22.1 Introduction

In the Mathematical Studies for the IB Diploma course, you are expected to use a graphical display calculator (GDC) at all times. It is a vital tool to use while you are learning, as well as during both the examinations.

If you learn to use your calculator quickly and efficiently you will find it invaluable. But be careful, not all calculators are the same. If you borrow someone else's, the required key sequences and menus may be different and you will have to relearn some processes. So, always take your own calculator to lessons.

When you choose your graphical calculator you need to make sure that it can:

- draw graphs
- change the scale of the screen
- solve equations numerically
- display matrices
- find a numerical derivative at any point
- give the results of normal distribution, chi-squared tests and correlation coefficients
- find p-values.

You are also allowed to use the following Apps:

- finance
- programs to solve simultaneous and quadratic equations
- language programs that translate prompts and error messages.

If you do not have any of the Apps, download them from the website that has been set up by the manufacturer:

| Texas Instruments | http://education.ti.com/educationportal/sites/US/productCategory/us_graphing.html |
| :--- | :--- | :--- |
| Casio calculators | http://www.casio.com/products/Calculators_\%26_Dictionaries/Graphing/ |

You are not allowed to use a calculator that has:

- a QWERTY keyboard (with letter keys like that of a computer keyboard)
- computer algebra systems installed
- Apps that give facts or formulae that you are expected to know.

The processes and key sequences in this chapter will be useful throughout the course. They have been written based on the following models of GDC because these are the ones the authors have, but this is in no way an endorsement of these specific models, and you should use a model of your choice:

- CASIO fx-9750GII
- TEXAS INSTRUMENTS TI-84 Plus Silver Edition. Please note that all instructions also apply to the TI-84 Plus, unless otherwise stated.

The instructions provided in this chapter will be very similar for many of the different models from the same manufacturers. If your model of GDC is not exactly the same as one of those used in this coursebook, you might find that despite some differences in the locations of keys and menus, you can still determine what you need to do. However, you might find that the keys, menus and entire processes are different and you will need to refer to the manufacturer's instruction booklet for support instead. Therefore, it is very important that you don't throw the manufacturer's instruction booklet away or lose it! You will almost definitely need it at some point.

Throughout this chapter, the left-hand column details the key sequences for the TI-84 Plus and the right-hand column details the key sequences for the Casio fx-9750GII. This is the convention used throughout this book for GDC screenshots.
\square

22.2 Getting started
A. Setting your calculator to degree mode

B. The second and third functions of a calculator key

Some GDC keys have more than one function: the function written directly on the key and the function(s) written above it. This means that some keys can 'do' and 'undo' (inverse) the same operation. For example, the key used for the function 'sin' can also be used for the inverse function ' $\sin ^{-1}$ '. Be aware, not all second or third functions are inverse functions; sometimes they are just different functions. Here we show an example where the x^{2} key has the inverse function \sqrt{x}, and where the sin key has the inverse function $\sin ^{-1}$.

(曲 > TEXAS	METHOD	CASIO
 ENTER	1 Calculate $3.9 \div \sin (32)^{\circ}$ (a calculation like this might be used in trigonometry to calculate an unknown length).	$3 \square 9$ EXE
 ENTER	2 Calculate the angle in degrees equivalent to $\sin (x)=0.5299192642$ (a conversion such as this might be required in a trigonometry question that asks for the size of an unknown angle).	SHHIT $\sin 0-5209$ EXE
3 Write down the answer appropriately. 1. 7.36 (3 s.f.) 2. 32.0° (3 s.f.)		

C. The Ans/ANS key

The Ans/ANS key automatically stores the answer to the last calculation you completed (it only works if you have pressed ENTER for TEXAS or EXE for CASIO at the end of the calculation). This means you can simply press this key to use the answer in the next calculation. So, if you have a calculation where you need to apply a function to the answer of the previous part of the calculation, don't delete the answer and rekey it; use the Ans/ANS key instead.

D. Using the GDC memory

GDCs have 26 memories, labelled using the letters of the alphabet. These are an example of a third function of a key, as the letter of the alphabet is printed above the relevant key.

If you are doing a long calculation and using several memories, it is a good idea to write the letter of the memory that you use beside the relevant number.

进	TEXAS
4.	
	2.5671

METHOD
Given the calculation:
$x^{3}-x^{2}+x$, where
$x=2.5671$, you can
store x a A , so that the
calculation becomes
$\mathrm{A}^{3}-\mathrm{A}^{2}+\mathrm{A}$.

Given the calculation: $x^{3}-x^{2}+x$, where $x=2.5671$, you can store x as A, so that the calculation becomes $A^{3}-A^{2}+A$.

E. Entering fractions

In some calculations it is more accurate to use fractions and to give the answer as a fraction. You can enter a fraction directly into your GDC. You can also convert a decimal answer into a fraction or a fraction into a decimal.

