Chapter 21: RLC Circuits

Voltage and Current in RLC Circuits AC emf source: "driving frequency" f $\varepsilon = \varepsilon_m \sin \omega t$ $\omega = 2\pi f$

 \rightarrow If circuit contains only R + emf source, current is simple

$$i = \frac{\varepsilon}{R} = I_m \sin(\omega t)$$
 $I_m = \frac{\varepsilon_m}{R}$ (current amplitude)

→If L and/or C present, current is *not* in phase with emf

$$i = I_m \sin(\omega t - \phi)$$
 $I_m = \frac{\varepsilon_m}{Z}$

→Z, ϕ shown later

AC Source and Resistor Only

 \rightarrow Driving voltage is $\varepsilon = \varepsilon_m \sin \omega t$

→ Relation of current and voltage

$$i = \varepsilon / R$$

$$i = I_m \sin \omega t \quad I_m = \frac{\varepsilon_m}{R}$$

• Current is *in phase* with voltage ($\phi = 0$)

AC Source and Capacitor Only

→Voltage is
$$v_C = \frac{q}{C} = \varepsilon_m \sin \omega t$$

→Differentiate to find current
 $q = C\varepsilon_m \sin \omega t$
 $i = dq/dt = \omega CV_C \cos \omega t$

- → Rewrite using phase (check this!) $i = \omega CV_C \sin(\omega t + 90^\circ)$
- → Relation of current and voltage

$$i = I_m \sin(\omega t + 90^\circ)$$
 $I_m = \frac{\varepsilon_m}{X_C}$ $(X_C = 1/\omega C)$

→ "Capacitive reactance": X_C = 1/ωC
 ◆ Current "leads" voltage by 90°

4

AC Source and Inductor Only

→Voltage is $v_L = Ldi / dt = \varepsilon_m \sin \omega t$

→Integrate di/dt to find current:

$$di / dt = (\varepsilon_m / L) \sin \omega t$$
$$i = -(\varepsilon_m / \omega L) \cos \omega t$$

→ Rewrite using phase (check this!) $i = (\varepsilon_m / \omega L) \sin(\omega t - 90^\circ)$ i $\varepsilon \sim L$

→ Relation of current and voltage

$$i = I_m \sin(\omega t - 90^\circ)$$
 $I_m = \frac{\varepsilon_m}{X_L}$ $(X_L = \omega L)$

→ "Inductive reactance": $X_L = \omega L$ ◆ Current "lags" voltage by 90°

General Solution for RLC Circuit

→We assume steady state solution of form $i = I_m \sin(\omega t - \phi)$

- \bullet I_m is current amplitude
- $\blacklozenge \varphi$ is phase by which current "lags" the driving EMF
- \blacklozenge Must determine I_m and φ

→Plug in solution: differentiate & integrate $sin(\omega t-\phi)$

$$i = I_m \sin(\omega t - \phi)$$

$$\frac{di}{dt} = \omega I_m \cos(\omega t - \phi)$$

$$q = -\frac{I_m}{\omega} \cos(\omega t - \phi)$$

Substitute

$$L \frac{di}{dt} + Ri + \frac{q}{C} = \varepsilon_m \sin \omega t$$

$$I_m \omega L \cos(\omega t - \phi) + I_m R \sin(\omega t - \phi) - \frac{I_m}{\omega C} \cos(\omega t - \phi) = \varepsilon_m \sin \omega t$$

General Solution for RLC Circuit (2)

$$I_m \omega L \cos(\omega t - \phi) + I_m R \sin(\omega t - \phi) - \frac{I_m}{\omega C} \cos(\omega t - \phi) = \varepsilon_m \sin \omega t$$

→ Expand sin & cos expressions

$$\left. \begin{array}{l} \sin\left(\omega t - \phi\right) = \sin \omega t \cos \phi - \cos \omega t \sin \phi \\ \cos\left(\omega t - \phi\right) = \cos \omega t \cos \phi + \sin \omega t \sin \phi \end{array} \right\} \quad \text{High school trig!}$$

→Collect sin ω t & cos ω t terms separately

$$\left(\omega L - 1/\omega C\right)\cos\phi - R\sin\phi = 0$$

$$I_m \left(\omega L - 1/\omega C\right)\sin\phi + I_m R\cos\phi = \varepsilon_m$$

$$\left. \begin{array}{c} \cos\omega t \text{ terms} \\ \sin\omega t \text{ terms} \end{array} \right\}$$

 \rightarrow These equations can be solved for I_m and ϕ (next slide)

General Solution for RLC Circuit (3)

→ Solve for ϕ and I_m

$$\tan \phi = \frac{\omega L - 1/\omega C}{R} \equiv \frac{X_L - X_C}{R} \qquad I_m = \frac{\varepsilon_m}{Z}$$

 \rightarrow R, X_L, X_C and Z have dimensions of resistance

$$X_{L} = \omega L$$
$$X_{C} = 1/\omega C$$
$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}$$

Inductive "reactance"

Capacitive "reactance"

Total "impedance"

 \rightarrow This is where ϕ , X_L, X_C and Z come from!

