
CHAPTER 27

SOURCES OF MAGNETIC FIELD

•  Magnetic field due to a moving charge.

•  Magnetic field due to electric currents

•  Straight wires
•  Circular coil
•  Solenoid
•  Force between two wires

•  Gauss’s Law and Ampère’s Law

•  Magnetic field inside a wire
•  Toroidal solenoid

 Permanent
magnets

 Electric
currents

 Magnetic fields
 (origins)

Stationary electric ⇒ Stationary electric 
   charge    field

Moving electric ⇒ Moving electric field
charge   +

     (current)   Magnetic field    

 Much research in the 19th century: magnetism and
 electricity unified by James Clerk Maxwell (1832-79).

Magnetic poles appear in 
pairs (N & S), always!

  Like poles repel
Unlike poles attractinout



Magnetic field of a single moving charge:

The magnetic field is circular around the direction of 
motion of the charge.  The magnetic field at a point     

! r  
(P), due to a charge q moving with velocity     

! v  is:

    

! 
B = ′ k 

q! v × ˆ r 
! r 2

,

where 
    
′ k =

µ"
4π

 with     µ" = 4π ×10−7  T.m/A  and 
    
ˆ r =
! r 
! r 

 .

permeability of free space
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Question 27.0:  A point charge,   q = 3.2 µC, is moving 

along the x-axis with velocity     
! v = 2.50 m/s.  What is the 

magnetic field produced by this charge at the point 

  x,y( ) = 2.00 m,1.50 m( ) when it passes the point 

  x = 0.50 m?



We’ll solve this problem in two ways.

(a) The field is given 

by 
    

! 
B =

µ"
4π

q! v × ˆ r 
r2 ,

where     
! 
v = (2.50 m/s)ˆ i  

and 
    
ˆ r =
! r 
! r 
=

(2.00ˆ i +1.50ˆ j )m

(2.00m)2 + (1.50m)2

  ̂ r = (0.80ˆ i + 0.60ˆ j )m.

    
∴
! 
B =

µ"
4π

(3.2 ×10−6C)(2.50 m)ˆ i × (0.80ˆ i + 0.60ˆ j )m
(2.00m)2 + (1.50m)2

  
= 1×10−7( )4.8 ×10−6 ˆ k 

6.25 
= (7.68 ×10−14 T) ˆ k .

(b)  We have     
! v × ˆ r = ! v ˆ r sin φ ˆ k , where 

  
sin φ =

1.50

(2.00)2 + (1.50)2 = 0.60.
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+
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  q
φ

    
∴
! 
B =

µ"
4π

q ! v ˆ r sin φ
r2

ˆ k 

  
= 1×10−7( ) (3.2 ×10−6C)(2.50 m/s)(1)(0.60)

6.25 
ˆ k 

  = (7.68 ×10−14 T) ˆ k .



Magnetic field due to a current (Biot-Savart Law):

The magnetic field at a point     
! r , due to a small element of 

wire     d
! 
ℓ  carrying a current I is:

    
d
! 
B =

µ#
4π

I d
! 
ℓ × ˆ r 
! r 2

.

For a complete circuit:  
    

! 
B =

µ#
4π

I d
! 
ℓ × ˆ r 
! r 2

∫ .

 P 

    
! r 

    d
! 
ℓ 

 I 

φ  ̂ r 

  dB = 0

  dB = 0

The direction of     
! 
B , with respect to the current, is given 

by the right hand rule: 

or

I

    
! 
B 

I

    
! 
B 



The magnetic field line contours around     d
! 
ℓ  are circular.  

The magnetic field shown above is for a current out of 
the page.

Remember, the charges also produce an electric field, 
but the electric field lines are radial.

    
! 
B 

Magnetic field of a straight wire:     

The Biot-Savart law is  

    
d
! 
B =

µ"
4π

Id
! 
ℓ × ˆ r 
r2 .  

Since the contributions 
to the total magnetic 

field     
! 
B  at P are all 

parallel (outwards 
towards us) we need 
only calculate the 
magnitude of the field.  

Then, we have  

    
dBP =

µ"
4π

Idy
r2 sin φ =

µ"
4π

Idy
r2 cosθ,

where φ is the angle between     Id
! 
ℓ  and   ̂ r .  But   y = R tanθ, 

so differentiating we find

  
dy = R sec2 θ.dθ = R

r2

R2 dθ =
r2

R
dθ.