F. The subtract (-) and negative ((-)) keys

The Θ key (where the '-' symbol is inside a pair of brackets) is used to make a number negative. The \square key is the subtraction operator.

G. Graphs

(a) Drawing a graph

You can use your GDC to plot and draw a graph by entering its equation.

METHOD

2 Enter the equation of the graph you want to plot:

$$
y_{1}=x^{2}-x-1
$$

$\boxed{\times, \theta T T} \backslash \boxed{\times, \theta, T} \square \square$
EXE
F6 (DRAW)

(b) Setting a window

You can use the default scale and window set by the manufacturer or you can set up your own window to suit the graph that you are investigating. The best graphs are drawn using a window that you have set yourself but the programmed ones can be a useful starting point. If you plot a graph and you cannot see it on the screen, check the scale and window as this might be the problem.

1 Plot the graphs of $y=2^{x}$ and $y=25$ as per section '22.G Graphs'.

WINDOW

$$
\begin{aligned}
& \text { WINDOW } \\
& \text { Xmin= } \\
& \text { Max }=8 \\
& \text { Yscl=1 } \\
& \text { Yin }=-1 \\
& \text { Yax=30 } \\
& \text { Yscl=10 } \\
& \text { Wres= }
\end{aligned}
$$

(-) 5 ENTER (Xmin)
8 ENTER (Xmax)
1 ENTER (Xsc1)
(-) 1 ENTER (Ymin)
30 ENTER (Ymax)
100 ENTER (Yscl)

2 Set the window so that you can view the x-axis from -5 to 8 , and the y-axis from -1 to 30. To fit these axes on your GDC screen, use a scale of 1 for the x-axis and a scale of 10 for the y-axis.
(Note that on the CASIO, you press F3 from the graph screen; if you are on the 'Graph func' screen where you enter the equation, you will need to press SHIFT F3.)

F3) (V-window)

(-) 5 EXE (Xmin)
8 EXE (max)
1 (scale)
©
(-1) 1 EXE (Ymin)
(3) 0 Exe (max)

100 ExE (scale)
EXE

GRAPH

F6（Draw）

（c）Windows set by the manufacturer
These are windows that you can access quickly，and make good starting points．

1 Plot a graph of your choice as per section＇22．G Graphs＇．

ZOOM

EOTOT MEMORY
 2：200m In 3：Zoom Out 5： 25 ¢uare 6：25tandard 7．\downarrow 2Trig

\square ENTER（4：ZDecimal）

回回回 ENTER （6：ZStandard）

2 Access the list of available window options．

3 To fit one decimal place to each pixel． （This is the best to use with the trace function．）

4 For a good general range and a good starting point．

5 The best window for use with trigonometric graphs．

6 To zoom automatically． Be careful with this because it looks useful but the scales can be very large．

F3（V－Window）

F1（INIT）

F3（STD）

F2（TRIG）
（From graph screen） sㅐㅍT F2（ZOOM）F5（AUTO）
(d) Zooming in

Using ZOOM allows you to:

- zoom in and look at a graph more closely
- zoom out to see more of a graph.

Use the trace function to find where the graph of $y=x^{2}-1$ crosses the x-axis.

1 Plot the graph as per '22.2G(a) Drawing a graph'

TRACE

2 Use the trace function to find where the graph crosses the x-axis; scroll as required and the x - and y-values will be displayed on the screen.

22.3 GDC support by chapter

22.3.1 Chapter 1 Number

1.1 Rounding

You can use your GDC to round answers to a specific number of decimal places. (Note, however, that not every model allows you to round to a specific number of significant figures.)

The model of TEXAS used in this book does not set to 3 s.f.; therefore, it is best to work in equivalent decimal places (using FLOAT), or leave the GDC in its default setting and round the answer yourself.

4 Write down the answer appropriately.

$$
0.023^{-1}=43.482 \text { d.p. }
$$

TEXAS
\square (FLOAT) ENTER

METHOD

Return your GDC to the default degree of accuracy setting.

[F3 (Norm) EXE

1.2 Answers in standard form

You can set your GDC to give all answers in the form $a \times 10^{k}$ where $1 \leq a<10$ and k is an integer (i.e. in standard form) to a given number of significant figures. Be careful: make sure that you write the answers in the correct mathematical form - not in calculator language!

1.3 Time in hours, minutes and seconds

Converting decimal time to a value given in hours, minutes and seconds is a very useful tool of your GDC.

METHOD

4 Write down the answers appropriately.
(a) 56.52 minutes (2 d.p.)
(b) 0.94 hours (2 d.p.)
(c) 0 hours, 56 minutes and 31 seconds.

