
Islamic University – Gaza
 Engineering Faculty
 Department of Computer Engineering

 ECOM 3012: Data Structures and Algorithms Discussion

Chapter 3

Arrays, Linked Lists, and Recursion

Eng. Eman R. Habib

October, 2013

2 Data Structures and Algorithms Discussion

 Singly linked list
 Singly linked list : a collection of nodes that form a liner ordering

 Link hopping: moving from one node to another.

 Singly: you can move in one direction, from the node to the next one only

 There is no fixed size.

R-3.9:
Describe a method for inserting an element at the beginning of a singly linked list. Assume
that the list does not have a sentinel header node, and instead uses a variable head to
reference the first node in the list.

Public void insert (String e){

 Node n = new Node();

 n.setElement(e);

 if(size > 0)

 n.setNext(head);

 head = n;

 size++;

}

R-3.10:
Give an algorithm for finding the penultimate node in a singly linked list where the last
element is indicated by a null next reference.

Algorithm findPenultimate(S):

Node n  head

while (n.getNext()!=tail)do

 N  n.getNext()

return n

head tail

next, pointer points to the next node

head tail

head

head
tail n

3 Data Structures and Algorithms Discussion

C-3.8:
Describe a good algorithm for concatenating two singly linked lists Land M, with header
sentinels, into a single list L' that contains all the nodes of L followed by all the nodes of M.

Algorithm concatenate(L,M):

Node n  L.getHead()

While (n.getNext()!=null)do

 n  n.getNext()

n.setNext(M.getHead())

L’  L

 Doubly linked list
 Each node has two references, one for next and the other for previous.

 DLL has “header” and “trailer” nodes called dummy or sentinel nodes.

 An empty DLL has header and trailer only and its size is zero (not counting sentinel
nodes).

C-3.10
Describe in detail how to swap two nodes x and y (and not just their contents) in a singly
linked list L given references only to x and y. Repeat this exercise for the case when L is a
doubly linked list. Which algorithm takes more time?

In singly linked list:

L

head tail

M

head tail

header trailer

x y n v

4 Data Structures and Algorithms Discussion

Algorithm swap(x, y):

Node n  head

while(n.getNext() != x) do

 n  n.getNext()

Node v  y.getNext()

n.setNext(y)

y.setNext(x)

x.setNext(v)

In doubly linked list:

Algorithm swapDoubly(x, y):
DNode n  x.getPrev()

DNode v  y.getPrev()

n.setNext(y)

y.setPrev(n)
y.setNext(x)

x.setPrev(y)

x.setNext(v)

v.setPrev(x)

Swap in singly linked list take more time because we have to move from head to the node
before x.

R-3.11
Describe a nonrecursive method for finding, by link hopping, the middle node of a doubly
linked list with header and trailer sentinels. (Note: This method must only use link hopping; it
cannot use a counter.) What is the running time of this method?

DNode findMiddle(){

DNode n = header.getNext();

DNode m = trailer.getPrev();

if(n == trailer)

 return null;

x y
n v

n m n n m m

5 Data Structures and Algorithms Discussion

While (n != m){

 n=n.getNext();

 m=m.getPrev();

}

return m;

}

C-3.9
Give a fast algorithm for concatenating two doubly linked lists Land M, with header and
trailer sentinel nodes, into a single list L'.

Algorithm Concatenate(L, M):

DNode V = (L.getTrailer()).getPrev()

DNode x = (M.getHeader()).getNext()

(M.getHeader()).setNext(null)

(L.getTrailer()).setPrev(null)

v.setNext(x)

x.setPrev(v)

L’ = L

L’.setTrailer(M.getTrailer())

return L’

 Circularly linked list

 There is no head or tail but special node called curser.

 Circularly singly linked list: Pointer in the last node points back to the first node

 Circularly doubly linked list: Forward pointer of the last node points to the first node
and backward pointer of the first node points to the last node

curser

curser

6 Data Structures and Algorithms Discussion

R-3.16
Write a short Java method to count the number of nodes in a circularly linked list.

int Count(){

Node n = curser.getNext();

int counter = 1;

while(n != curser){

 n = n.getNext();

 counter ++;

}

return counter;

 recursion
 Method called itself.

 Used to achieve repetition.

 Base case: case to get out of recursion

Linear recursion:
Perform only one recursive call.

Tail recursion:
Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
Such methods can be easily converted to non-recursive methods (loop).

Binary recursion:
Binary recursion occurs whenever there are two recursive calls for each non-base case.