  P

  I

  θ2

  θ1

φ

    
! r 

    d
! 
ℓ = dŷ  j 

    d
! 
B  (out)

  ̂ j 

θ
  y

  R



Then, substituting for dy we get

    
dBP =

µ!
4π

I
r2

r2dθ
R

cosθ =
µ!I

4πR
cosθ.dθ

    
∴BP =

µ!I
4πR

cosθ.dθ
−θ1

θ2
∫ =

µ!I
4πR

sin θ[ ]−θ1
θ2

    
=

µ!I
4πR

sinθ2 + sin θ1( ).

  P

  I

  R
  θ2

  θ1

    
" 
B 

Magnetic
field

Current

  0   0.5   1.0
  0

  θ1 = 0   θ2 = 0

  R = 0.5L

  R = 0.25L

  B Question 27.1: What is the magnetic field at the point P 
on the axis of the wire?

P

I



From the Biot-Savart Law: 

    

! 
B =

µ"
4π

Id
! 
ℓ × ˆ r 
! r 2

∫ , 

But     Id
! 
ℓ ||ℓ ˆ r  for all elements     d

! 
ℓ .

    ∴Id
! 
ℓ × ˆ r = 0

    ∴
! 
B = 0.

P

    Id
! 
ℓ 

  ̂ r 

Magnetic field of an infinitely long wire:   

For a straight wire  
    
B(R) = µ!I

4πr
(sinθ1 + sinθ2).

As the wire becomes infinitely long:

    θ1 → 90! and     θ2 → 90!.

  ∴sin θ1 + sin θ2 → 2,

so 
    
B(R) = µ!I

2πr

  P

  I

  R
  θ2

  θ1

    
" 
B 



Magnetic field lines for a single current carrying wire, 
indicated by iron filings 

 r 

  B

  r

    
B =

µ!I
2πr

Magnetic fields, like electric fields, “add” vectorially.  
The compass needles point in the direction of the 
resultant of the Earth’s magnetic field and the 
magnetic field produced by the current in the wire. 

Explanation of Oersted’s experiments (1819):    

  I = 0 I 

Direction of the
Earth’s magnetic field

I 

Looking down 
the wire



Magnetic field due to two parallel wires:

Magnetic field lines add vectorially: shown here is the 
combined field for two parallel wires carrying a current 
in opposite directions.

What would be the magnetic field midway between the 
two wires if the currents are in the same direction?

Question 27.2: Two, very long, parallel wires, L and R, 
each carry currents   I = 3.00 A in opposite directions, as 
shown above.  If the wires are spaced 5.00 cm apart, 
what is the magnetic field vector at a point P a distance 

  4.00 cm from R, if     ∠LRP = 90!?

  ̂ i 

  ̂ j 

× •

•
  P

  5.00 cm

  4.00 cm

  L   R



Let the magnetic field at P due to the left hand wire (L) 
be   BL and the magnetic field at P due to the right hand 

wire (R) be   BR.  We have

    θ = tan−1 5
4( ) = 51.3!.

Note that,     
" 
B L is perpendicular to LP and     

" 
B R is parallel 

to LR.  The resultant magnetic field in the   ̂ i  direction is

  Bi = BL sin(90 −θ)( ) −BR,

and the resultant magnetic field in the   ̂ j  direction is

  B j = −BL cos(90 − θ).

So, the resultant magnetic field is:

    
" 
B = Bi

ˆ i + B j
ˆ j .

  ̂ i 

  ̂ j 

••

  P

    
" 
B L

    
" 
B R •

  L

θ

  d

  90− θ
  90− θ

  r1   r2

  R
× •

•  
P

  d

  r2
  BL

  BR

  r1

  L   R

θ

From earlier, and using the given values,

    
BL =

µ!I
2πr1

=
µ!I

2π d2 + r2
2

  
=

4π ×10−7 × 3.00
2π × 0.064

= 9.38 ×10−6 T

and 

    
BR =

µ!I
2πd

=
4π ×10−7 × 3.00

2π × 0.04
= 15.0 ×10−6 T.

  ∴Bi = BL sin(90 −θ)( ) −BR = −9.14 ×10−6 T

and

  B j = −BL cos(90 − θ) = −7.32 ×10−6 T.