5 On the CASIO, it is also possible to convert to other units such as area, length, volume, etc.

OPTN F6 F1 (CONV)
$38.91\left[\mathrm{~cm}^{2}\right]+\left[\mathrm{m}^{2}\right]$
$3.891 \mathrm{~m}-03$

22.3.2 Chapter 2 Solving equations

2.1 Solving linear equations

(a) using a graph

Solve the equation $2 x+3=25$

\# ${ }^{\#}$ TEXAS	METHOD	(囲 $>$ CASIO
MATH 0 (0: Solver)* (Or, MATH \square until '0: Solver ...' then (ENTER)	1 Access the linear equation solver program on your GDC. *Please note that on the TI-84 Plus and some operating systems on the Silver Edition it is: MATH ALPHA APPS (B: Solver ...) (Or, [MATH \square until ' B : Solver ...' then (ENTER)	IIENO 8 (EQUA) F3 (Solver) Equation Select Type 12: Polynomialus F2: Polynomial F3:Solver
Δ (to get onto the correct line) CLEAR	2 Enter the linear equation, $20 \times 1.3 x=500$, into your GDC and solve.	$20 \times 1 \times 3 \times$ SHHIFT (=)
	your GDC and solve.	500 Ex
-500	For the TEXAS GDC you will need to rearrange	F6 (Solve)
ENTER ALPHA ENTER (Solve)	the equation so that it is equal to zero before you enter it into your GDC:	
	$20 \times 1.3 x-500=0$.	FEFT
3 Write down the answer appropriately.		
$x=19.2$ (3 s.f.)		

2.2 Solving pairs of linear equations

(a) using a graph

Solve $2 x-y=5$ and $x+y=1$ by drawing a graph on your GDC.

CLEAR (to remove any existing equations)

2 X,T,, , $(-) 5$ ENTER
$1 \square \triangle, T, \Theta, n$

ZOOM 4 (Z:Decimal)

2nd TRACE (CALC)
5 (intersect)
(First curve?) ENTER
(Second curve?) ENTER
(Guess?) $\square \square \square$ (use cursor to move to point of intersection)

ENTER

4 Find the point where the two lines intersect.

UENO 3 (GRAPH)
F2 (Del)
F1 (Yes) (to remove any existing equations)
\square 5 EXE
\square
\square
3 Set to an appropriate window (as per '22.2G (b) Setting a window'), in this case one that shows one decimal place as a pixel, and then plot the graph.
2 Access the graph menu and enter the equations as per '22.2G Graphs':

Y1 $(2 x-5)$
$Y 2(-x+1)$
\square
SHIFT F3 (INIT)
F6 (DRAW)

shHIFT F5 (G-SLV)
F5 (ISCT)

CASIO

5 Write down the answer appropriately.

$$
x=2, y=-1
$$

(b) using an equation solver

Solve $2 x-y=5$ and $x+y=1$ using a simultaneous equation solver on your GDC.

2.3 Solving quadratic equations
(a) using a graph

Solve $2 x^{2}-5 x+2=0$ by drawing a graph on your GDC.

ZOOM 4 (ZDecimal)

2nd TRACE 2 (ZERO)
(Move cursor to the left of the zero you need) ENTER
(Move cursor to the right) ENTER
(Move cursor to approximately the correct place)
ENTER (Guess?)

Repeat as per step 3 above.

METHOD

1 Plot the graph of $2 x^{2}-5 x+2=0$ as per the methods in '22.2G Graphs'.

2 Set the window so that each decimal place is represented by a pixel, as per '22.2G (b) Setting a window'.

3 The solutions are where the graph crosses the x-axis. To find the first solution ...

4 To find the next solution ...

5 Write down the answer appropriately.

$$
x=0.5 \text { or } x=2
$$

(b) using an equation solver

Solve $2 x^{2}-5 x+2=0$ using a quadratic equation solver on your GDC.

GRAPH (NEXT)
2 ENTER
(-) 5 ENTER
2 ENTER

$\begin{aligned} & a z x^{2}+a 1 x+a n=0 \\ & a z=2 \\ & a 1=-5 \\ & a n=2 \end{aligned}$

GRAPH (SOLVE)

$\begin{aligned} & a 2 \times x^{2}+31 \times+\exists 0=0 \\ & \times 11=2 \\ & \times 2=1,2 \end{aligned}$	

3 Solve.

4 Write down the answer appropriately.

$$
x=0.5 \text { or } x=2
$$

22.3.3 Chapter 3 Arithmetic and geometric series and sequences

3.1 Finding the number of terms in an arithmetic sequence
(a) using the recursion mode to enter the common difference repeatedly

Find the number of terms in the sequence $49,43,37, \ldots, 1$

(b) using the linear equation solver

Find the number of terms in the sequence $49,43,37, \ldots, 1$

3.2 Finding the sum of an arithmetic series using the 'sum' and 'seq' functions

The GDC has a function called 'seq' that can calculate the terms in an arithmetic series when given the first term, the common difference and the formula for the nth term. GDCs also have a function that can calculate the sum of an arithmetic series, this is called 'sum. You can use the 'sum' and 'seq' functions together to find the sum of a series.

