
So how can you make 3D games with Blender? How can you use the physics in Blender
to actually create animations for you? Have you tried to make dominoes fall realistically
in Blender using traditional animation keys? It would be very difficult to do. Using the
real-time features in Blender will do a much better job for you and with a lot less work. A
blockbuster movie was just produced last year called 2012 that needed 3D animation
of falling buildings and debris that looked real so they turned to the Bullet physics
engine to do the work. Bullet is the same physics engine used for the real-time features
in Blender. The Blender game engine uses a programming language called Python.
Can you make nice games in Blender without knowing Python? The answer is “yes”, but
if you want to reach a more professional level, knowing Python is a definite. There is a
lot of nice documentation on the web for learning Python.

Setting Up The Physics Engine
Let's say you want to use physics to make a ball bounce realistically.
The 1st thing you need to do is set up the scene. For my sample scene,
I have created a UV Sphere a few Blender units above a plane in a
front view. Remember that this scene will be using gravity and
reactions. If you make your scene in the top view laying flat, it will work
just like real life.

It's now time to set up the real-time animation. When I first looked at
Blender 2.5 I couldn't even figure out how to turn something into an
actor because the interface changed so much! Here's what you
need to do:

To enable the Game Engine physics, go to
the top bar and find the box for the Render
Engine. Change it from “Blender Render” to
“Blender Game”. This switches many of your
property tool panels to game engine

options. We are interested in settings in 3 of these panels:

Physics Panel:

In the Physics panel, you control the Actors in your real-
time animation. By default, everything is “Static”,
meaning that it doesn't react to the physics settings. It
can still do things when logic blocks are applied to
them, but do nothing otherwise. The other 2 main types
we will discuss later are “Dynamic” and “Rigid Body”
actors. You can also make something invisible here.

Two other important settings are “Radius” which
controls the actor size and “Collision Bounds” which
sets the shape of the actor. All of this will be addressed
later.

Chapter 21- Game Engine Basics

21-1

Top View

Front View

Scene Panel:

The most important setting for the game in this panel is
the “Gravity”. By default, it is set to real gravity, but what
if you want to make a game set in space where gravity
isn't an issue? You will want to set gravity to zero or
something really low. Maybe you want to make a game
where objects are pulled to something in the X axis.

Render Panel:

Just like rendering a picture to see your output, this is where
you enable the game to play. You can press the “Start”
button here or just press “P” to play in a viewport.

Your end result of making a game is for that game to be
played as a standalone (not in Blender). This means saving
the game as an executable that can launch itself, free of
Blender. You can set the size of the game, the color depth,
Frames-per-second (FPS), and full screen effects.

Since games rely heavily on sound effects, the game
engine has setting features that deal with how the sound is
played as well.

It's now time to apply some physics to the
sphere. Add a Cone to the scene so the
ball has something to deflect off of as it
falls. Switch to a shaded view and select
the UV Sphere. Rotate your view slightly
so you can see what happens when we
apply the physics. You want to see the
ball drop and how it drops. Now go to
the Physics panel so we can change
some setting.

Chapter 21- Game Engine Basics

21-2

Change the Physics Type to
“Dynamic”. If you are in
wireframe mode and scaled
the sphere down in size, you will
see a dashed circle around it.
This circle represents the actual
size of the actor. You will need
to change the “Radius” setting
to match the size of the sphere.
If this circle is larger than the
sphere, when you play the
physics, the ball will hover over
the plan and never touch it.

It's now time to test out the system. Switch back
Solid display mode. With your cursor in the 3D
viewport window, press “P” to put Blender into
game play mode. The ball should fall and hit the
cone, but it probably won't act like right.
Depending on where you placed the cone, it may
even balance on the top of it! If that happens,
move the cone slightly to one side and try again.
The ball hits the cone, then slides down. It doesn’t
rotate like a real ball. To exit game play, hit “Esc”.