AC Source and RLC Circuits

 $\boldsymbol{\varphi} =$ angle that current "lags" applied voltage

What is Reactance?

Think of it as a frequency-dependent resistance

Shrinks with increasing ω

$$X_L = \omega L$$
 Grows with increasing ω

 $("X_{R}" = R)$ Independent of ω

PHY2054: Chapter 21

Pictorial Understanding of Reactance

Summary of Circuit Elements, Impedance, Phase Angles

$$Z = \sqrt{R^2 + (X_L - X_C)^2} \qquad \tan \phi = \frac{X_L - X_C}{R}$$

$$R \qquad 0^{\circ}$$

$$M \qquad R \qquad 0^{\circ}$$

$$M \qquad K_C \qquad -90^{\circ}$$

$$M \qquad K_L \qquad +90^{\circ}$$

$$M \qquad K_L \qquad K_L \qquad K_L \qquad +90^{\circ}$$

$$M \qquad K_L \qquad K_L$$

© 2003 Thomson - Brooks Cole

Quiz

→Three identical EMF sources are hooked to a single circuit element, a resistor, a capacitor, or an inductor. The current amplitude is then measured as a function of frequency. Which one of the following curves corresponds to an inductive circuit?

RLC Example 1

→Below are shown the driving emf and current vs time of an RLC circuit. We can conclude the following

- Current "leads" the driving emf (ϕ <0)
- Circuit is capacitive $(X_C > X_L)$

RLC Example 2

→R = 200Ω, C = 15µF, L = 230mH, ε_{max} = 36v, f = 60 Hz

•
$$X_L = 2\pi \times 60 \times 0.23 = 86.7\Omega$$

• $X_C = 1/(2\pi \times 60 \times 15 \times 10^{-6}) = 177\Omega$
• $Z = \sqrt{200^2 + (86.7 - 177)^2} = 219\Omega$
• $I_{\text{max}} = \varepsilon_{\text{max}} / Z = 36/219 = 0.164 \text{ A}$
• $\phi = \tan^{-1} \left(\frac{86.7 - 177}{200} \right) = -24.3^{\circ}$ Current leads emf
(as expected)
 $i = 0.164 \sin(\omega t + 24.3^{\circ})$

Resonance

→Consider impedance vs frequency

$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = \sqrt{R^{2} + (\omega L - 1/\omega C)^{2}}$$

→Z is minimum when $\omega L = 1/\omega C$ $\omega = \omega_0 = 1/\sqrt{LC}$ ◆ This is resonance!

→At resonance

- Impedance = Z is minimum
- Current amplitude = I_m is maximum

Power in AC Circuits

→Instantaneous power emitted by circuit: $P = i^2 R$

 $P = I_m^2 R \sin^2 \left(\omega_d t - \phi \right) \longleftarrow$ Instantaneous power oscillates

→More useful to calculate power averaged over a cycle

◆ Use <...> to indicate average over a cycle

$$\langle P \rangle = I_m^2 R \langle \sin^2 \left(\omega_d t - \phi \right) \rangle = \frac{1}{2} I_m^2 R$$

→ Define RMS quantities to avoid ½ factors in AC circuits

→House current

•
$$V_{\rm rms} = 110V \Rightarrow V_{\rm peak} = 156V$$

Power in AC Circuits

→ Power formula $P_{\text{ave}} = I_{\text{rms}}^2 R \quad I_{\text{rms}} = I_{\text{max}} / \sqrt{2}$

→cos is the "power factor"

- \blacklozenge To maximize power delivered to circuit \Rightarrow make ϕ close to zero
- Max power delivered to load happens at resonance
- E.g., too much inductive reactance (X_L) can be cancelled by increasing X_C (e.g., circuits with large motors)

Power Example 1

→R = 200Ω, X_C = 150Ω, X_L = 80Ω, $ε_{rms}$ = 120v, f = 60 Hz

•
$$Z = \sqrt{200^2 + (80 - 150)^2} = 211.9\Omega$$

•
$$I_{\rm rms} = \varepsilon_{\rm rms} / Z = 120/211.9 = 0.566 \,\mathrm{A}$$

• $\phi = \tan^{-1} \left(\frac{80 - 150}{200} \right) = -19.3^{\circ}$ Current leads emf
Capacitive circuit