    ∴
" 
B = −9.14 ×10−6 ˆ i − 7.32 ×10−6 ˆ j ( ) T,

and      
" 
B = 11.7 ×10−6  T.

CHECK: You will find the resultant field at P is 
parallel to PL.  That is a general result for all points P, 
when RP is perpendicular to LR.



Question 27.3: The current in the wire shown below is 
8.0 A.  Find the magnetic field strength at P.

8 A

2 cm

1 cm

P

Label the ends of the 
straight sections a-f.  
Sections a-b and e-f 
do not contribute to 

the magnetic field at P, but b-c, c-d and d-e all produce 
magnetic fields into the page (so we can simply add 
them).

Field due to b-c:  
    
B1 =

µ!I
4πr

(sinθ1 + sinθ2)

    
=

4π ×10−7 × 8 A
4π × 0.01 m

(sin45! + sin 0) = 5.66 ×10−5 T.

But this is the same as the field due to d-e.

Field due to c-d:  
    
B2 =

µ!I
4πr

(sinθ1 + sinθ2)

    
=

4π ×10−7 × 8 A
4π × 0.01 m

(sin45! + sin 45!) = 1.13 ×10−4  T.

Therefore total field is:

  (5.66 ×10−5 +1.13 ×10−4 + 5.66 ×10−5) T

  = 2.26 ×10−4  T (into the page).

a b

c d

e  f   
8 A

2 cm

1 cm

P



Magnetic field on the axis of  a circular coil (of radius R):

The current is the same at every point around the coil, so 
the components of the magnetic field perpendicular to the 
x-direction (i.e., in the   y − z plane) cancel, i.e., the field 
restricted to the x-direction:

  ∴dBx = dBsin θ.

But,  
    
dB = d

! 
B =

µ"
4π

Id
! 
ℓ × ˆ r 
r2 =

µ"
4π

Idℓ
(x2 + R2)

,

where we have substituted     d
! 
ℓ × ˆ r = dℓ since     d

! 
ℓ  ⊥ ˆ r .

x

R 

I

y

z
    d
! 
B 

  dBx

x

    
! r 

    d
! 
ℓ 

dBy

dBy     d
! 
B 

θ θ

    
∴dBx =

µ!
4π

Idℓ
(x2 + R2)

sin θ =
µ!
4π

Idℓ
(x2 + R2)

R
x2 + R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

    
=

µ!
4π

IRdℓ
(x2 + R2)3 2 .

To obtain the total field we integrate around the loop.  
NOTE:   x and   R are both constant,

    
∴Bx = dBx =∫

µ!
4π

IR
(x2 + R2)3 2 dℓ∫

    
=

µ!
4π

IR
(x2 + R2)3 2 2πR =

µ!
4π

2πIR2

(x2 + R2)3 2

    
=

µ!IR
2

2(x2 + R2)3 2 ,

i.e.,  
    

# 
B = Bxˆ i =

µ!IR
2

2(x2 + R2)3 2
ˆ i .

• When   x = 0:
    
Bx =

µ!I
2R

.



Variation of the magnetic field along the axis of a 
circular coil.  The direction of the field is given by the 
right hand rule.

I

    
! 
B 

R 

I
x

y

z x   Bx
I

    
! 
B 

  Bx

x0

    
Bmax =

µ"I 
2R

  −x

    
Bx =

µ"IR
2

2(x2 + R2)3 2

Magnetic field lines in the vicinity of a circular coil 
carrying a current.

I



Question 27.4: A closed circuit consists of two semicircles 
of radii 40.0 cm and 20.0 cm that are connected by straight 
segments.  A current of 3.00 A flows in the circuit in a 
clockwise direction.  Find the magnetic field strength at the 
point P.

P

The straight sections do not contribute to the field at P. 
The net field is due to the two semi-circular arcs.  Put 

  R1 = 0.40 m and   R2 = 0.20 m.

    ∴
! 
B =
! 
B 1 +

! 
B 2. 