Dynamic and Rigid Body Actors:
A Dynamic actor allows you to use physics on it and can fall, bounce and be pushed
by forces, but not act like a true solid (rigid) body. These actors are great for games
where you need to drive or run around in a maze or other scene. A Rigid Body actor will
like a real solid body. It will spin and deflect when it collides with other objects. Good for
some things in the game engine, but better for creating animations like a brick wall
collapsing and things bouncing around.

Now change the sphere into a “Rigid Body”
actor and hit “P” to test out the systejm
again. The ball should now roll off the plane
and fall into nothingness. Press “Esc” to exit.
Feel free to experiment with some of the
other setting like Mass. Just like real life, if 2
objects collide with different masses, one will
feel the effect more than the other.

Chapter 21- Game Engine Basics

21-3

RoboDude Says: The game engine likes actors (radius) to be a size of one whenever
possible. If you scale it down and also scale the radius circle to match, it may still
not work correctly. Pressing “Ctrl-A” and applying a reset the Scale and Rotation
can usually correct this problem.

Since you are working with a sphere, you don't notice that
even though we are using a rigid body, the actor physics
are still calculating to the Radius setting in the Attributes. If
you were to delete the sphere and use a Cube instead, it
would roll off the plane like the sphere did. To fix this, you
need to turn on “Collision Bounds” and choose a bounds
option. “Box” would be good for a cube mesh while
“Convex Hull” or “Triangle Mesh” would be better for a
more complex shape. You would need to experiment to
see which works best for your model.

As you watch your physics in action, you may notice some
other reactions that seem a bit off. For example, the ball
may slide a bit, or not enough. It may not bounce much or
it may spin too much, or not enough. We have 2 places
where we can control some of these factors. The first
place is in the Physics panel. You will find a block for
Dampening. The “Translation” slider controls the amount
of sliding in a
direction (like

being on ice) while the “Rotation” slider
controls resistance to spinning. These 2 features
will be discussed more when we talk about
making a game.

The second place to make changes to reactions is in the
Materials panel. Add a material to the sphere. And find
the Physics settings. If you want something to bounce,
adjust the “Elasticity” slider, “Friction” controls slippage.
You can also provide forces and other dampening here
as well. For these to work properly, you usually need
materials set on both interacting objects (ex. Elasticity on
both the sphere and the plane).

Materials in the Game Engine:
Some things that work in rendering do not work in the
game engine while other features do. For example, a
standard image texture may display in the game engine,
but many adjustments to that texture may not work. There
has been a lot of development in texture work for the

game engine and we will examine some of that in the UV mapping chapter. For now,
just work with straight Diffuse material color. To see what things will
look like in a game, change your view type from “Solid” shading to
“Textured” shading. Press “P” and your view will reflect what will be
seen in a saved game. Since the next section deals with applying
game physics to an actual saved animation, texture can be
handled exactly as we have in previous chapters.

21-4

Chapter 21- Game Engine Basics

Using Game Physics in Animation
So far, you have a ball dropping on a cone and rolling off the plane. It works when you
press “P” to enable the game engine, but what if you want to use this reaction in a
movie? If you press “Alt-A” to play an animation, nothing happens. That is because the
reaction has not been written into an animation curve... yet.

Writing the game physics to an animation curve is a simple
process. In order to write to a curve, go to the “Game” pull
down menu and select the “Record Animation” option. This will
enable the game record feature. Now, press “P” to run the
game engine. Let the physics run through, then “Esc” the game

engine. Go back to the “Game” menu and turn
“Record Animation” off. You should also
change the Engine back to “Blender Render”.

Let's see if it recorded the animation. Switch your screen
layout to “Animation”. You should see animation curves in

the Curve Editor window.
Press “Alt-A” to confirm
the animation. You can
now work with your
scene exactly as you
would for any other
animation work including
materials and textures.

The only problem you may encounter when saving a movie file will involve the speed of
the animation. The physics may be run slow in the final movie. This can be corrected in
several ways.

Method #1: Remap the timing in the Render panel.
Find the “Old” and “New” mapping settings. If you need the
movie to run twice as fast, set “New” map to 50 (50%) and adjust
your end frame to half. If you need it to run slower, like ½ speed,
try a new map of 200 and double your end frame.