•
$$\cos\phi = 0.944$$

•
$$P_{\text{ave}} = \varepsilon_{\text{rms}} I_{\text{rms}} \cos \phi = 120 \times 0.566 \times 0.944 = 64.1 \text{ W}$$

• $P_{\text{ave}} = I_{\text{rms}}^2 R = 0.566^2 \times 200 = 64.1 \text{ W}$
Same

Power Example 1 (cont)

→R = 200Ω, X_C = 150Ω, X_L = 80Ω, $ε_{rms}$ = 120v, f = 60 Hz

→How much capacitance must be added to maximize the power in the circuit (and thus bring it into resonance)?

• Want $X_c = X_L$ to minimize Z, so must decrease X_c

•
$$X_C = 150\Omega = 1/2\pi fC$$
 $C = 17.7 \,\mu\text{F}$

•
$$X_{C \text{ new}} = X_L = 80\Omega$$
 $C_{\text{new}} = 33.2\,\mu\text{F}$

• So we must add 15.5 μ F capacitance to maximize power

Power vs Frequency and Resonance

→Circuit parameters: C = 2.5 μ F, L = 4mH, ε_{max} = 10v

•
$$f_0 = 1 / 2\pi (LC)^{1/2} = 1590 \text{ Hz}$$

Plot P_{ave} vs f for different R values

Resonance Tuner is Based on Resonance

Vary C to set resonance frequency to 103.7 (ugh!)

PHY2054: Chapter 21

Quiz

- →A generator produces current at a frequency of 60 Hz with peak voltage and current amplitudes of 100V and 10A, respectively. What is the average power produced if they are in phase?
 - (1) 1000 W
 (2) 707 W
 (3) 1414 W
 (4) 500 W
 (5) 250 W

$$P_{\text{ave}} = \frac{1}{2} \varepsilon_{\text{peak}} I_{\text{peak}} = \varepsilon_{\text{rms}} I_{\text{rms}}$$

Quiz

→The figure shows the current and emf of a series RLC circuit. To increase the rate at which power is delivered to the resistive load, which option should be taken?

Current lags applied emf ($\phi > 0$), thus circuit is inductive. Either (1) Reduce X_L by decreasing L or (2) Cancel X_L by increasing X_C (decrease C).

Example: LR Circuit

→Variable frequency EMF source with ε_m =6V connected to a resistor and inductor. R=80 Ω and L=40mH.

• At what frequency f does $V_R = V_L$?

$$X_L = \omega L = R \Longrightarrow \omega = 2000$$
 $f = 2000/2\pi = 318 \,\mathrm{Hz}$

• At that frequency, what is phase angle ϕ ?

$$\tan \phi = X_L / R = 1 \Longrightarrow \phi = 45^{\circ}$$

What is the current amplitude and RMS value?

$$I_{\text{max}} = \varepsilon_{\text{max}} / \sqrt{80^2 + 80^2} = 6/113 = 0.053 \text{ A}$$
$$I_{\text{rms}} = I_{\text{max}} / \sqrt{2} = 0.037 \text{ A}$$
$$i = 0.053 \sin(\omega t - 45^\circ)$$

Transformers

→Purpose: change alternating (AC) voltage to a bigger (or smaller) value

Transformers

→Nothing comes for free, however!

- Increase in voltage comes at the cost of current.
- Output power cannot exceed input power!
- power in = power out
- (Losses usually account for 10-20%)

$$i_p V_p = i_s V_s$$
$$\frac{i_s}{i_p} = \frac{V_p}{V_s} = \frac{N_p}{N_s}$$

Transformers: Sample Problem

→A transformer has 330 primary turns and 1240 secondary turns. The input voltage is 120 V and the output current is 15.0 A. What is the output voltage and input current?

$$V_s = V_p \frac{N_s}{N_p} = 120 \left(\frac{1240}{330}\right) = 451 \text{V}$$
 "Step-up" transformer

$$i_p V_p = i_s V_s$$
 $i_p = i_s \frac{V_s}{V_p} = 15 \left(\frac{451}{120}\right) = 56.4 \text{ A}$

Transformers

- This is how first experiment by Faraday was done
- He only got a deflection of the galvanometer when the switch is opened or closed
- Steady current does <u>not</u> make induced emf.

ConcepTest: Power lines

→At large distances, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit (high V, low i) or (high i, low V)?

Power loss is i^2R

Electric Power Transmission

*i*²*R*: 20x smaller current \Rightarrow 400x smaller power loss