This is not a substitute for using the correct formulae but does allow you to quickly check your answer and to calculate sums to different numbers of terms.

Calculate the sum of the arithmetic series with the formula for the nth term of $u_{n}=2 x+1$ ，when $n=15, u=3$ and $d=2$ ．

进 $>$ TEXAS	METHOD	（进）CASIO
2nd STAT（LIST）	Access the＇sum＇ function first． （Your GDC screen should just have the text＇sum＇on it with a flashing cursor； your GDC will sum whatever you type in place of the cursor．）	IIEEO 10 （RUNMAT）
D⿴囗口（MATH）		［arm Ei（LIST）
5 （sum）		F6（＞）F6（＞）Fin（Sum）
2nd STAT（LIST）	Now you need to tell your GDC about the sequence you want to sum．Access the ＇seq＇function．．．	Orom Fill（LIST）
（OPS）		［－5（Seq）
5 （sea）		
	to generate the sequence and then	
ENTER＊		区，0，$\square^{\text {a }}$
区，T，Θ, n（Variable）		10
ENTER		150］
［1（Start）		（1）
EENTER	－the variable（x）	Ex
T50（End）	－the starting position is term 1，so enter 1	Sum Sea $(2 X+1, X, 1,15,1$
ENTER	－number of terms（15）	255
T（Step）	－the increase in position from term to term（1）．	－10
ENTER（until see answer）		－1，
	＊Please note that if you get an error you should replace ENTER with \square ．	
4 Write down the answer appropriately．$S_{n}=255$		

Calculate the sum of the first ten terms in the sequence with the formula $u_{n}=-1 \times-2^{n-1}$.

22.3.4 Chapter 4 Financial mathematics

4.1 The financial App, TVM

This is the financial App allowed by the IB. It is built into the CASIO calculator and some TEXAS models. If it is not on your GDC you can download it from the TI website.
Siva invests 15,000 INR at a rate of 4.3% per annum. How long does it take for his investment to double?

$\mathrm{N}=0$
I
$\mathrm{P}=0$
$=0$
$\mathrm{PMT}=0$
$\mathrm{FV}=\overline{0}$
$\mathrm{P} \quad \mathrm{Y}=1$
PMT: Glac BEGIN
Δ until N , then
ALPHA ENTER (SOLVE)

$N=1$ $I=4=-15000$
 $\mathrm{Fv}=30000$
 $\mathrm{P} / \mathrm{Y}=1$
 C
 PMT: GNE BEGIN

```
\(-\mathrm{N}=16.46384368\)
    \(\mathrm{I} \%=4\)
    PU=-15006
    PMT=
    \(\mathrm{FV}=30600\)
    \(\mathrm{B}=\mathrm{y}=1\)
    PMT: 브컅 BEGIN
```


METHOD

\# \quad CASIO

2 Enter the parameters appropriate for your example. (We want to calculate N so we can enter any placeholder value for N .)
$N=$ number of time periods.

I\% = rate of interest given (4.3)
PV = Present Value. (-15000 as investments are negative)
PMT = extra payments to the account (0)
FV = Final Value (30000)
$\mathrm{P} / \mathrm{Y}=$ number of interest payments made to the account each year (1)
$\mathrm{C} / \mathrm{Y}=$ number of compounding periods each year (1)

3 Select the value you want to calculate (in this example it is N).

Financial(1/2)
Fi:Simple interest
F2: Compound Interest
FS: Cash Flow
F4: Amortization
F5: Conversion

Compound Interest: End 4 $=1$
$\mathrm{PU}=1$
PMT $=-100$

$\mathrm{FU}=101$

METHOD

4 Write down the answer appropriately.
$N=16.46 \ldots$. Siva's investment will not double until year 17.
22.3.5 Chapter 5 Classification and display of data
5.1 Entering lists of data

STAT
1 (Edit...)

STAT 4 (CIrList)
2nd $1\left(L_{1}\right)$
ENTER

```
ClrList Li,Lz
```


2nd Y Y (STAT PLOTS)
ENTER (1: Plot 1 ... off)

ENTER (ON)

- \square (histogram) ENTER

\square (Xlist); 2nd $1\left(L_{1}\right)$
\square (Freq); 2nd 2 (L_{2})

GRAPH
WINDOW
0 ENTER (Xmin)
10 ENTER (Xmax)
1 ENTER (Xsc1)

METHOD

1 Enter your data into a list as per the instructions in section '5.1 Entering lists of data':

List $1: 1,2,3,4,5,6,7$
List 2: 2, 3, 5, 8, 4, 2, 1
(If there is already data stored in lists, you might need to delete it.)