    
B1 =

1
2

µ"I
2R1

 (inwards)  and 
    
B2 =

1
2

µ"I
2R2

 (inwards)

  ∴B = B1 + B2

    
=

1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

µ"I
2R1

+
1
2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

µ"I
2R2

=
µ"I
4

1
R1

+
1

R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  
=

4π ×10−7 × 3 A
4

1
0.40 m

+
1

0.20 m
⎛ 
⎝ 

⎞ 
⎠ 

  = 7.07 ×10−6 T (inwards).

P



Above, magnetic field lines produced by a current 
carrying coil.  Below, magnetic field lines of a 
permanent magnet. 

Notice, they are essentially identical.

Question 27.5: The magnetic field lines produced by a 
current carrying coil are very similar to the magnetic 
field lines of a permanent magnet.  Therefore, one face 
of the coil acts like a NORTH pole and the other acts 
like a SOUTH pole.  Which face of the coil shown here 
is the north pole?

left hand
face

right hand
face



By definition, magnetic field lines travel outward from a 
NORTH pole.  Therefore, the right hand face of this coil 
acts like a north pole.

NS

Thus, a current carrying coil has the properties and 
characteristics of a permanent magnet. 

Current CCW. Current CW
   “McDonald rule”

 N  S  N  S 

ATTRACTION

 “equivalent magnets” 

 N  N  S  S 

REPULSION

 “equivalent magnets” 



Question 27.6: A current carrying wire and the north 
end of a magnet are placed close to each other, as shown 
above.  Will there be a mutual atraction or mutual 
repulsion between the coil and the magnet?

N S

From the N-pole end of the magnet, the current in the 
coil appears clockwise.  By the McDonald rule, a cw 
current means that face of the coil is a S-pole.  So, there 
is a mutual attraction between the coil and magnet!

Current CW

N S



A SOLENOID is a long, tightly wound coil with a 
constant radius.

The magnetic field lines within a solenoid are parallel to 
the axis and the magnetic field strength at the center is:

    B = µ!nI

where n is the number of turns per unit length (    n = N
ℓ), 

N is the total number of turns and   ℓ is the length.

I

  ℓ

x

y

z

Magnetic field of a solenoid:  

I

  ℓ

    n = N
ℓ

Total of N turns   

We can increase the strength of the magnetic field by 
inserting a “core” ... then     µ"⇒ Kmµ"⇒ µ , i.e,   B = µnI.  

Values of   Km vary from 1 to   ~ 105.

 I  I 

NS

 I  I 

NS

(  ℓ >>  radius)

x 

B 
    µ"nI

  ~ 50%  ~ 50%
  −x

  0
    −
ℓ

2     
ℓ
2



Force between two straight wires (Ampère 1820):

The magnetic field due to wire   1  at position P is:

    

! 
B P =

µ"I1
2πR

ˆ j .

Since wire  2  carries a current,   I2, there is a force:

    
! 
F = I2

! 
ℓ ×
! 
B P.

acting on the segment   
! 
ℓ .  Since   

! 
ℓ  is in the   ̂ k  direction,     

! 
F  

is in the   −ˆ i  direction, i.e., to the left and attractive.  

Also, as     
! 
B P and   

! 
ℓ  are perpendicular, the magnitude of 

the force is 

    F = I2
! 
ℓ ×
! 
B P = I2ℓBP.

  ̂ i   ̂ j 

  ̂ k 

 1  2 

P

  I1
  I2

 R

    
! 
B P

    
! 
F    

! 
ℓ  

  ̂ i   ̂ j 

  ̂ k 

 1  2 

P

  I1
  I2

 R

    
! 
B P

    
! 
F    

! 
ℓ  

Substituting for   BP we find 

    
F = I2ℓBP = I2ℓ

µ#I1
2πR

⎛ 
⎝ 

⎞ 
⎠ = µ#

I1I2ℓ
2πR

,

to the left so the force per unit length is  
    
F
ℓ = µ#

I1I2
2πR

.

A similar analysis indicates that the magnetic field 

produced by the current in wire  2  results in a force of 

equal magnitude towards the right on wire  1 , i.e., in the 

  +ˆ i  direction.  Hence, two wires carrying currents in the 

same direction are attracted to each other.

Corollary: two wires carrying currents in opposing 
directions repel each other.



Definition of the AMPÈRE:

If two parallel wires carry the 
same current, 

i.e.,   I1 = I2 = I, 

the force per unit length 
between the wires is:

    
F
ℓ = µ"

I2

2πR
.