R-3.13
Draw the recursion trace for the execution of method ReverseArray(A, 0,4) (Code Fragment
3.32) on array A = {4, 3,6,2, 5}.

Algorithm ReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at index i

and ending at j

if i < j then

Swap A[i] and A[j]

ReverseArray(A, i+l, j-1)

return

7 Data Structures and Algorithms Discussion

1) i=0, j=4, A= {4, 3, 6, 2, 5}
i<j  0<4 (yes)
swap(A[0], A[4])
A= {5, 3, 6, 2, 4}

2) i=1, j=3, A= {5, 3, 6, 2, 4}
i<j  1<3 (yes)
swap(A[1], A[3])
A= {5, 2, 6, 3, 4}

3) i=2, j=2, A= {5, 2, 6, 3, 4}
i<j  2<2 (no)
return

C-3.6
Give a recursive algorithm to compute the product of two positive integers, m and n, using
only addition and subtraction.

Algorithm product(m, n):

if n=1

 return m

else

 return m + product(m, n+1)

call

product (5,3)

call

product (5,2)

call

product (5,1)

 (2,2)

return 5

return 5+5=10

return 5+10 =15

return 5+15 =20 final result
call from main

product (5,4)

8 Data Structures and Algorithms Discussion

C-3.14
Describe a recursive algorithm that counts the number of nodes in a singly linked list.

Algorithm count(n):

if(n=null)

 return 0

else

 return 1+count(n.getNext())

R-3.12
Describe a recursive algorithm for finding the maximum element in an array A of n elements.
What is your running time and space usage?

Algorithm Max (A, m, n)

if A[n-1]>m

m  A[n-1]

if n=1

return m

else

return Max(A, m, n-1)

C-3.7
Describe a fast recursive algorithm for reversing a singly linked list L, so that the ordering of
the nodes becomes opposite of what it was before.

Algorithm reverse(current, previous):

Node temp

if(current=tail)

current.setNext(previous)

 temp  head

 L.setHead(tail)

 L.setTail(temp)

else

 reverse(current.getNext(), current)

 current.setNext(previous)

9 Data Structures and Algorithms Discussion

C-3.13
Describe a recursive method for converting a string of digits into the integer it represents. For
example,"13531 " represents the integer 13,531.

int convert(String s){

if(s.length()==1)

return s.charAt(0)-48;

else{

 int c = s.charAt(s.length()-1)-48;

 return c + 10*convert(s.substring(0,s.length()-1));

}

Trace:
1+10(1353)
1+10(3+10(135))
1+10(3+10(5+10(13)))
1+10(3+10(5+10(3+10(1))))
1+10(3+10(5+10(3+10*1)))

C-3.l8

Write a short recursive Java method that will rearrange an array of int values so that all the
even values appear before all the odd values.

void rearrange(int []a,int n){

 if (n==0)

 return;

 else if(a[n-1]%2==0){

 for(int i=0;i<n-1;i++){

 if(a[i]%2!=0){

 swap(a[i], a[n-1])

 rearrange(a,n-1);}}}

 else

 rearrange(a,n-1);

}

C-3.l9
Write a short recursive Java method that takes a character string sand outputs its reverse. So
for example, the reverse of "pots&pans II would be "snap&stop".

String reverseString(String s){

 if (s.length() < 1)

 return s;

 else {

 char c = s.charAt(0);

 return reverseString(s.substring(1))+c;

 }}

10 Data Structures and Algorithms Discussion

C-3.20
Write a short recursive Java method that determines if a string s is a palindrome, that is, it is
equal to its reverse. For example, “racecar” and “ gohangasalamiimalasagnahog” are
palindromes.

boolean isPalindrome(String s){

 if (s.length() <= 1)

 return true;

 if(s.charAt(0)== s.charAt(s.length()-1)(

 return isPalindrome(s.substring(1, s.length()-1));

 return false;

}

C-3.21
Use recursion to write a Java method for determining if a string s has more vowels than
consonants.

boolean moreVowels(String s, int c){

 if (s.length() == 0)

 return (c>0);

 if(s.charAt(s.length()-1)=='a'

 ||s.charAt(s.length()-1)=='e'

 ||s.charAt(s.length()-1)=='i'

 ||s.charAt(s.length()-1)=='o'

 ||s.charAt(s.length()-1)=='u')

 c++;

 else

 c--;

 return moreVowels(s.substring(0, s.length()-1),c);

}

 Best Wishes 