2 Access the graph menu and set to histogram.

3 Make sure that you have the correct data set as Xlist (variable), e.g. List 1, and Frequency, e.g. List 2.

4 Display the histogram and set the window so that you can view your histogram appropriately.

F1 (GRPH)
F6 (SET)
© (Graph Type)
F6 ($>$)
F1 (Hist)

CASIO

© (Xlist); F1 (LIST) 1 EXE
 © (Frequency);
 F2 (LIST) 2 ExE

EXIT EXIT

F1 (GRPH)
F1 (GPH1)
0 Exe (initial point)

0 ENTER（Ymin）
10 ENTER（Ymax）
1 EENTER（Ysc1）

```
WINDIOW
```

WINDIOW
CMin=6
CMin=6
max=10
max=10
coc=1
coc=1
MMr=6
MMr=6
Mm
Mm
YEc1=1
YEc1=1
4%家兰=1

```
4%家兰=1
```

GRAPH＊

TRACE
\square / \square（as often as required）

METHOD

1 （width of bar）
EXE
ExE（Draw）

SHHFT F1（TRCE）
© $/$（®）（as often as required）

5．3 Drawing a box and whisker diagram

GRAPH

TRACE
\square / Δ (as often as required)

METHOD

3 Display the box and whisker diagram.

4 Find the highest and lowest values, the upper and lower quartiles and the median using trace.

\square
F1 (GRPH)
F1 (GPH1)
22.3.6-7 Chapter 6 Measures of central tendency and Chapter 7 Measures of dispersion
6.1 Finding the mean, median, quartiles and standard deviation
(a) for a simple list of data (single variable, no frequency)

METHOD
CASIO

1 Enter data into List 1 as per the instructions in section '5.1 Entering lists of data'; here we use 12, 16, 9, 24

STAT
\square (CALC)
1 (1-Var Stats)
2nd $1\left(L_{1}\right)$
ENTER*

2 Select the statistics for a single variable and select List 1 (frequency should be blank).

* On the TI-84 Plus, and some operating systems on the Silver Edition, you will need to press ENTER three times (leave FreqList blank).

1-War Stats
$\bar{x}=15.25$
§ $\mathrm{x}=6.1$
$\sum x^{2}=1057$
$\pi x=5.629165125$
$+n=4$

1-War Stat
$+n=4$
minx=9
$01=10.5$

日 $z=20$
$\mathrm{mex}=24$
Δ

METHOD

(\#) CASIO

F1 (1Var)

© \odot

(b) for grouped data (single variable with frequency)

3 To find values of:

- \bar{x} (the mean)
- σ_{x} (the standard deviation)
n (the number of entries)
- Q1 (lower quartile)
- Med (median)
- Q3 (upper quartile)
scroll as required.

METHOD

1 Enter the variable
into List 1 and the
frequency into List 2, as per the instructions in section ' 5.1
Entering lists of data'; here we use:

\boldsymbol{x}	Freq
4	1
5	3
6	4
8	6
9	5
11	3
14	1

Su8	LiSt 1	List	LiSt 3	List 4
1	4			
2	5	1		
3	5	3		
4	5	4		

2nd 1
$\left(L_{1}\right) \square$
2nd $2\left(L_{2}\right) \square$
ENTER

$\sum x=183$
$\sum x^{2}=1583$
$5 \times=2.492239745$
$\sigma \times=\frac{2}{3}: 3943541$
, $n=23$
-

METHOD

2 Select the statistics for a single variable; make sure that the variable is entered as List 1 and the frequency as List 2.
*Please note that on
the TI-84 Plus and some operating systems of the Silver Edition you will need to replace \square with ENTER.

3 To find values of:

- \bar{x} (the mean)
- σ_{x} (the standard deviation)
- n (the number of entries)
- Q1 (lower quartile)
- Med (median)
- Q3 (upper quartile)

Scroll as required.

F2 (CALC)
F6 (SET)
F1 (LIST) 1 EXE
© (1 Var Freq)
F2 (LIST) 2 ExE

EXE
F1 (1 VAR)

© \odot

Be careful! You are expected to use the σ_{x} value as the standard deviation even though this is not the symbol used elsewhere for the sample standard deviation. On GDCs, s_{x} represents the standard deviation of the population, so you do not have to look at that value.

22.3.8-10 Chapters 8-10 (Topic 3: Logic, sets and probability)

Your calculator is useful for general calculations and for working with fractions, but not for any specific techniques in this topic.

22.3.11 Chapter 11 The normal distribution

11.1 Finding the area under a normal distribution curve

(a) using a graph

1 Make sure you know the parameters of your normal distribution $N\left(\mu, \sigma^{2}\right)$. Make sure you know what the lower and upper bounds are. For this example:

$$
\text { X~N }\left(0,1^{2}\right) \text { so } \mu=0, \sigma=1, \text { Upper }=1.4, \text { Lower }=-1 E+99
$$

2nd VARS (DISTR)
\square (2: normal cdf) (do not press enter yet)

\square (DRAW)

(ShadeNorm)
3 Enter the parameters and draw the graph.
2 Select the normal distribution statistics for drawing a normal distribution curve.

