Chapter 23

Circuits

Topics:

- Circuits containing multiple elements
- Series and parallel combinations
- $R C$ circuits
- Electricity in the nervous system

Sample question:

An electric eel can develop a potential difference of over 600 V . How do the cells of the electric eel's body generate such a large potential difference?

Answer

1. The bulbs in the circuit below are connected \qquad .
B. in parallel

Answer

2. Which terminal of the battery has a higher potential?
A. the top terminal

Answer

3. When three resistors are combined in series the total resistance of the combination is
A. greater than any of the individual resistance values.

Checking Understanding

The following circuit has a battery, two capacitors and a resistor.

Which of the following circuit diagrams is the best representation of the above circuit?

A

B

C

Answer

The following circuit has a battery, two capacitors and a resistor.

Which of the following circuit diagrams is the best representation of the above circuit?

A

Kirchhoff's Laws

$$
\sum I_{\mathrm{in}}=\sum I_{\mathrm{out}}
$$

Kirchhoff's junction law

$$
\Delta V_{\mathrm{loop}}=\sum_{i} \Delta V_{i}=0
$$

Kirchhoff's loop law
(a)

Junction law: $I_{1}=I_{2}+I_{3}$

Using Kirchhoff's Laws

```
(MP) TACTCCS BOX 23.1 Using Kirchhoff''loop law
|xercises 5,6
Draw a circuit diagram. Lal all known and unknown quantities
0 Assign a direction to the current. Draw and label a current arrow I to
    Assign a direction to the current. Draw and label a current ar
    - If you don't know the actual current direction, make an educated gue
        All that will happen if you choose wrong is that your value for I will
        end up negative.
83 "Travel" around the loop. Start at any point in the circuit, then go all
    the way around the loop in the direction you assigned to the current in
    step 2. As you go through each circuit element, \DeltaV is interpreted to
    mean
```

```
\DeltaV = V \ownstram
```

\DeltaV = V \ownstram

- For a battery with current in the negative-to-positive direction
\DeltaV bat }=+\mathcal{E
- For a battery in the positive-to-negative direction (i.e., the current is going into the positive terminal of the battery):

$$
\Delta V_{\text {bat }}=-\mathcal{E}
$$

- For a resistor:

$$
\Delta V_{\mathrm{R}}=-I R
$$

Apply the loop law:
$\sum \Delta V_{i}=0$

```

\section*{Clicker Question}

The diagram below shows a segment of a circuit. What is the current in the \(200 \Omega\) resistor?
A. 0.5 A
B. 1.0 A
C. 1.5 A
D. 2.0 A
E. There is not enough information to decide.


\section*{Clicker Question}

The diagram below shows a circuit with two batteries and three resistors. What is the potential difference across the \(200 \Omega\) resistor?
A. 2.0 V
B. 3.0 V
C. 4.5 V
D. 7.5 V

E. There is not enough information to decide.

\section*{Series Resistors}
\[
R_{\mathrm{eq}}=R_{1}+R_{2}+\cdots+R_{N}
\]

Equivalent resistance of \(N\) series resistors
(a) Two resistors in series


\section*{Parallel Resistors}
(a) Two resistors in parallel
\[
R_{\mathrm{eq}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}\right)^{-1}
\]

Equivalent resistance of \(N\) parallel resistors

(b) Applying the junction law

(c) An equivalent resistor


There is a current of 1.0 A in the circuit below. What is the resistance of the unknown circuit element?


What is the current out of the battery?


What is the equivalent resistance of the following circuit?


Find the current in and the potential difference across each element in the following circuit.


Household Electricity


Ground connection

The following devices are plugged in to outlets on the same 120 V circuit in a house. This circuit is protected with a 15 A circuit breaker.
\begin{tabular}{ll} 
Device & Power \\
\hline Computer & 250 W \\
Heater & 900 W \\
Lamp & 100 W \\
Stereo & 120 W
\end{tabular}

Is there too much current in the circuit-does the circuit breaker blow?


\section*{Capacitor Combinations}
\[
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\cdots+C_{N}
\]

Equivalent capacitance of \(N\) parallel capacitors
Parallel capacitors


Series capacitors
\(C_{\mathrm{eq}}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots+\frac{1}{C_{N}}\right)^{-1}\)
Equivalent capacitance of \(N\) series capacitors


\section*{Answer}

Which of the following combinations of capacitors has the highest capacitance?


Which of the following combinations of capacitors has the lowest capacitance?

A
B

C

D

\section*{RC Circuits}
(c) At a later time

\[
\tau=R C
\]



\section*{Additional Clicker Questions}

The following circuits contain capacitors that are charged to 5.0 V . All of the switches are closed at the same time. After 1 second has passed, which capacitor is charged to the highest voltage?



\section*{Answer}

The following circuits contain capacitors that are charged to 5.0 V . All of the switches are closed at the same time. After 1 second has passed, which capacitor is charged to the highest voltage?


The following circuits contain capacitors that are charged to 5.0 V . All of the switches are closed at the same time. After 1 second has passed, which capacitor is charged to the lowest voltage?

A

B

C

\section*{Answer}

The following circuits contain capacitors that are charged to 5.0 V . All of the switches are closed at the same time. After 1 second has passed, which capacitor is charged to the lowest voltage?


B

\section*{Electricity in the Nervous System}

The action potential


\section*{Saltatory Conduction}


The process continues, with the signal triggering each node in sequence. . .

. .so the signal moves rapidly along the axon from node to node.


There are some diseases that result in a thinning of the myelin sheath that surrounds peripheral neurons-those that carry signals between the spinal cord and the limbs. How will this thinning affect nerve conduction speed? Explain this using the model for nerve conduction developed in the chapter.


\footnotetext{
.
} node-the next switch is closed.

\section*{Additional Clicker Questions}
1. In the circuit below, the switch is initially open and bulbs \(A\) and \(B\) are of equal brightness. When the switch is closed, what happens to the brightness of the two bulbs?

A. The brightness of the bulbs is not affected.
B. Bulb \(A\) becomes brighter, bulb \(B\) dimmer.
C. Bulb \(B\) becomes brighter, bulb \(A\) dimmer.
D. Both bulbs become brighter.

\section*{Answer}
1. In the circuit below, the switch is initially open and bulbs A and B are of equal brightness. When the switch is closed, what happens to the brightness of the two bulbs?

B. Bulb A becomes brighter, bulb B dimmer.

\section*{Additional Clicker Questions}
2. In the circuit shown below, the switch is initially closed and the bulb glows brightly. When the switch is opened, what happens to the brightness of the bulb?

A. The brightness of the bulb is not affected.
B. The bulb gets dimmer.
C. The bulb gets brighter.
D. The bulb initially brightens, then dims.
E. The bulb initially dims, then brightens.

\section*{Answer}
2. In the circuit shown below, the switch is initially closed and the bulb glows brightly. When the switch is opened, what happens to the brightness of the bulb?

B. The bulb gets dimmer.

\section*{Additional Examples}
1. In the circuit shown below:
A. Rank in order, from most to least bright, the brightness of bulbs A-D. Explain.
B. Describe what, if anything, happens to the brightness of bulbs \(A, B\), and \(D\) if bulb \(C\) is removed from its socket. Explain.


\section*{Additional Examples}
2. In the circuit shown below, rank in order, from most to least bright, the brightness of bulbs A-E. Explain.


\section*{Additional Examples}
3. In the circuit shown below:
A. How much power is dissipated by the \(12 \Omega\) resistor?
B. What is the value of the potential at points \(a, b, c\), and \(d\) ?
```