Method #2: Scale Keys
in the Dope Sheet.
Another method is to select All keys in the
Dope Sheet window and Scale them in the
“X” axis (“S” to scale and “X”- drag the
mouse).

Chapter 21- Game Engine Basics

21-5

RoboDude Says: Remember to TURN OFF the “Record Animation” feature after you
have recorded your motion. If you leave it on and accidentally press “P” again, it
will try to over write your saved animation curves!

Using Logic Blocks
We have talked about using the physics for animation, but now it's time to look at using
Blender for Real-Time animation like an architectural walk-through and yes, games.

Scene Set Up:
Start a new scene and make a Cube resting on a plane.
Using the “N” key to open the Transform bar, change the
scale X of the Cube to 0.200. We'll use this as a wall block.
For the Plane, scale the X and Y to 10.000. This will be our
floor.

Now add a UV Sphere, enter Edit Mode and select a single vertex
from the top view as shown. Use the “G” key to pull it out from the

sphere. This will indicate the forward direction when we
turn this into an actor and move it around with the arrow
keys. Make sure that it is above and not touching the
plane. This could cause it not to work when we turn it into
an actor.

We now have a basic scene to work with. Add a
Material to each object and change the Diffuse
color for each so they stand out. You should
have something like this scene.

Setting the Actor:
It's now time to turn the Sphere into a Dynamic
Actor. Start by setting the Engine from Blender
Renderer to Blender Game (page 21-1). Go to
the Physics panel and select “Dynamic” for they

type. To keep the actor from
sliding or spinning too much in
the game, we'll set Translation
Dampening up to 0.400 and Rotational Dampening up to 0.900. You
may need to experiment with these later, but these settings should be
good. If these settings are too low, you will notice that your actor
“coasts” a lot after you take your finger off the key. This is also
controllable in the materials settings with friction.

We shouldn't need to change the radius size since we didn't scale the
sphere, but if you did, adjust the radius size to match, then hit “Ctrl-A”
to reset scale and rotation settings.

It's now time to switch to the “Game Logic” screen layout so we
can add some controllers.

Chapter 21- Game Engine Basics

21-6

Logic Block Construction:
Now that you've switched to the Game Logic screen layout, you will see the logic block
window at the bottom. Think of this as an “Input-Process-Output” model, but called
“Sensor-Controller-Actuator”. You will also see a place to add a Property.

There are a lot of different types of sensors, controllers and actuators that you can use,
more than we will discuss here. After you get a feel for working with this chapter, there
are many discussions and examples on the internet addressing practical examples of all
these. To get started, lets add a “Keyboard” sensor, a “Add” controller, and a “Motion”
actuator.

First thing, connect the blocks by dragging a line. To disconnect the, drag backwards.

The first thing we want to do is make the sphere move forward
when we hit the Up arrow key. Click in the box by the word Key.
It will say “Press a key”. Hit the Up arrow key to assign it. There
are other options, but we do not need them for this exercise.

Think of the Controller as the computer processor. By default,
we hit “And”, meaning that if we tie more than 1 sensor to it, all
sensors must be in a true state in order for an actuator to
function. There are other expression available in the controller.

The Motion actuator works for dynamic and static objects. When moving a Static
object, you will want to use the Loc and Rot motion
outputs. You are setting a step movement or rotation. You
probably do not want to use these for Dynamic actors! If
you do, an actor might walk right through a wall. Think of
this as real life. To move a Dynamic object, it needs a push
(Force) or turning force (Torque). You will see columns for
X,Y, and Z. Let's set the Y Force to 5.00. Hit “P” to test out
your scene. Adjust the force if more or less is needed. If it
goes the wrong direction, try a negative number or try the
X column. Adjust actor Dampening to improve stopping.

Chapter 21- Game Engine Basics

21-7

Now that you have the sphere moving forward, add more sensors, controllers and
actuators to make it move backwards. In my case, all I would need to do is give it a Y
force of -5.00 (or any speed you wish). To make it turn, you will need to apply a Torque
in the Z column. A Torque of 1.00 may be enough If not, try higher. You should now have
4 directional keys for the sphere. It's also a good
idea to name your sensors. You may have a lot of
them. You can also collapse them by clicking the
small triangle.