IIENO 2 (STATS)
F5) (DIST)
F1 (NORM)
F2 (Ncd)

\qquad

\square (E (EE) 9
\square
1 \square 4 \square
0 \square (mean)
1 (standard deviation)
ENTER (Draw)

* Please note on the TI-84 Plus, and some operating systems on the Silver Edition, replace \square with ENTER (except when selecting EE).

METHOD
CASIO
(Make sure 'Data' is set to variable.)

F2 (Var)
∇
(-) \square EXP 9

9 EXE

1 \square 4 EXE

0 EXE (mean)
-
F6 (DRAW)

4 Write down the answer appropriately.

$$
p=0.919 \text { (3 s.f.) }
$$

(b) without a graph

METHOD

In this example, $\mathrm{X} \sim \mathrm{N}\left(5,1.6^{2}\right)$, the lower bound is 6 and the upper bound is 8 .

2nd VARS (DISTR)
2 (normal cdf)

1 Select the normal distribution statistics.

IIENO 2 (STATS)
F5 (DIST)
F1 (NORM)
F2 (Ncd)

6 ${ }^{*}$
$8 \square$
$5 \square$
106
ENTER

11.2 Inverse normal calculations

2nd VARS (DISTR)
3 (invNorm)

3 Write down the appropriate answer.
$p=0.236$ (3 s.f.)

(Make sure 'Data' is set to variable.)

F2 (Var)
(7) 6 断

8 Exe
106 Exe
(5) ExE

EXE

Normal $C . D$
$F$${ }^{D}$ $z: \begin{aligned} & \mathrm{LOW}=0.625 \\ & \mathrm{z}: \mathrm{UF}_{\mathrm{F}}=1.875\end{aligned}$

1 Select the inverse normal distribution from the statistics menu.

IIENO 2 (STATS)
F5) (DIST)
F1 (NORM)
F3 (InvN)

22.3.12 Chapter 12 Correlation

12.1 Drawing a scatter diagram of bivariate data

METHOD

1 Enter your data into lists as per '5.1 Entering lists of data'. Make sure you enter the independent x-variable in List 1 and the dependent y-variable in List 2.

en TEXAS
2nd Y (STAT PLOT)
(1) ENTER
ENTER (ON)
\square (Type)

ENTER (highlight the scatter graph, the first icon)
\square 2nd $1\left(L_{1}\right)$ ENTER
2nd $2\left(L_{2}\right)$ ENTER

GRAPH

METHOD

2 Select a scatter diagram from the graph menu and make sure that 'Xlist' is your list of x-variables $\left(\mathrm{L}_{1}\right)$ and 'Ylist' is your list of y-variables $\left(L_{2}\right)$.

Display the graph and set the window if you need to.

IENO 2 (STATS)
F1 (GRPH)
F6 (SET)
© (Graph Type)
F1 (Scat)
© (XList)
F1 (LIST)
1 EXE (L_{1})
© (YList)
F1 (LIST)
2 Exe (L_{2})

EXIT
F1 (GPH1)

22.3.13 Chapter 13 Chi-squared hypothesis testing

13.1 The χ^{2} test for independence

This is broken down into two parts: entering the data into a matrix (steps 1-3) and calculating the χ^{2} statistic (steps 4-6).

\qquad
5 EENTER 7 ENTER
12 ENTER 15 ENTER
10 ENTER
2 ENTER 3 ENTER
4 ENTER 5 ENTER
2nd MODE (QUIT)
[F$]$

$$
\left[\begin{array}{ccc}
5 & 7 & 12 \\
15 & 19 & 2 \\
3 & 4 & 5
\end{array}\right]
$$

STAT
\square (TESTS)
ALPHA PRGM (C: χ^{2}-test)
(or scroll \square until you reach ${ }^{\mathrm{C}} \mathrm{C}: \chi^{2}$ test' and then ENTER)

(DRAW)
ENTER

METHOD

3 Enter the observed data.

4 Select the χ^{2} statistic function.

5 Confirm that observed data is in matrix A. Matrix B will fill automatically (you can change the degree of accuracy as required).

6a Draw the graph or go to step 6b.

IUENO 2 (STAT)
F3 (TEST)
[F3 (CHI)
F2 (2WAY)

$\odot \odot \odot$ (Execute)
F6 (DRAW)
F1 (CH1)

$\because>$ TEXAS

- \quad (CALCULATE)

ENTER

METHOD

6b Get the statistics as a list on screen.

Press EXE immediately after doing point 4.

```
*2
```

13.2 Viewing the contents of a matrix

METHOD

Access the matrix menu and view matrix B.

22.3.14 Chapter 14 Equation of a line in two dimensions
14.1 Accessing the table of coordinates from a plotted graph

22.3.15-16 Chapter 15 Trigonometry and
 Chapter 16 Geometry of three-dimensional solids

Your calculator is useful for finding the values of the sine, tangent and cosine for a given angle, and the inverses, $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$. Remember to make sure that your GDC is ALWAYS set in degree mode.

