require that probability density not depend on how we label particles.
Since ̂(1, 2) = ̂(2, 1) it must hold that

̂(1, 2)Ψ(x⃗1, x⃗2) = ̂(2, 1)Ψ(x⃗1, x⃗2) = EΨ(x⃗1, x⃗2)

and likewise that ̂(1, 2)Ψ(x⃗2, x⃗1) = ̂(2, 1)Ψ(x⃗2, x⃗1) = EΨ(x⃗2, x⃗1)

Both Ψ(x⃗1, x⃗2) and Ψ(x⃗2, x⃗1) share same energy eigenvalue, E, so any linear combination of
Ψ(x⃗1, x⃗2) and Ψ(x⃗2, x⃗1) will be eigenstate of ̂.
Is there a linear combination that preserves indistinguishability?
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Particle Exchange Operator
Introduce new operator to carry out particle exchange.

̂Ψ(x⃗1, x⃗2) = Ψ(x⃗2, x⃗1) and ̂Ψ(x⃗2, x⃗1) = Ψ(x⃗1, x⃗2)

Obviously, Ψ(x⃗1, x⃗2) and Ψ(x⃗2, x⃗1) are not eigenstates of ̂ .
Calculating [̂ , ̂(1, 2)]:[̂ , ̂(1, 2)

]
Ψ(x⃗1, x⃗2) = ̂̂(1, 2)Ψ(x⃗1, x⃗2) − ̂(1, 2)̂Ψ(x⃗1, x⃗2)

= ̂EΨ(x⃗1, x⃗2) − ̂(1, 2)Ψ(x⃗2, x⃗1) = EΨ(x⃗2, x⃗1) − EΨ(x⃗2, x⃗1)
= 0,

Since [̂ , ̂(1, 2)] = [̂ , ̂(2, 1)] = 0, eigenstates of ̂ and ̂ are the same.
But Ψ(x⃗1, x⃗2) and Ψ(x⃗2, x⃗1) are not eigenstates of ̂ .
Eigenstates of ̂ are some linear combinations of Ψ(x⃗1, x⃗2) and Ψ(x⃗2, x⃗1) that preserve
indistinguishability.
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Symmetric and Anti-Symmetric Wave functions
We can examine the eigenvalues of ̂ ̂Φ = 𝜆Φ

Since ̂2 = 1 then ̂2Φ = Φ but also ̂2Φ = ̂𝜆Φ = 𝜆2Φ = Φ
Thus 𝜆2 = 1 and find 2 eigenvalues of ̂ to be 𝜆 = ±1. We can obtain these 2 eigenvalues with 2

possible linear combinations

ΦS = 1√
2

[
Ψ(x⃗1, x⃗2) + Ψ(x⃗2, x⃗1)

]
, 𝜆 = +1, symmetric combination

and
ΦA = 1√

2

[
Ψ(x⃗1, x⃗2) − Ψ(x⃗2, x⃗1)

]
. 𝜆 = −1, anti-symmetric combination

Easy to check that ̂ΦS = ΦS and ̂ΦA = −ΦA.
Anti-symmetric wave function changes sign when particles are exchanged.
Wouldn’t that make particles distinguishable?
No, because sign change cancels when probability or any observable is calculated|̂ΦA|2 = | − ΦA|2 = |ΦA|2
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Symmetric and Anti-Symmetric Wave functions
If you follow similar procedure for 3 identical particles you find

ΦS = 1√
6
[Ψ(1, 2, 3) + Ψ(1, 3, 2) + Ψ(2, 3, 1) + Ψ(2, 1, 3) + Ψ(3, 1, 2) + Ψ(3, 2, 1)]

and
ΦA = 1√

6
[Ψ(1, 2, 3) − Ψ(1, 3, 2) + Ψ(2, 3, 1) − Ψ(2, 1, 3) + Ψ(3, 1, 2) − Ψ(3, 2, 1)]

Wave functions for multiple indistinguishable particles must also be either symmetric or
anti-symmetric with respect to exchange of particles.

Mathematically, Schrödinger equation will not allow symmetric wave function to evolve into
anti-symmetric wave function and vice versa.

Particles can never change their symmetric or anti-symmetric behavior under exchange.
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Fermions or Bosons

Particles with half-integer spins s = 1∕2, 3∕2, 5∕2,… are always found to have
anti-symmetric wave functions with respect to particle exchange. These particles are
classified as fermions.

Particles with integer spins s = 0, 1, 2,… are always found to have symmetric wave
functions with respect to particle exchange. These particles are classified as bosons.

When you get to relativistic quantum field theory you will learn how this rule is derived.

For now we accept this as a postulate of quantum mechanics.
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Composite Particles

What about identical composite particles, such as a nucleus composed of proton and neutrons,
or an atom composed of protons, neutrons, and electrons?

A composite particle consisting of

an even number of fermions and any number of bosons is always a boson.

an odd number of fermions and any number of bosons is always a fermion.

Thus, identical hydrogen atoms are bosons. Note, to be truly identical all hydrogens have to
be in the same eigenstate (or same superposition of eigenstates). In practice you’ll need ultra
low temperatures to get them all in the ground state if you want them to be identical.
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Composite Particles
Example
The abundance of lithium isotopes 7Li and 6Li are 92.41% and 7.59%, respectively. Are 7Li
and 6Li nuclei classified as bosons or fermions?

Solution: Lithium nuclei contain 3 protons, which are spin 1/2 particles.
7Li nucleus additionally contains 4 neutrons, which are also spin 1/2 particles.

