
Islamic University – Gaza
 Engineering Faculty
 Department of Computer Engineering

 ECOM 3012: Data Structures and Algorithms Discussion

Chapter 3

Arrays, Linked Lists, and Recursion

Eng. Eman R. Habib

October, 2013

2 Data Structures and Algorithms Discussion

 Singly linked list
 Singly linked list : a collection of nodes that form a liner ordering

 Link hopping: moving from one node to another.

 Singly: you can move in one direction, from the node to the next one only

 There is no fixed size.

R-3.9:
Describe a method for inserting an element at the beginning of a singly linked list. Assume
that the list does not have a sentinel header node, and instead uses a variable head to
reference the first node in the list.

Public void insert (String e){

 Node n = new Node();

 n.setElement(e);

 if(size > 0)

 n.setNext(head);

 head = n;

 size++;

}

R-3.10:
Give an algorithm for finding the penultimate node in a singly linked list where the last
element is indicated by a null next reference.

Algorithm findPenultimate(S):

Node n head

while (n.getNext()!=tail)do

 N n.getNext()

return n

head tail

next, pointer points to the next node

head tail

head

head
tail n

3 Data Structures and Algorithms Discussion

C-3.8:
Describe a good algorithm for concatenating two singly linked lists Land M, with header
sentinels, into a single list L' that contains all the nodes of L followed by all the nodes of M.

Algorithm concatenate(L,M):

Node n L.getHead()

While (n.getNext()!=null)do

 n n.getNext()

n.setNext(M.getHead())

L’ L

 Doubly linked list
 Each node has two references, one for next and the other for previous.

 DLL has “header” and “trailer” nodes called dummy or sentinel nodes.

 An empty DLL has header and trailer only and its size is zero (not counting sentinel
nodes).

C-3.10
Describe in detail how to swap two nodes x and y (and not just their contents) in a singly
linked list L given references only to x and y. Repeat this exercise for the case when L is a
doubly linked list. Which algorithm takes more time?

In singly linked list:

L

head tail

M

head tail

header trailer

x y n v

4 Data Structures and Algorithms Discussion

Algorithm swap(x, y):

Node n head

while(n.getNext() != x) do

 n n.getNext()

Node v y.getNext()

n.setNext(y)

y.setNext(x)

x.setNext(v)

In doubly linked list:

Algorithm swapDoubly(x, y):
DNode n x.getPrev()

DNode v y.getPrev()

n.setNext(y)

y.setPrev(n)
y.setNext(x)

x.setPrev(y)

x.setNext(v)

v.setPrev(x)

Swap in singly linked list take more time because we have to move from head to the node
before x.

R-3.11
Describe a nonrecursive method for finding, by link hopping, the middle node of a doubly
linked list with header and trailer sentinels. (Note: This method must only use link hopping; it
cannot use a counter.) What is the running time of this method?

DNode findMiddle(){

DNode n = header.getNext();

DNode m = trailer.getPrev();

if(n == trailer)

 return null;

x y
n v

n m n n m m

5 Data Structures and Algorithms Discussion

While (n != m){

 n=n.getNext();

 m=m.getPrev();

}

return m;

}

C-3.9
Give a fast algorithm for concatenating two doubly linked lists Land M, with header and
trailer sentinel nodes, into a single list L'.

Algorithm Concatenate(L, M):

DNode V = (L.getTrailer()).getPrev()

DNode x = (M.getHeader()).getNext()

(M.getHeader()).setNext(null)

(L.getTrailer()).setPrev(null)

v.setNext(x)

x.setPrev(v)

L’ = L

L’.setTrailer(M.getTrailer())

return L’

 Circularly linked list

 There is no head or tail but special node called curser.

 Circularly singly linked list: Pointer in the last node points back to the first node

 Circularly doubly linked list: Forward pointer of the last node points to the first node
and backward pointer of the first node points to the last node

curser

curser

6 Data Structures and Algorithms Discussion

R-3.16
Write a short Java method to count the number of nodes in a circularly linked list.

int Count(){

Node n = curser.getNext();

int counter = 1;

while(n != curser){

 n = n.getNext();

 counter ++;

}

return counter;

 recursion
 Method called itself.

 Used to achieve repetition.

 Base case: case to get out of recursion

Linear recursion:
Perform only one recursive call.

Tail recursion:
Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
Such methods can be easily converted to non-recursive methods (loop).

Binary recursion:
Binary recursion occurs whenever there are two recursive calls for each non-base case.