22.3.17 Chapter 17 Functions and graphs

17.1 Finding the range for a given domain

Find the range for $f(x)=\sqrt{(3+2 x)}, x \geq-1.5$.

17.2 Finding the vertical asymptote

Find the vertical asymptote of the graph $y=\frac{3}{2-x}$.

17.3 Finding the horizontal asymptote

Find the horizontal asymptote of the graph $y=1.5^{x}-3$.

22.3.18 Chapter 18 Linear and quadratic models

18.1 Using a graph to find the vertex and line of symmetry of a parabola

Find the vertex and line of symmetry of the graph $y=7-5 x-2 x^{2}$

2nd TRACE (CALC)
4 (maximum)
Move the cursor to the left of the vertex:
ENTER (confirm left bound).
Move cursor to the right of the vertex:
ENTER (confirm right bound)
Move cursor over the vertex: ENTER (confirm position of vertex)

```
EFLCDUEHIE
1:value
2:zero
3:minimum
4Bmaximum
5: intersect
6:dy/dx
7: \sqrt{ f (x) dx}{}\mathrm{ ( }
```


3 (minimum)

METHOD

2 Decide if the graph has a minimum or a maximum and select appropriately. In this example, the parabola has a maximum.

To find the minimum, you would do as above but select 'minimum' instead of 'maximum'.

F2 (MAX)

F3 (minimum)

3 Write down the answer appropriately.
The vertex is at $(-1.25,10.125)$ and the line of symmetry is $x=-1.25$
18.2 Finding the zeros (roots) of a quadratic equation using a graph

Solve $y=7-5 x-2 x^{2}$.

2nd TRACE (CALC)
2 (zero)
Move the cursor to the left of the zero:

ENTER
Move cursor to the right of the zero:
ENTER
Move cursor over the zero:
ENTER

Repeat as per step (2) for second zero.

METHOD

2 Use the appropriate tool to find the first zero (the left-most arm of the curve that crosses the x-axis).

SHHIFT F5 (G-Solv)
F1 (ROOT)

3 Find the second zero.
F6 ($>$) for the second zero.

4 Write down the answer appropriately.

$$
x=-3.5 \text { or } x=1 \text {. }
$$

18.3 Using the statistics menu to find an equation

You might have a set of data plotted on a graph and want to find the equation of the curve or line without having to use the methods learned in Chapter 14. You can use the statistics menu to find the equation of different curves, or of a line.

STAT

(CALC)0 (ExpReg)

(Make sure the Xlist and Ylist are the correct lists according to where you entered the data in step 1, e.g. Xlist should be the x-variable in L_{1} and Ylist should be the y-variable in L_{2})
(CALCULATE)

ENTER

METHOD

2 Look at the shape of the graph to decide what type of graph it is (linear, parabola, hyperbola, exponential). In this example, the shape of the graph suggests it is an exponential graph: $y=a \times b^{x}$. Select this type of graph from the list.

F1 (CALC)
F6 ($>$)
F3 (EXP)
F2 $(a b \wedge x)$

22.3.19 Chapter 19 Exponential and polynomial functions

19.1 Solving growth and decay problems

Growth and decay problems often involve finding the variable when it is the exponent, e.g. $y=a \times b^{x}$. In many cases you will have a value of y and want to know what value of x gives this value of y, e.g. if $y=10$, you would get the equation $10=a \times b^{x}$, where the values of a and b are known. A simple way to solve an equation involving x in the exponent is to plot the exponential graph $\left(y=a \times b^{x}\right)$ and the line of the target value of y, e.g. $y=10$. At the point where the line intersects with the exponential curve, you will find the value of x that makes the equation $10=a \times b^{x}$ true. This is the solution to the equation.

Solve $0.3 \times 1.7^{x}=35$. of intersection between the two graphs:

$$
y=0.3 \times 1.7^{x} \text { and } y=35
$$

Your GDC can be particularly useful when you have equations whose graph would be quite complicated to plot by hand. Examples of such graphs are those where the variable is the exponent, e.g. $y=1-2^{x}$. Other more complicated equations include those in the form $y=\sqrt{(2+x)}$, where the variable is inside a root function.
(a) using a graph

Solve 1-2 ${ }^{x}=\sqrt{(2+x)}$.

Draw the equation each side of the ' $=$ ' sign as a separate graph and find the point of intersection. At this point, the value of x makes both equations true such that $1-2^{x}=\sqrt{ }(2+x)$.

1 Draw each graph as per '22.2G (a) Drawing a graph'.

(b) using an equation solver

Solve 1-2 ${ }^{x}=\sqrt{(2+x)}$.

2 Write down the appropriate answer.

$$
x=14.5 \text {. }
$$

19.3 Solving polynomial equations

(a) using a graph

Use the methods as per section '18.2 Finding the zeros (roots) of a quadratic equation using a graph', repeating the methods to find all the roots as required.