Total of 7 spin 1/2 particles tells us that 7Li nucleus is fermion.

In contrast, 6Li nucleus contains 3 neutrons.

Total of 6 spin 1/2 particles tells us that 6Li nucleus is boson.

Homework: Classify nuclei of isotopes 10B, 11B, 12C, 13C, 14N, 15N, 16O, and 17O as boson or
fermion.
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Fermi Hole
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Fermi Hole
Antisymmetric wave functions (fermions) go to zero if 2 particles have identical coordinates,
x⃗1 = x⃗2

ΦA(x⃗1, x⃗1) =
1√
2

[
Ψ(x⃗1, x⃗1) − Ψ(x⃗1, x⃗1)

]
= 0

Recall x⃗ = (r, 𝜃, 𝜙, 𝜔) or x⃗ = (r⃗, 𝜔) where 𝜔 is spin state.
Zero probability of 2 fermions having x⃗1 = x⃗2
Identical fermions can occupy same point in space, r⃗1 = r⃗2, only if spin states are
different. Otherwise, wave function goes to zero.
Identical fermions with same spin states avoid each other.
This avoidance is sometimes described as an exchange force, but technically it is not a
force.
It’s just a property of indistinguishable particles with anti-symmetric wave functions, i.e.,
identical fermions.
Region around each electron that is excluded to other electrons with same spin is called a
Fermi hole.
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Non-interacting Identical Particles
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Non-interacting Identical Particles

For 2 non-interacting identical particles the Hamiltonian for system is sum of one particle Hamiltonians,

̂(x⃗1, x⃗2) = ̂(x⃗1) + ̂(x⃗2)

Single particle Hamiltonians must have same form for particles to be identical.

Schrödinger Eq. solutions for non-interacting particles can be written

Ψtotal(x⃗1, x⃗2) = 𝜓(x⃗1)𝜓(x⃗2) non-interacting particles

𝜓(x⃗1) and 𝜓(x⃗2) are individual particle wave functions. Non-interacting identical particles will be
starting approximation for multi-electron atoms and molecules.
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Pauli exclusion principle

If 2 non-interacting particles are fermions, e.g., e−, then we need to construct antisymmetric
wave function,

ΦA(x⃗1, x⃗2) =
1√
2

[
𝜓(x⃗1)𝜓(x⃗2) − 𝜓(x⃗2)𝜓(x⃗1)

]
to preserve indistinguishability of 2 electrons.

Remember! There is zero probability of 2 fermions having same coordinates, x⃗1 = x⃗2.

Non-interacting fermions have stronger constraint, aka the Pauli exclusion principle:
two fermions cannot occupy identical wave functions, that is, same quantum states.
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Slater determinant
For N identical and non-interacting fermions occupying n different quantum states, labeled as
𝜓a, 𝜓b,… , 𝜓n, the anti-symmetric wave function can be expressed as a determinant

ΦA(x⃗1, x⃗2,… , x⃗N) =
1√
N!

|||||||||
𝜓a(x⃗1) 𝜓b(x⃗1) ⋯ 𝜓n(x⃗1)
𝜓a(x⃗2) 𝜓b(x⃗2) ⋯ 𝜓n(x⃗2)
⋯ ⋯ ⋯ ⋯

𝜓a(x⃗N) 𝜓b(x⃗N) ⋯ 𝜓n(x⃗N)

|||||||||
also known as a Slater determinant.
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Example
Approximate ground state wave function of 3 electrons in lithium atom (1s22s) as non-interacting
fermions using H-like spin orbitals.

Solution: Using the Slater determinant approach gives

ΦA = 1√
3!

||||||
1s 𝛼(1) 1s 𝛽(1) 2s 𝛼(1)
1s 𝛼(2) 1s 𝛽(2) 2s 𝛼(2)
1s 𝛼(3) 1s 𝛽(3) 2s 𝛼(3)

||||||
ΦA = 1√

3!

{
1s 𝛼(1)

|||| 1s 𝛽(2) 2s 𝛼(2)
1s 𝛽(3) 2s 𝛼(3)

|||| − 1s 𝛽(1)
|||| 1s 𝛼(2) 2s 𝛼(2)

1s 𝛼(3) 2s 𝛼(3)
|||| + 2s 𝛼(1)

|||| 1s 𝛼(2) 1s 𝛽(2)
1s 𝛼(3) 1s 𝛽(3)

||||
}

ΦA = 1√
3!

{
1s 𝛼(1)

(
1s 𝛽(2) 2s 𝛼(3) − 2s 𝛼(2) 1s 𝛽(3)

)
− 1s 𝛽(1)

(
1s 𝛼(2) 2s 𝛼(3) − 2s 𝛼(2)1s 𝛼(3)

)
+2s 𝛼(1)

(
1s 𝛼(2) 1s 𝛽(3) − 1s 𝛽(2) 1s 𝛼(3)

)}
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Slater determinant

Slater determinants enforce anti-symmetric wave functions. Any time 2 columns or rows are
identical the determinant is zero.

For example, if we try to place 3 identical electrons into the 1s orbital we find

ΦA = 1√
3!

|||||||
1s 𝛼(1) 1s 𝛽(1) 1s 𝛼(1)
1s 𝛼(2) 1s 𝛽(2) 1s 𝛼(2)
1s 𝛼(3) 1s 𝛽(3) 1s 𝛼(3)

||||||| = 0
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