Your logic layout should look something like this:

Let's add a Jump command using the Space Bar. Since you want him to jump and not
fly, we will need to connect 2 Sensors to a Controller to make this work. One Keyboard
sensor for the space bar and one Collision sensor with a named Property.

Select the Floor plane and add a Game Property
(found to the left of the logic blocks). Give it a
name called “floor”. This is case sensitive.

Now go back and select the Sphere and add a Sensor-Controller-Actuator. Make the
sensor a Keyboard and assign the Space Bar. Use an And controller and a Motion
actuator. Give it a Force in the Z-direction of 100. Since the force will only be applied
momentarily when in contact with the floor, it will need to be high in order to have a
good jump. Now, we need to add another Sensor and make it Collision. In the Property
block, type “floor”. Tie this sensor to the same controller as the keyboard for jump.

Because it is an And
controller, both sensor
states must be true in
order for the actor to
jump. Adjust the force.

Chapter 21- Game Engine Basics

21-8

RoboDude Asks: Having trouble with the sphere rolling strangely when moving
forward? Try going to the Materials panel and reducing the Friction of the
sphere or floor (page 21-4). If your actor spins when it his the wall, also lower
friction for the wall.

Named
Sensors

Collapsed
Panels

Using Animation in a Game:
Now that we have basic motion down, let's try an animation
in the game. We will make the Cube act like a rising door
when the actor gets close to it. We first need to add some
animation keys to the cube. With the Cube selected and at
Frame 1, hit “I” to insert a Location key. Move up to Frame
60, raise the cube high enough for the actor to pass under it
and hit “I” again to insert another Location key. If it helps,
change back to the Animation or Default screen layout
during this step, then return to the Game screen.

Back in the Game window
layout, select the Sphere and
give it a Property. Name it something like “player”

Select the Cube once more and add a Sensor-Controller-Actuator to it. This time, you
will add a Near sensor, And controller, and an F-Curve actuator. Set is up as shown:

When the actor with the property name “player” gets within the sensor's trigger
distance, the actuator occurs. There are several different playing options in the F-Curve
actuator- Play plays the frames and stops; Ping-Ping plays frame forwards and
backwards; Flipper plays forward, stops, then plays backwards during the trigger reset;
and Loop occurs the entire time when activated.

These are just the basics of the Game Engine. With practice, experimentation, and a
little research, you will be able to build some amazing games. Games are played
through the camera's view so you will want to set the camera's location or child-parent
it to the Actor. When you're ready to test the game outside of Blender, you need to
enable exporting through the User Preferences in the File menu. Go to Add-Ons and
select “Game Engine:Save As Run time”. Now go to File-Export and save as a .exe file.

Chapter 21- Game Engine Basics

21-9

Actor's
Property Name

Flipper Action
for Animation

Distance-Reset:
Adjust for actor distance when trigger is

activated. The reset distance (usually
higher than distance) resets the trigger.

Start-End Frames:
Set these numbers to match the range of

frames you wish to play during the action.

RoboDude Says: When making a game, try to keep face counts on meshes as low
as possible. The game must actively count and deal with the faces in a game.
Detailed meshes will slow things down considerably. The best way to simulate
detail is through detailed textures, which will be discussed in the next chapter.

For this activity, your job is to design a maze full of motion. Create an actor that can be
moved around with the arrow keys as discussed in the previous pages and make him
start by knocking down some dominoes. To make a domino, start with a cube, scaled
into the shape of a domino. After shaping, hit “Ctrl-A” to apply scale and rotation (reset
settings), the turn it into a “Rigid Body” actor and use “Box Collision Bounds”. Duplicate
it a few times and test it out to see if you can knock the first one over and that, in turn,
knocks the others over. Add as much other detail to your scene as possible and more
motion.

If time permits, save the motion to an animation curve and make a movie.

** Call the instructor when finished**

Real Time Practice Exercise

21-10