R-3.13
Draw the recursion trace for the execution of method ReverseArray(A, 0,4) (Code Fragment
3.32) on array A = {4, 3,6,2, 5}.

Algorithm ReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at index i

and ending at j

if i < j then

Swap A[i] and A[j]

ReverseArray(A, i+l, j-1)

return

7 Data Structures and Algorithms Discussion

1) i=0, j=4, A= {4, 3, 6, 2, 5}
i<j 0<4 (yes)
swap(A[0], A[4])
A= {5, 3, 6, 2, 4}

2) i=1, j=3, A= {5, 3, 6, 2, 4}
i<j 1<3 (yes)
swap(A[1], A[3])
A= {5, 2, 6, 3, 4}

3) i=2, j=2, A= {5, 2, 6, 3, 4}
i<j 2<2 (no)
return

C-3.6
Give a recursive algorithm to compute the product of two positive integers, m and n, using
only addition and subtraction.

Algorithm product(m, n):

if n=1

 return m

else

 return m + product(m, n+1)

call

product (5,3)

call

product (5,2)

call

product (5,1)

 (2,2)

return 5

return 5+5=10

return 5+10 =15

return 5+15 =20 final result
call from main

product (5,4)

8 Data Structures and Algorithms Discussion

C-3.14
Describe a recursive algorithm that counts the number of nodes in a singly linked list.

Algorithm count(n):

if(n=null)

 return 0

else

 return 1+count(n.getNext())

R-3.12
Describe a recursive algorithm for finding the maximum element in an array A of n elements.
What is your running time and space usage?

Algorithm Max (A, m, n)

if A[n-1]>m

m A[n-1]

if n=1

return m

else

return Max(A, m, n-1)

C-3.7
Describe a fast recursive algorithm for reversing a singly linked list L, so that the ordering of
the nodes becomes opposite of what it was before.

Algorithm reverse(current, previous):

Node temp

if(current=tail)

current.setNext(previous)

 temp head

 L.setHead(tail)

 L.setTail(temp)

else

 reverse(current.getNext(), current)

 current.setNext(previous)

9 Data Structures and Algorithms Discussion

C-3.13
Describe a recursive method for converting a string of digits into the integer it represents. For
example,"13531 " represents the integer 13,531.

int convert(String s){

if(s.length()==1)

return s.charAt(0)-48;

else{

 int c = s.charAt(s.length()-1)-48;

 return c + 10*convert(s.substring(0,s.length()-1));

}

Trace:
1+10(1353)
1+10(3+10(135))
1+10(3+10(5+10(13)))
1+10(3+10(5+10(3+10(1))))
1+10(3+10(5+10(3+10*1)))

C-3.l8

Write a short recursive Java method that will rearrange an array of int values so that all the
even values appear before all the odd values.

void rearrange(int []a,int n){

 if (n==0)

 return;

 else if(a[n-1]%2==0){

 for(int i=0;i<n-1;i++){

 if(a[i]%2!=0){

 swap(a[i], a[n-1])

 rearrange(a,n-1);}}}

 else

 rearrange(a,n-1);

}

C-3.l9
Write a short recursive Java method that takes a character string sand outputs its reverse. So
for example, the reverse of "pots&pans II would be "snap&stop".

String reverseString(String s){

 if (s.length() < 1)

 return s;

 else {

 char c = s.charAt(0);

 return reverseString(s.substring(1))+c;

 }}

10 Data Structures and Algorithms Discussion

C-3.20
Write a short recursive Java method that determines if a string s is a palindrome, that is, it is
equal to its reverse. For example, “racecar” and “ gohangasalamiimalasagnahog” are
palindromes.

boolean isPalindrome(String s){

 if (s.length() <= 1)

 return true;

 if(s.charAt(0)== s.charAt(s.length()-1)(

 return isPalindrome(s.substring(1, s.length()-1));

 return false;

}

C-3.21
Use recursion to write a Java method for determining if a string s has more vowels than
consonants.

boolean moreVowels(String s, int c){

 if (s.length() == 0)

 return (c>0);

 if(s.charAt(s.length()-1)=='a'

 ||s.charAt(s.length()-1)=='e'

 ||s.charAt(s.length()-1)=='i'

 ||s.charAt(s.length()-1)=='o'

 ||s.charAt(s.length()-1)=='u')

 c++;

 else

 c--;

 return moreVowels(s.substring(0, s.length()-1),c);

}

 Best Wishes