Since     µ" = 4π ×10−7 T ⋅m/A, a current of one AMPÈRE 

can be defined as:

... the current in two parallel wires of infinite 
length placed 1.00 m apart that produces a force 

on each wire of   2.00 ×10−7 N per meter of length.

i.e., if   I1 = I2 = 1 A and   R = 1.00 m.

    
∴F
ℓ = 4π ×10−7 ×

1
2π

⇒ 2 ×10−7 N/m

II

 1.00 m

Question 27.7: Three very long straight parallel wires 
pass through the vertices of an equilateral triangle with 
sides of length 10.0 cm.  If the current in each wire is 
15.0 A in the directions shown,

(a) What is the magnetic field at the location of the 
upper wire due to the currents in the two lower wires?

(b) What force per unit length does the upper wire 
experience?  

× ×

•

  10.0 cm



(a) Note that     
! 
B 1 is perpendicular to the line joining #1 

and the upper wire and     
! 
B 2 is perpendicular to the line 

joining #2 and the upper 
wire. Using the right hand 
rule their directions are as 
shown.  From the 
geometry of the problem, 
the magnetic field vectors 

are at     30" to the x- 

direction, so the resultant 
magnetic field is 

    
! 
B =
! 
B 1 cos30" +

! 
B 2 cos30".

But     
! 
B 1 =

! 
B 2 = B, where 

    
B =

µ"I
2πr

=
4π ×10−7 ×15 A

2π × 0.10 m

  = 3.00 ×10−5T.

    ∴
! 
B = 2 Bcos30"( )ˆ i = 2 Bcos30"( )ˆ i 

  = 2 3.00 ×10−5T × 0.866( )ˆ i = 5.20 ×10−5T ˆ i .

× ×
    
! 
B 1

    
! 
B 2

    30"

    30"
  x

  #1   # 2

    60"     60"

    60"
  (ˆ i )•

  y   (ˆ j )

× ×
    
! 
B 1

    
! 
B 2

    30"

    30"
  x

  #1   # 2

    60"     60"

    60"
  (ˆ i )•

  y   (ˆ j )

(b) The force the lower wires exert on the upper wire is

    
! 
F = I
! 
ℓ ×
! 
B = Iℓ ˆ k × Bˆ i = IℓB̂  j ,

i.e., in the y-direction.

    
∴
! 
F 
ℓ
= IBˆ j = 15.0 A × 5.20 ×10−5T( )ˆ j 

  = 7.8 ×10−4 N( )ˆ j .



I

Question 27.8: Identify all of the forces acting on the 
windings of a current carrying solenoid ... The forces acting on the windings of a solenoid are ...  

1. Between each turn the currents are parallel so 
there are attractive forces that tend to reduce the length 
of the coil.

2. Across a turn the currents are anti-parallel so 
there are repulsive forces that tend to increase the radius 
of the coil.

I



Gauss’s Law in magnetism:

Unlike electrical charges, single, isolated magnetic poles - 
monopoles - do not exist ... magnetic poles only occur in 
pairs.  So, the net magnetic flux through any closed 
surface is zero, always.  Look ...

Electric charge with electric field 
lines; lines start from a   +ve 
charge and end on a   −ve charge.

Magnetic poles with magnetic 
field lines; magnetic field lines are 
continuous so if a line exits a 
Gaussian surface it must also 
enter.  So, Gauss’s Law tells us ... 
the net magnetic flux through any 
closed surface is zero, always.

+

A “sort of equivalent” to Gauss’s Law in magnetism is ... 
Ampère’s Law:

“The line integral of the magnetic field     
! 
B  around 

a closed path is proportional to the algebraic sum 
of the enclosed currents”, 

i.e.,     
! 
B c∫ • d
! 
ℓ = µ#Ienc.

However, Ampère’s Law is only useful if ...
• the current is constant, and
• the system has high symmetry.

So it is not so generally 
applicable as Gauss’s Law.

Let’s look at some examples.



Example of the use of Ampère’s Law: 

Ampere’s Law:     
! 
B c∫ • d
! 
ℓ = µ#Ienc.

We choose the closed path to be a circle perpendicular 
to the wire and centered on the wire.  Then

•      
! 
B  is constant on the path (by symmetry).

•      d
! 
ℓ ||
! 
B  at all points on the path.