(b) using an equation solver

Use the methods as per section '2.3 (b) Solving quadratic equations using an equation solver', but in step 1 you would enter the appropriate order/degree to suit the polynomial that you have. So, if you wanted to solve a cubic equation, the order/degree would be ' 3 '; if you wanted to solve a quadratic equation, the order/degree would be ' 2 ' and so on. In step 2, you enter the appropriate coefficients in decreasing order/degree of x terms. So, for a cubic graph you would enter the coefficient of the x^{3} term first, then the coefficient of the x^{2} term, then the coefficient of the x term and finally the constant.

22.3.20 Chapter 20 Introduction to differential calculus

20.1 Finding the numerical value of the derivative $\left(\frac{d y}{d x}\right)$
(a) using a graph
\#
(Not required)

2nd TRACE (CALC)
$6\left(\frac{d y}{d x}\right)$
2
ENTER

METHOD
1 Set up your calculator appropriately.

2 Draw a graph as per '22.2G (a) Drawing a graph'.
We will use the following graph in this example:
$y=7-5 x-2 x^{2}$
3 Select the tangent tool and choose an x-coordinate from which it can be drawn. In this example we will use $x=2$.

IIENO 3 (GRAPH)
SHITF IENO (SET UP)
$\odot \odot \odot \odot \odot$ (Derivative)
F1 (ON)

SHIFI F1 (TRACE)
(2) Exe

The table function does not give values of the derivative at a point on this calculator.
2

20.2 Finding the equation of the tangent at a point

(Not possible)

METHOD
1 Set up your calculator appropriately.

IIENO 3 (GRAPH)
SHITF IENO (SET UP)

F1 (ON)

2 Draw a graph as per '22.2G (a) Drawing a graph'.
We will use the following graph in this example:

$$
y=7-5 x-2 x^{2}
$$

2nd PRGM (Draw)
5 (Tangent)
(-) 3 ENTER

There is no program for finding the equation of the normal on this calculator.

METHOD

3 Once you have the graph on screen, select the tangent function and enter the value of x at the coordinate of choice. This will give you the tangent and tell you its equation.

4 To find the equation of the normal.

SHIfIT F4 (Sketch)
F2 (Tang)
(-) 3 画

Repeat as per steps (2) and (3) above but replace:

F2 (Tang) with:
F3 (Norm)
(-) 3 远

22.3.21 Chapter 21 Stationary points and optimisation

21.1 Finding increasing and decreasing functions

Describe the function $f(x)=3 x^{2}-x^{2}-2$ in terms of when it is increasing and decreasing.
(a) using a graph

2 Look at the graph and determine for what values of x :

- the gradient is negative, $f^{\prime}(x)<0$; this is where the function is decreasing
- the gradient is positive, $f^{\prime}(x)>0$; this is where the function is increasing
- the gradient is zero, $f^{\prime}(x)=0$; this is a stationary point.

3 Write down the answer appropriately.
The function is decreasing when $x<0$.
The function is increasing when $0<x<2$.
The function is decreasing when $x>2$.
(b) using a table

The table function does not give values of the derivative at a point.

1 Access the table of values as per the instructions in '20.1 (b) Finding the numerical value of the derivative $\left(\frac{d y}{d x}\right)$ using a table'.

IIENO 5 (TABLE)
F6 (TABL)

If $Y^{\prime} 1$ is negative, the function is decreasing.

If $Y^{\prime} 1$ is positive, the function is increasing.

> 2 Write down the answer appropriately.
> When $x<0$ the function is decreasing.
> When $0<x<2$ the function is increasing.
> When $x=3$, the function is decreasing.

21.2 Finding local maximum and minimum points

Find the local maximum and minimum points of the graph $y=3 x^{2}-x^{2}-2$.

METHOD

1 Draw a graph as per '22.2G (a) Drawing a graph'.

2nd TRACE (CALC)
3 (minimum)
Move the cursor to the left of vertex: ENTER (confirm left bound)
Move cursor to the right of vertex: ENTER (confirm right bound)

2 Use the appropriate tool to locate the minimum.

SHHIFT F5 (G-Solv)
F3 (MIN)

Move cursor over the vertex: ENTER (confirm position of vertex)

In this example, $x=0$ even though the GDC has actually given a value very close to zero.

2nd TRACE (CALC)
 4 (maximum)

Move the cursor to the left of the vertex ENTER (confirm left bound).
Move cursor to the right of the vertex ENTER (confirm right bound).

Move cursor over the vertex ENTER (confirm position of vertex).

METHOD

3 Use the appropriate tool to locate the maximum.

sㅐㅍT F5 (G-Solv)
 F2 (MAX)

4 Write down the answer appropriately.
The local minimum is $x=0$ and the local maximum is $x=2$.