    ∴   
! 
B c∫ • d
! 
ℓ = B d

! 
ℓ c∫ = B 2πr( ) = µ#I

i.e.,
    
B =

µ#I
2πr

,

which is the same result we obtained before for a long 
straight wire!

Amperian closed path 
(a circle centered 

on the wire)

    d
! 
ℓ 

    
! 
B  I 

    
! 
B 

r 

    d
! 
ℓ 

Magnetic field inside and outside a current carrying wire:   
• Is there a magnetic field inside a conducting wire?

1: Inside the wire (r < R).  

Take a circular Amperian loop  1  centered on the wire.  

By symmetry,     
! 
B 1  is constant (and parallel to     d

! 
ℓ ) ...

    ∴
! 
B 11∫ • d

! 
ℓ = B1 dℓ1∫ = B1 2πr( ).

The fraction of the current enclosed by  1  is

  
Ienc =

Area enclosed by     
Total area

I =
πr2

πR2 I =
r2

R2 I.

    
∴B1 2πr( ) = µ#Ienc = µ#

r2

R2 I

i.e., 
    
B1 =

µ#r
2πR2 I (r < R).

    d
! 
ℓ 

 1 

    
! 
B 1

R
r

 1 

 I 
R



2: Outside the wire (r > R).  

By symmetry     
! 
B 2  is constant (and parallel to     d

! 
ℓ )  ...

    ∴
! 
B 22∫ • d

! 
ℓ = B2dℓ2∫ = B2 dℓ2∫ = B2 2πr( ) = µ#Ienc.

The current enclosed by the Amperian loop  2  is I.

    ∴B2 2πr( ) = µ#I

i.e.,  
    
B2 =

µ#I
2πr

(r > R).

This is just like the field from an infinitely long wire. 
Note: it is independent of the radius R.

Here’s what the field looks like ...

    
! 
B 2 || d

! 
ℓ 

 2 
R

  r

 I 
R

Inside the wire, the field increases linearly from the center 
to a maximum at the surface of the wire.  Outside the wire, 
the field is the same as the field produced by an infinite 
wire.

B

r
0        R       2R      3R     4R      5R  

    
Bmax =

µ!I
2πR

    
B2 =

µ!I
2πr

    
B1 =

µ!r
2πR2 I

The magnetic field inside   (r < R) and outside   (r > R) 
a current carrying wire of radius R. 



Question 27.9: Is there a magnetic field inside a current 
carrying hollow tube, i.e., for   r < R1?  If so, in what 

direction is it?  

Tube carrying current I 

  R1

  R2

  I

Draw a circular Amperian loop radius r (centered on the 
wire with   r < R1).  Using Ampère’s Law,

    
! 
B • d
! 
ℓ ∫ = µ#Ienc.

But there is no enclosed current so,     
! 
B • d
! 
ℓ = 0. 

    ∴
! 
B  cannot be circular, i.e.,   ||ℓ to     d

! 
ℓ .    

Could     
! 
B  be perpendicular to     d

! 
ℓ , i.e., parallel to the axis 

of the tube?  Think of the tube as being made up of 
individual, small elements each carrying a fraction of the 
current   δi:   

Tube carrying current I 

  R1

  R2

  I
r

  δi



Each element acts like a wire carrying part of the total 
current.  It produces a magnetic field that is concentric, 
i.e., not down the tube.  But, cancellation from all the 
diametrically opposite elements produces zero net field 
inside! So, there is no magnetic field inside the tube at all.  

Note that addition of the individual fields outside the tube 
produce a circular, clockwise set of field lines.

    
B =

µ!I
2πr

(  r > R2).

  δi

Question 27.10: A coaxial cable is connected so that the 
instantaneous current to a load flows through the inner 
central conductor and returns through the outer copper 
braid, as shown.  If you could “see” magnetic field lines, 
what would they look like outside the cable if the 
instantaneous current in the central conductor is directed 
towards you?

A: Circular, clockwise.
B: Circular, counter-clockwise.
C: Radial, outwards.
D: Radial, inwards.
E: There is no field.

i

i



Draw a closed, circular Amperian loop (C) around the 
coaxial cable.  We know 

    
! 
B • d
! 
ℓ C∫ = µ#Ienc.  

But, the net current enclosed   Ienc = 0, so     
! 
B • d
! 
ℓ = 0, i.e., 

    
! 
B  cannot be circular.  Could     

! 
B  be radial? ... that would 

make     
! 
B • d
! 
ℓ = 0.  No, because magnetic field lines must 

be continuous, i.e., loop around.  Therefore, the only 
conclusion is that there is no field outside the coaxial 
cable.

Connecting coaxial cables this way ensures that there is 
no external magnetic field even if the current i changes.
So, the answer is E.

i

i

C 

source load
i

i

i

i

Question 27.11: A coaxial cable is connected so that the 
instantaneous current to a load flows through the central 
conductor and returns through the copper braid as shown.  
If you could “see” magnetic field lines, what would they 
look like between the conductors when the instantaneous 
current in the central conductor is directed towards you?

A: Circular, clockwise.
B: Circular, counter-clockwise.
C: Radial, outwards.
D: Radial, inwards.
E: There is no field.



Draw a closed, circular loop (C) with radius r, around the 
center wire and inside the insulating material.  Applying 
Ampère’s Law we get

     
! 
B • d
! 
ℓ C∫ = µ#Ienc.  

    ∴B 2πr( ) = µ#i

i.e.,  
    
B(r) = µ#i

2πr
.

This is the same as for a current carrying wire, and the 
direction of the field is given by the right hand rule, i.e., 
counter-clockwise.  So, the answer is B.

Note: the outer conductor has absolutely no effect!

i

i

C

Magnetic field of a toroidal solenoid:   

Take three closed (circular) loops ...

Loop 1:  Net current inside Loop 1   = 0 so     
! 
B = 0 

everywhere inside the ring.

Loop 2:  By symmetry,     
! 
B  is a tangent to the path 

and   ||ℓ to     d
! 
ℓ .  Note that   Ienc = NI.

    ∴
! 
B • d
! 
ℓ 2∫ = 2πrB = µIenc = µNI,

where     µ = Kmµ# and   Km is the relative permeability of 

the core.

i.e.,  
  
B =

µNI
2πr

.

I

    
! 
B || d
! 
ℓ 

 Loop 1 

 r 

 Loop 2 
Loop 3 

N turns of wire



I

 r 

Loop 3 

Loop 3:  Net current inside Loop 3   = 0 (because 

of cancellation), so     
! 
B = 0 everywhere outside the ring.

Therefore, in an ideal toroidal solenoid, the field is 
restricted to the core of the solenoid and, at radius r, is 
given by:

  
B =

µNI
2πr

.

Note that although the field lines are concentric, the field 
varies across the core; it is largest where r is smallest.

Question 27.12:  A tightly wound 1000-turn toroidal 
solenoid has an inner radius of 1.00 cm and an outer 
radius of 2.00 cm, and carries a current of 1.50 A.  The 
core of the solenoid is made of soft iron with a relative 
permeability   Km = 5500.  

(a) What is the magnetic field strength at a distance 
of 1.10 cm from the center of the toroid? 

(b) What is the magnetic field strength at a distance 
of 1.50 cm from the center of the toroid?



The magnetic field in the core of the solenoid at radius r, 
is given by:

  
B =

µNI
2πr

, where     µ = 5500µ!.

(a) Substituting the numerical values

   
  
B(1.10cm) = 5500 × (4π ×10−7 )(1000)(1.50 A)

2π(1.10 ×10−2 m)

  = 150T.

(b) Substituting the numerical values

   
  
B(1.50cm) = 5500 × (4π ×10−7 )(1000)(1.50 A)

2π(1.50 ×10−2 m)

  = 110T.

 r 

 How can we “get” to the field inside the core??

Since magnetic field lines are continuous we do not lose 
much flux (lines/unit area) in a narrow gap.  If we wind 
the coil on a medium with permeability µ, the field in the 

gap 

    

! 
B gap ≈

! 
B in →

µNI
2πr

and since for some materials     µ⇒ Kmµ" ≈105µ" we can 

obtain very large magnetic field strengths in the gap.  

  ** This is the basis of an “electromagnet” **

I
I

    
! 
B gap ≈

! 
B in

    
! 
B in



Typical laboratory electromagnet 

Current carrying coils

S N

Continuous magnetic
field “circuit”

High permeability
material


